Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (298)

Search Parameters:
Keywords = acoustic oscillations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3035 KiB  
Article
Study of Taconis-Based Cryogenic Thermoacoustic Engine with Hydrogen and Helium
by Matthew P. Shenton, Jacob W. Leachman and Konstantin I. Matveev
Energies 2025, 18(15), 4114; https://doi.org/10.3390/en18154114 - 2 Aug 2025
Viewed by 287
Abstract
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is [...] Read more.
Taconis oscillations represent spontaneous excitation of acoustic modes in tubes with large temperature gradients in cryogenic systems. In this study, Taconis oscillations in hydrogen and helium systems are enhanced with a porous material resulting in a standing-wave thermoacoustic engine. A theoretical model is developed using the thermoacoustic software DeltaEC, version v6.4b2.7, to predict system performance, and an experimental apparatus is constructed for engine characterization. The low-amplitude thermoacoustic model predicts the pressure amplitude, frequency, and temperature gradient required for excitation of the standing-wave system. Experimental measurements, including the onset temperature ratio, acoustic pressure amplitudes, and frequencies, are recorded for different stack materials and geometries. The findings indicate that, independent of stack, hydrogen systems excite at smaller temperature differentials than helium (because of different properties such as lower viscosity for hydrogen), and the stack geometry and material affect the onset temperature ratio. However, pressure amplitude in the excited states varies minimally. Initial measurements are also conducted in a cooling setup with an added regenerator. The configuration with stainless-steel mesh screens produces a small cryogenic refrigeration effect with a decrease in temperature of about 1 K. The reported characterization of a Taconis-based thermoacoustic engine can be useful for the development of novel thermal management systems for cryogenic storage vessels, including refrigeration and pressurization. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

18 pages, 3225 KiB  
Article
Autonomous Tracking of Steel Lazy Wave Risers Using a Hybrid Vision–Acoustic AUV Framework
by Ali Ghasemi and Hodjat Shiri
J. Mar. Sci. Eng. 2025, 13(7), 1347; https://doi.org/10.3390/jmse13071347 - 15 Jul 2025
Viewed by 302
Abstract
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental [...] Read more.
Steel lazy wave risers (SLWRs) are critical in offshore hydrocarbon transport for linking subsea wells to floating production facilities in deep-water environments. The incorporation of buoyancy modules reduces curvature-induced stress concentrations in the touchdown zone (TDZ); however, extended operational exposure under cyclic environmental and operational loads results in repeated seabed contact. This repeated interaction modifies the seabed soil over time, gradually forming a trench and altering the riser configuration, which significantly impacts stress patterns and contributes to fatigue degradation. Accurately reconstructing the riser’s evolving profile in the TDZ is essential for reliable fatigue life estimation and structural integrity evaluation. This study proposes a simulation-based framework for the autonomous tracking of SLWRs using a fin-actuated autonomous underwater vehicle (AUV) equipped with a monocular camera and multibeam echosounder. By fusing visual and acoustic data, the system continuously estimates the AUV’s relative position concerning the riser. A dedicated image processing pipeline, comprising bilateral filtering, edge detection, Hough transform, and K-means clustering, facilitates the extraction of the riser’s centerline and measures its displacement from nearby objects and seabed variations. The framework was developed and validated in the underwater unmanned vehicle (UUV) Simulator, a high-fidelity underwater robotics and pipeline inspection environment. Simulated scenarios included the riser’s dynamic lateral and vertical oscillations, in which the system demonstrated robust performance in capturing complex three-dimensional trajectories. The resulting riser profiles can be integrated into numerical models incorporating riser–soil interaction and non-linear hysteretic behavior, ultimately enhancing fatigue prediction accuracy and informing long-term infrastructure maintenance strategies. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

