Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (306)

Search Parameters:
Keywords = acoustic design sensitivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 5631 KiB  
Article
Design and Evaluation of a Capacitive Micromachined Ultrasonic Transducer(CMUT) Linear Array System for Thickness Measurement of Marine Structures Under Varying Environmental Conditions
by Changde He, Mengke Luo, Hanchi Chai, Hongliang Wang, Guojun Zhang, Renxin Wang, Jiangong Cui, Yuhua Yang, Wendong Zhang and Licheng Jia
Micromachines 2025, 16(8), 898; https://doi.org/10.3390/mi16080898 (registering DOI) - 31 Jul 2025
Viewed by 154
Abstract
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to [...] Read more.
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to ensure acoustic impedance matching and environmental protection in underwater conditions. The acoustic performance of the encapsulated CMUT was characterized using standard piezoelectric transducers as reference. The array achieved a transmitting sensitivity of 146.82 dB and a receiving sensitivity of −229.55 dB at 1 MHz. A complete thickness detection system was developed by integrating the CMUT array with a custom transceiver circuit and implementing a time-of-flight (ToF) measurement algorithm. To evaluate environmental robustness, systematic experiments were conducted under varying water temperatures and salinity levels. The results demonstrate that the absolute thickness measurement error remains within ±0.1 mm under all tested conditions, satisfying the accuracy requirements for marine structural health monitoring. The results validate the feasibility of CMUT-based systems for precise and stable thickness measurement in underwater environments, and support their application in non-destructive evaluation of marine infrastructure. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

18 pages, 9390 KiB  
Article
An Integrated SEA–Deep Learning Approach for the Optimal Geometry Performance of Noise Barrier
by Hao Wu, Lingshan He, Ziyu Tao, Duo Zhang and Yunke Luo
Machines 2025, 13(8), 670; https://doi.org/10.3390/machines13080670 - 31 Jul 2025
Viewed by 167
Abstract
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating [...] Read more.
The escalating environmental noise pollution along urban rail transit corridors, exacerbated by rapid urbanization, necessitates innovative and efficient noise control measures. A comprehensive investigation was conducted that utilized field measurements of train passing-by noise to establish a statistical energy analysis model for evaluating the acoustic performance of both vertical (VB) and fully enclosed (FB) barrier configurations. The study incorporated Maa’s theory of micro-perforated plate (MPP) parameter optimization and developed a neural network surrogate model focused on insertion loss maximization for barrier geometric design. Key findings revealed significant barrier-induced near-track noise amplification, with peak effects observed at the point located 1 m from the barrier and 2 m above the rail. Frequency-dependent analysis demonstrated a characteristic rise-and-fall reflection pattern, showing maximum amplifications of 1.47 dB for VB and 4.13 dB for FB within the 400–2000 Hz range. The implementation of optimized MPPs was found to effectively eliminate the near-field noise amplification effects, achieving sound pressure level reductions of 4–8 dB at acoustically sensitive locations. Furthermore, the high-precision surrogate model (R2 = 0.9094, MSE = 0.8711) facilitated optimal geometric design solutions. The synergistic combination of MPP absorption characteristics and geometric optimization resulted in substantially enhanced barrier performance, offering practical solutions for urban rail noise mitigation strategies. Full article
(This article belongs to the Special Issue Advances in Noises and Vibrations for Machines)
Show Figures