11 pages, 403 KiB  
Article
Modeling the Frequency–Amplitude Characteristics of a Tunable SAW Oscillator
by Ionut Nicolae and Cristian Viespe
Chemosensors 2025, 13(7), 240; https://doi.org/10.3390/chemosensors13070240 - 6 Jul 2025
Viewed by 341
Abstract
The resonant frequency of an SAW oscillator can be modulated by varying the signal amplitude, due to non-linear acoustic interactions within the chemoselective layer. In this study, we developed an explicit model to describe the amplitude–frequency behavior of a tunable SAW oscillator. A [...] Read more.
The resonant frequency of an SAW oscillator can be modulated by varying the signal amplitude, due to non-linear acoustic interactions within the chemoselective layer. In this study, we developed an explicit model to describe the amplitude–frequency behavior of a tunable SAW oscillator. A polymeric layer of variable thickness was deposited in a circular area (radius 1.1 mm) at the center of the piezoactive surface. Increasing the oscillator loop attenuation resulted in a continuous increase in the resonant frequency by up to 1.8 MHz. The layer was modeled as a succession of non-interacting sub-layers of varying thicknesses. As a result, the function model consists of a superposition of terms, each corresponding to a layer region of distinct length and thickness. The maximum difference between the experimental data and function model (also known as residual of the fit) was below 1% (13.02 kHz) of the resonant frequency variation, thus supporting the validity of our approach. While our model proved successful, the results suggest that some interactions are unaccounted for, as evidenced by the periodicity of the residuals of fit and unrealistically large variation in acoustic wave velocity. Full article
(This article belongs to the Special Issue Advanced Chemical Sensors for Gas Detection)
Show Figures

Figure 1

26 pages, 9399 KiB  
Article
An Investigation of Pre-Seismic Ionospheric TEC and Acoustic–Gravity Wave Coupling Phenomena Using BDS GEO Measurements: A Case Study of the 2023 Jishishan Ms6.2 Earthquake
by Xiao Gao, Lina Shu, Zongfang Ma, Penggang Tian, Lin Pan, Hailong Zhang and Shuai Yang
Remote Sens. 2025, 17(13), 2296; https://doi.org/10.3390/rs17132296 - 4 Jul 2025
Viewed by 450
Abstract
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency [...] Read more.
This study investigates pre-seismic ionospheric anomalies preceding the 2023 Jishishan Ms6.2 earthquake using total electron content (TEC) data derived from BDS geostationary orbit (GEO) satellites. Multi-scale analysis integrating Butterworth filtering and wavelet transforms resolved TEC disturbances into three distinct frequency regimes: (1) high-frequency perturbations (0.56–3.33 mHz) showed localized disturbances (amplitude ≤ 4 TECU, range < 300 km), potentially associated with near-field acoustic waves from crustal stress adjustments; (2) mid-frequency signals (0.28–0.56 mHz) exhibited anisotropic propagation (>1200 km) with azimuth-dependent N-shaped waveforms, consistent with the characteristics of acoustic–gravity waves (AGWs); and (3) low-frequency components (0.18–0.28 mHz) demonstrated phase reversal and power-law amplitude attenuation, suggesting possible lithosphere–atmosphere–ionosphere (LAI) coupling oscillations. The stark contrast between near-field residuals and far-field weak fluctuations highlighted the dominance of large-scale atmospheric gravity waves over localized acoustic disturbances. Geometry-based velocity inversion revealed incoherent high-frequency dynamics (5–30 min) versus anisotropic mid/low-frequency traveling ionospheric disturbance (TID) propagation (30–90 min) at 175–270 m/s, aligning with theoretical AGW behavior. During concurrent G1-class geomagnetic storm activity, spatial attenuation gradients and velocity anisotropy appear primarily consistent with seismogenic sources, providing insights for precursor discrimination and contributing to understanding multi-scale coupling in seismo-ionospheric systems. Full article
Show Figures

Figure 1

17 pages, 5686 KiB  
Article
Transcranial Magneto-Acoustic Stimulation Enhances Cognitive and Working Memory in AD Rats by Regulating Theta-Gamma Oscillation Coupling and Synergistic Activity in the Hippocampal CA3 Region
by Jinrui Mi, Shuai Zhang, Xiaochao Lu and Yihao Xu
Brain Sci. 2025, 15(7), 701; https://doi.org/10.3390/brainsci15070701 - 29 Jun 2025
Viewed by 423
Abstract
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated [...] Read more.
Background: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by cognitive dysfunction and working memory impairment, with early hippocampal damage being a prominent feature. Transcranial magneto-acoustic stimulation (TMAS) has been shown to target specific brain regions for neuroregulation. Methods: This study investigated the effects of TMAS on cognitive function, working memory, and hippocampal CA3 neural rhythms in AD rats by specifically stimulating the hippocampal region. Results: The novel object recognition test and T-maze test were employed to assess behavioral performance, while time-frequency analyses were conducted to evaluate memory-related activity, neural synchronization, and cross-frequency phase-amplitude coupling. TMAS significantly improved cognitive and working memory deficits in AD rats, enhancing long-term memory performance. Additionally, the abnormal energy levels observed in the θ and γ rhythm power spectra of the CA3 region were markedly restored, suggesting the recovery of normal neural function. This improvement was accompanied by a partial resurgence of neural activity, indicating enhanced inter-neuronal communication. Furthermore, the previously damaged coupling between the θ-fast γ and θ-slow γ rhythms was successfully improved, resulting in a notable enhancement of synchronized activity. Conclusions: These findings suggest that TMAS effectively alleviates cognitive and working memory impairments in AD rats and may provide experimental support for developing new treatments for AD. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

50 pages, 8738 KiB  
Review
From Barthel–Randers–Kropina Geometries to the Accelerating Universe: A Brief Review of Recent Advances in Finslerian Cosmology
by Amine Bouali, Himanshu Chaudhary, Lehel Csillag, Rattanasak Hama, Tiberiu Harko, Sorin V. Sabau and Shahab Shahidi
Universe 2025, 11(7), 198; https://doi.org/10.3390/universe11070198 - 20 Jun 2025
Viewed by 382
Abstract
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but [...] Read more.
We present a review of recent developments in cosmological models based on Finsler geometry, as well as geometric extensions of general relativity formulated within this framework. Finsler geometry generalizes Riemannian geometry by allowing the metric tensor to depend not only on position but also on an additional internal degree of freedom, typically represented by a vector field at each point of the spacetime manifold. We examine in detail the possibility that Finsler-type geometries can describe the physical properties of the gravitational interaction, as well as the cosmological dynamics. In particular, we present and review the implications of a particular implementation of Finsler geometry, based on the Barthel connection, and of the (α,β) geometries, where α is a Riemannian metric, and β is a one-form. For a specific construction of the deviation part β, in these classes of geometries, the Barthel connection coincides with the Levi–Civita connection of the associated Riemann metric. We review the properties of the gravitational field, and of the cosmological evolution in three types of geometries: the Barthel–Randers geometry, in which the Finsler metric function F is given by F=α+β, in the Barthel–Kropina geometry, with F=α2/β, and in the conformally transformed Barthel–Kropina geometry, respectively. After a brief presentation of the mathematical foundations of the Finslerian-type modified gravity theories, the generalized Friedmann equations in these geometries are written down by considering that the background Riemannian metric in the Randers and Kropina line elements is of Friedmann–Lemaitre–Robertson–Walker type. The matter energy balance equations are also presented, and they are interpreted from the point of view of the thermodynamics of irreversible processes in the presence of particle creation. We investigate the cosmological properties of the Barthel–Randers and Barthel–Kropina cosmological models in detail. In these scenarios, the additional geometric terms arising from the Finslerian structure can be interpreted as an effective geometric dark energy component, capable of generating an effective cosmological constant. Several cosmological solutions—both analytical and numerical—are obtained and compared against observational datasets, including Cosmic Chronometers, Type Ia Supernovae, and Baryon Acoustic Oscillations, using a Markov Chain Monte Carlo (MCMC) analysis. A direct comparison with the standard ΛCDM model is also carried out. The results indicate that Finslerian cosmological models provide a satisfactory fit to the observational data, suggesting they represent a viable alternative to the standard cosmological model based on general relativity. Full article
(This article belongs to the Special Issue Cosmological Models of the Universe)
Show Figures