Figure 1

21 pages, 2255 KiB  
Article
Cloud-Based Architecture for Hydrophone Data Acquisition and Processing of Surface and Underwater Vehicle Detection
by Francisco Pérez Carrasco, Anaida Fernández García, Alberto García, Verónica Ruiz Bejerano, Álvaro Gutiérrez and Alberto Belmonte-Hernández
J. Mar. Sci. Eng. 2025, 13(8), 1455; https://doi.org/10.3390/jmse13081455 - 30 Jul 2025
Viewed by 273
Abstract
This paper presents a cloud-based architecture for the acquisition, transmission, and processing of acoustic data from hydrophone arrays, designed to enable the detection and monitoring of both surface and underwater vehicles. The proposed system offers a modular and scalable cloud infrastructure that supports [...] Read more.
This paper presents a cloud-based architecture for the acquisition, transmission, and processing of acoustic data from hydrophone arrays, designed to enable the detection and monitoring of both surface and underwater vehicles. The proposed system offers a modular and scalable cloud infrastructure that supports real-time and distributed processing of hydrophone data collected in diverse aquatic environments. Acoustic signals captured by heterogeneous hydrophones—featuring varying sensitivity and bandwidth—are streamed to the cloud, where several machine learning algorithms can be deployed to extract distinguishing acoustic signatures from vessel engines and propellers in interaction with water. The architecture leverages cloud-based services for data ingestion, processing, and storage, facilitating robust vehicle detection and localization through propagation modeling and multi-array geometric configurations. Experimental validation demonstrates the system’s effectiveness in handling high-volume acoustic data streams while maintaining low-latency processing. The proposed approach highlights the potential of cloud technologies to deliver scalable, resilient, and adaptive acoustic sensing platforms for applications in maritime traffic monitoring, harbor security, and environmental surveillance. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 7061 KiB  
Article
Soundscapes and Emotional Experiences in World Heritage Temples: Implications for Religious Architectural Design
by Yanling Li, Xiaocong Li and Ming Gao
Buildings 2025, 15(15), 2681; https://doi.org/10.3390/buildings15152681 - 29 Jul 2025
Viewed by 184
Abstract
The impact of soundscapes in religious architecture on public psychology has garnered increasing attention in both research and policy domains. However, the mechanisms by which temple soundscapes influence public emotions remain scientifically unclear. This paper aims to explore how soundscapes in temple architectures [...] Read more.
The impact of soundscapes in religious architecture on public psychology has garnered increasing attention in both research and policy domains. However, the mechanisms by which temple soundscapes influence public emotions remain scientifically unclear. This paper aims to explore how soundscapes in temple architectures designated as World Natural and Cultural Heritage sites affect visitors’ experiences. Considering visitors with diverse social and demographic backgrounds, the research design includes subjective soundscape evaluations and EEG measurements from 193 visitors at two World Heritage temples. The results indicate that visitors’ religious beliefs primarily affect their soundscape perception, while their soundscape preferences show specific correlations with chanting and human voices. Furthermore, compared to males, females exhibit greater sensitivity to emotional variations induced by soundscape experiences. Urban architects can enhance visitors’ positive emotional experiences by integrating soundscape design into the planning of future religious architectures, thereby creating pleasant acoustic environments. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 3167 KiB  
Article
A Sustainability-Oriented Assessment of Noise Impacts on University Dormitories: Field Measurements, Student Survey, and Modeling Analysis
by Xiaoying Wen, Shikang Zhou, Kainan Zhang, Jianmin Wang and Dongye Zhao
Sustainability 2025, 17(15), 6845; https://doi.org/10.3390/su17156845 - 28 Jul 2025
Viewed by 330
Abstract
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three [...] Read more.
Ensuring a sustainable and healthy human environment in university dormitories is essential for students’ learning, living, and overall health and well-being. To address this need, we carried out a series of systematic field measurements of the noise levels at 30 dormitories in three representative major urban universities in a major provincial capital city in China and designed and implemented a comprehensive questionnaire and surveyed 1005 students about their perceptions of their acoustic environment. We proposed and applied a sustainability–health-oriented, multidimensional assessment framework to assess the acoustic environment of the dormitories and student responses to natural sound, technological sounds, and human-made sounds. Using the Structural Equation Modeling (SEM) approach combined with the field measurements and student surveys, we identified three categories and six factors on student health and well-being for assessing the acoustic environment of university dormitories. The field data indicated that noise levels at most of the measurement points exceeded the recommended or regulatory thresholds. Higher noise impacts were observed in early mornings and evenings, primarily due to traffic noise and indoor activities. Natural sounds (e.g., wind, birdsong, water flow) were highly valued by students for their positive effect on the students’ pleasantness and satisfaction. Conversely, human and technological sounds (traffic noise, construction noise, and indoor noise from student activities) were deemed highly disturbing. Gender differences were evident in the assessment of the acoustic environment, with male students generally reporting higher levels of the pleasantness and preference for natural sounds compared to female students. Educational backgrounds showed no significant influence on sound perceptions. The findings highlight the need for providing actionable guidelines for dormitory ecological design, such as integrating vertical greening in dormitory design, water features, and biodiversity planting to introduce natural soundscapes, in parallel with developing campus activity standards and lifestyle during noise-sensitive periods. The multidimensional assessment framework will drive a sustainable human–ecology–sound symbiosis in university dormitories, and the category and factor scales to be employed and actions to improve the level of student health and well-being, thus, providing a reference for both research and practice for sustainable cities and communities. Full article
Show Figures