Figure 1

6 pages, 177 KiB  
Commentary
Commentary: Treating Diseases from Alzheimer’s to Parkinson’s Using Transcranial Pulse Stimulation: Mechanistic Insights, Recent Evidence, and Ethical Considerations
by Lars Wojtecki
NeuroSci 2025, 6(2), 56; https://doi.org/10.3390/neurosci6020056 - 17 Jun 2025
Viewed by 693
Abstract
Transcranial pulse stimulation (TPS) is a non-invasive neuromodulation method that uses, high-intensity acoustic shockwaves to deliver focused mechanical stimulation to neural tissue with minimal thermal effects. The mechanism of action includes but is not limited to promotion of blood flow and angiogenesis through [...] Read more.
Transcranial pulse stimulation (TPS) is a non-invasive neuromodulation method that uses, high-intensity acoustic shockwaves to deliver focused mechanical stimulation to neural tissue with minimal thermal effects. The mechanism of action includes but is not limited to promotion of blood flow and angiogenesis through mechanotransduction. Clinical data to date are limited and preliminary. In Alzheimer’s disease (AD), TPS has demonstrated cognitive and mood improvements in pilot studies and secondary endpoint analysis in first randomized trials. The enhancement of gamma-band oscillations and network connectivity has been reported. Clinical observations in Parkinson’s disease (PD) suggest TPS as a hypothesis-generating approach to address non-motor symptoms—such as depression, cognitive decline, and the freezing of gait—through theoretical modulation of basal ganglia–cortical circuits. TPS is CE-marked in Europe for AD and shows a favorable safety profile; however, ethical considerations arise from the limited evidence base, potential impairment of patient autonomy and judgment in dementia, and the risk of withholding established treatments. TPS should only be offered under structured scientific protocols or within patient registries to ensure rigorous oversight. Ensuring that consent processes account for cognitive capacity, and that TPS is applied as adjunct rather than replacement therapy, is paramount. Future research must include large-scale randomized controlled trials (RCTs), standardize stimulation protocols, deepen mechanistic insight, and embed robust ethical frameworks. Full article
19 pages, 3627 KiB  
Article
Numerical Analysis of Pulse Decay Characteristics in Solid Rocket Motors for Different Finocyl Grain Configurations
by Fengnan Guo, Fengrui Li, Hongfeng Ji, Lin Fu and Xuyang Gao
Aerospace 2025, 12(6), 537; https://doi.org/10.3390/aerospace12060537 - 13 Jun 2025
Viewed by 811
Abstract
Combustion instability is an abnormal working state that often occurs in advanced solid rocket motors (SRMs), which can arouse pressure oscillations, increase the risk of mission failure, and even cause structural damage. In this paper, a numerical simulation method is adapted to analyze [...] Read more.
Combustion instability is an abnormal working state that often occurs in advanced solid rocket motors (SRMs), which can arouse pressure oscillations, increase the risk of mission failure, and even cause structural damage. In this paper, a numerical simulation method is adapted to analyze the combustion instability problem of a typical finocyl grain SRM, and the working process and pressure oscillation of different-structure SRMs are compared and analyzed. Firstly, the acoustic finite element analysis (FEA) method and the large eddy simulation (LES) method for SRM combustion instability analysis are given. Then, the numerical simulation method presented in this paper is verified by comparing the present results with the experimental data of Ariane-5 P230 motor, and finally, the pressure oscillation characteristics of SRMs with different structures by external pulse excitation are studied. The simulation results show that the pressure decay rate of the front finocyl grain structure is faster than that of the rear finocyl grain structure under the same external excitation. The excitation position has a relatively minor influence on the decay characteristics of pressure oscillations. The results can provide a certain reference for the combustion stability design of SRMs. Full article
(This article belongs to the Special Issue Combustion of Solid Propellants)
Show Figures

Figure 1

19 pages, 3021 KiB  
Article
Theoretical Analysis of Low-Frequency Sound Absorption Owing to the Vibration of Lightweight Powder Using a 1D Beam Model
by Shuichi Sakamoto, Yuya Kawakami, Hiroaki Soeta and Yosuke Kubo
Materials 2025, 18(11), 2611; https://doi.org/10.3390/ma18112611 - 3 Jun 2025
Viewed by 416
Abstract
Lightweight powder-based sound-absorbing materials are characterized by sound absorption peaks at lower frequencies compared to other sound absorption materials of the same thickness. This behavior is attributed to the excitation of longitudinal vibration modes in the powder particles by incident sound waves, wherein [...] Read more.
Lightweight powder-based sound-absorbing materials are characterized by sound absorption peaks at lower frequencies compared to other sound absorption materials of the same thickness. This behavior is attributed to the excitation of longitudinal vibration modes in the powder particles by incident sound waves, wherein acoustic energy is converted into kinetic energy and subsequently dissipated through interparticle interactions. These lightweight, fine powders are artificially engineered acoustic materials. Despite their structural simplicity, they exhibit emergent and complex sound absorption behaviors through fundamental vibrational mechanisms. Representing the powder layer with a transfer matrix simplifies model-based development and enhances versatility as an acoustic element. The powder layer was modeled as a longitudinally oscillating 1D beam, and transfer matrix of the powder layer was derived. To verify the obtained transfer matrix, the experimental values were compared with the theoretical values for a single powder layer. In addition, both were compared for the case of other acoustic elements stacked on top of each other, which were close to each other. The theoretical values were compared with the experimental values, which were close to each other. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

20 pages, 2243 KiB  
Review
Prospects of Improving the Vibroacoustic Method for Locating Buried Non-Metallic Pipelines
by Vladimir Pshenin, Alexander Sleptsov and Leonid Dukhnevich
Eng 2025, 6(6), 121; https://doi.org/10.3390/eng6060121 - 2 Jun 2025
Cited by 1 | Viewed by 1303
Abstract
Acoustic methods are a promising direction when determining the position of buried non-metallic pipelines. Under difficult soil conditions, one of the most effective methods is the vibroacoustic method, which has a maximum range of application when acoustic waves propagate through the transported medium. [...] Read more.
Acoustic methods are a promising direction when determining the position of buried non-metallic pipelines. Under difficult soil conditions, one of the most effective methods is the vibroacoustic method, which has a maximum range of application when acoustic waves propagate through the transported medium. However, due to limited energy input into the pipeline, signal detection at significant distances from the source becomes challenging. This article considers the mechanism of acoustic oscillations attenuation in pipes and suggests possible directions for optimization of the investigated technology. The evaluation of mathematical modeling methods for the investigated process is conducted, and the key signal attenuation relationships are presented. The analysis allowed us to establish that the vibroacoustic method has the potential of increasing the efficiency by approximately 10–20%. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

18 pages, 2715 KiB  
Article
Research on Combustion State System Diagnosis Based on Voiceprint Technology
by Jidong Yan, Yuan Wang, Liansuo An and Guoqing Shen
Sensors 2025, 25(10), 3152; https://doi.org/10.3390/s25103152 - 16 May 2025
Viewed by 380
Abstract
This study investigates a multi-scenario combustion state diagnosis system based on acoustic feature extraction techniques. In this study, the voiceprint technology is applied to combustion condition monitoring for the first time, and an integrated approach for monitoring and diagnosis is proposed by combining [...] Read more.
This study investigates a multi-scenario combustion state diagnosis system based on acoustic feature extraction techniques. In this study, the voiceprint technology is applied to combustion condition monitoring for the first time, and an integrated approach for monitoring and diagnosis is proposed by combining multiple acoustic features, such as acoustic pattern features, step index P, and frequency-domain monitoring. In this study, a premixed hydrogen combustion test bed was built to simulate common combustion faults, and the corresponding acoustic features were collected and extracted. In this study, step index P and acoustic features are used for parallel diagnostic analysis, and CNN, ANN, and BP models are used to train the four states of flameout, flameback, thermoacoustic oscillation, and stable combustion, and the training diagnostic performance of each model is compared and analyzed using a confusion matrix. It is found that CNN has the strongest classification ability, can accurately distinguish the four states, has the lowest misclassification rate, has very strong generalization ability, and has a diagnostic accuracy of 93.49%. The classification accuracy of ANN is not as good as that of CNN, and there are local fluctuations during the training process. The BP neural network has a slower convergence speed and a high error rate in recognizing the flameback and thermoacoustic oscillations. In summary, the combustion state diagnosis system based on CNN model combined with acoustic features has optimal performance, and the combination of step index P and frequency-domain monitoring in the flameback diagnosis can improve the accuracy of combustion state identification and safety control level, which provides an important theoretical basis and practical reference in the field of combustion state diagnosis and is of profound significance to ensure the safe and efficient operation of the combustion process. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

14 pages, 3882 KiB  
Article
Acoustic Losses in Cryogenic Hydrogen at Transitions Between Tubes of Different Diameters
by Kian Conroy and Konstantin I. Matveev
Hydrogen 2025, 6(2), 25; https://doi.org/10.3390/hydrogen6020025 - 14 Apr 2025
Viewed by 785
Abstract
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions [...] Read more.
Acoustic oscillations in cryogenic systems can either be imposed intentionally, as in pulse-tube cryocoolers, or occur spontaneously due to Taconis-type thermoacoustic instabilities. To predict the propagation of sound waves in ducts with sudden changes in cross-sectional areas, minor losses associated with such transitions in oscillatory flows must be known. However, the current modeling approaches usually rely on correlations for minor loss coefficients obtained in steady flows, which may not accurately represent minor losses in sound waves. In this study, high-fidelity computational fluid dynamics simulations are undertaken for acoustic oscillations at transitions between tubes of different diameters filled with cryogenic hydrogen. The variable parameters include the tube diameter ratios, temperatures (80 K and 30 K), and acoustic impedances corresponding to standing and traveling waves. Computational simulation results are compared with reduced-order acoustic models to develop corrections for minor loss coefficients that describe transition losses in sound waves more precisely. The present findings can improve the accuracy of design calculations for acoustic cryocoolers and predictions of Taconis instabilities. Full article
Show Figures

Figure 1

27 pages, 9311 KiB  
Article
Learning and Characterizing Chaotic Attractors of a Lean Premixed Combustor
by Sara Navarro-Arredondo and Jim B. W. Kok
Energies 2025, 18(7), 1852; https://doi.org/10.3390/en18071852 - 7 Apr 2025
Viewed by 342
Abstract
This paper is about the characteristics of and a method to recognize the onset of limit cycle thermoacoustic oscillations in a gas turbine-like combustor with a premixed turbulent methane/air flame. Information on the measured time series data of the pressure and the OH* [...] Read more.
This paper is about the characteristics of and a method to recognize the onset of limit cycle thermoacoustic oscillations in a gas turbine-like combustor with a premixed turbulent methane/air flame. Information on the measured time series data of the pressure and the OH* chemiluminescence is acquired and postprocessed. This is performed for a combustor with variation in two parameters: fuel/air equivalence ratio and combustor length. It is of prime importance to acknowledge the nonlinear dynamic nature of these instabilities. A method is studied to interpret thermoacoustic instability phenomena and assess quantitatively the transition of the combustor from a stable to an unstable regime. In this method, three-phase portraits are created on the basis of data retrieved from the measured acoustics and flame intensity in the laboratory-scale test combustor. In the path to limit cycle oscillation, the random distribution in the three-phase portrait contracts to an attractor. The phase portraits obtained when changing operating conditions, moving from the stable to the unstable regime and back, are analyzed. Subsequently, the attractor dimension is determined for quantitative analysis. On the basis of the trajectories from the stable to unstable and back in one run, a study is performed of the hysteresis dynamics in bifurcation diagrams. Finally, the onset of the instability is demonstrated to be recognized by the 0-1 criterion for chaos. The method was developed and demonstrated on a low-power atmospheric methane combustor with the aim to apply it subsequently on a high-power pressurized diesel combustor. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Figure 1

17 pages, 4847 KiB  
Article
Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading
by Katsumi Tsuchiya and Xiaolu Wang
Fluids 2025, 10(4), 89; https://doi.org/10.3390/fluids10040089 - 1 Apr 2025
Viewed by 532
Abstract
The process of ultrasonic atomization involves a series of dynamic/topological deformations of free surface, though not always, of a bulk liquid (initially) below the air. This study focuses on such dynamic interfacial alterations realized by changing some acousto-related operating conditions, including ultrasound excitation [...] Read more.
The process of ultrasonic atomization involves a series of dynamic/topological deformations of free surface, though not always, of a bulk liquid (initially) below the air. This study focuses on such dynamic interfacial alterations realized by changing some acousto-related operating conditions, including ultrasound excitation frequency, acoustic strength or input power density, and the presence/absence of a “stabilizing” nozzle. High-speed, high-resolution imaging made it possible to qualitatively identify four representative transitions/demarcations: (1) the onset of a protrusion on otherwise flat free surface; (2) the appearance of undulation along the growing protuberance; (3) the triggering of emanating beads fountain out of this foundation-like region; and (4) the induction of droplets bursting and/or mist spreading. Quantitatively examined were the two-parameters specifications—on the degrees as well as induction—of the periodicity in the protrusion-surface and beads-fountain oscillations, detected over wider ranges of driving/excitation frequency (0.43–3.0 MHz) and input power density (0.5–10 W/cm2) applied to the ultrasound transducer of flat surface on which the nozzle was either mounted or not. The resulting time sequence of images processed for the extended operating ranges, regarding the fountain structure pertaining, in particular, to recurring beads, confirms the wave-associated nature, i.e., their size “scalability” to the ultrasound wavelength, predictable from the traveling wave relationship. The thresholds in acoustic conditions for each of the four transition states of the fountain structure have been identified—notably, the onset of plausible “bifurcation” in the chain-beads’ diameter below a critical excitation frequency. Full article
(This article belongs to the Special Issue Advances in Multiphase Flow Science and Technology, 2nd Edition)
Show Figures

Graphical abstract

19 pages, 7126 KiB  
Article
Decoding Fluid Flow Characteristics Through Distributed Acoustic Sensing: A Novel Approach
by Haochu Ku, Kunpeng Zhang, Xiangge He, Min Zhang and Hailong Lu
Sensors 2025, 25(7), 2011; https://doi.org/10.3390/s25072011 - 23 Mar 2025
Viewed by 658
Abstract
Flow characteristic monitoring includes parameters such as flow regime, fluid characteristic frequency, and flow rate, which are crucial for optimizing production and ensuring the safety of oil and gas transportation systems. Existing fluid monitoring technologies, such as various flow meters, often face limitations [...] Read more.
Flow characteristic monitoring includes parameters such as flow regime, fluid characteristic frequency, and flow rate, which are crucial for optimizing production and ensuring the safety of oil and gas transportation systems. Existing fluid monitoring technologies, such as various flow meters, often face limitations in providing distributed and real-time monitoring data. In contrast, distributed acoustic sensing offers a spatial resolution of 1 m with high frequency sampling capability, allowing for long-term, multi-point dynamic monitoring of fluid migration characteristics. We developed an indoor physical simulation pipeline loop to assess the feasibility of using distributed acoustic sensing for monitoring flow migration characteristics. The experiment collected signal characteristics under different conditions, including background noise, single gas-phase flow, single liquid-phase flow, and gas–liquid two-phase flow. In the frequency–power spectral density analysis, single gas-phase flow signals are concentrated at lower frequencies, single liquid-phase flow displays noticeable spikes over a broader frequency range, and gas–liquid two-phase flow covers the widest frequency range with stronger amplitude signals. Autocorrelation analysis shows larger oscillations for gas–liquid two-phase flow, smoother signals for gas-phase flow, and more turbulent signals for liquid-phase flow. By examining root mean square energy changes, flow rates can be qualitatively estimated, revealing a positive correlation between energy and flow velocity. Finally, the study discussed the limitations of the experimental setup and proposed improvements and advanced research directions of distributed acoustic sensing in fluid monitoring. Full article
(This article belongs to the Special Issue Fiber Optic Sensing and Applications)
Show Figures

Figure 1

Back to TopTop