Figure 1

17 pages, 5504 KiB  
Article
Multi-Objective Optimization of Acoustic Black Hole Plate Attached to Electric Automotive Steering Machine for Maximizing Vibration Attenuation Performance
by Xiaofei Du, Weilong Li, Fei Hao and Qidi Fu
Machines 2025, 13(8), 647; https://doi.org/10.3390/machines13080647 - 24 Jul 2025
Viewed by 321
Abstract
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, [...] Read more.
This research introduces an innovative passive vibration control methodology employing acoustic black hole (ABH) structures to mitigate vibration transmission in electric automotive steering machines—a prevalent issue adversely affecting driving comfort and vehicle safety. Leveraging the inherent bending wave manipulation properties of ABH configurations, we conceive an integrated vibration suppression framework synergizing advanced computational modeling with intelligent optimization algorithms. A high-fidelity finite element (FEM) model integrating ABH-attached steering machine system was developed and subjected to experimental validation via rigorous modal testing. To address computational challenges in design optimization, a hybrid modeling strategy integrating parametric design (using Latin Hypercube Sampling, LHS) with Kriging surrogate modeling is proposed. Systematic parameterization of ABH geometry and damping layer dimensions generated 40 training datasets and 12 validation datasets. Surrogate model verification confirms the model’s precise mapping of vibration characteristics across the design space. Subsequent multi-objective genetic algorithm optimization targeting RMS velocity suppression achieved substantial vibration attenuation (29.2%) compared to baseline parameters. The developed methodology provides automotive researchers and engineers with an efficient suitable design tool for vibration-sensitive automotive component design. Full article
Show Figures

Figure 1

16 pages, 1957 KiB  
Article
Study on Molybdenum–Rhenium Alloy Ultrasonic Resonance Temperature Sensor
by Haijian Liang, Gao Wang, Xiaomei Yang, Yanlong Wei and Hongxin Xue
Appl. Sci. 2025, 15(13), 6965; https://doi.org/10.3390/app15136965 - 20 Jun 2025
Viewed by 278
Abstract
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen [...] Read more.
Compared to traditional temperature measurement methods, ultrasonic temperature measurement technology based on the principle of resonance offers advantages such as shorter section lengths, higher signal amplitude, and reduced signal attenuation. First, the type of sensor-sensitive element was determined, with a resonant design chosen to improve measurement performance; using magnetostrictive and resonant temperature measurement principles, the length, diameter, and resonator dimensions of the waveguide rod were designed, and a molybdenum–rhenium alloy (Mo-5%Re) material suitable for high-temperature environments was selected; COMSOL finite element simulation was used to simulate the propagation characteristics of acoustic signals in the waveguide rod, observing the distribution of sound pressure and energy attenuation, verifying the applicability of the model in high-temperature testing environments. Second, a resonant temperature sensor consistent with the simulation parameters was prepared using a molybdenum–rhenium alloy waveguide rod, and an ultrasonic resonant temperature-sensing system suitable for high-temperature environments up to 1800 °C was constructed using the molybdenum–rhenium alloy waveguide rod. The experiment used a tungsten–rhenium calibration furnace to perform static calibration of the sensor. The temperature range was set from room temperature to 1800 °C, with the temperature increased by 100 °C at a time, and it was maintained at each temperature point for 5 to 10 min to ensure thermal stability. This was conducted to verify the performance of the sensor and obtain the functional relationship between temperature and resonance frequency. Experimental results show that during the heating process, the average resonance frequency of the sensor decreased from 341.8 kHz to 310.37 kHz, with an average sensitivity of 17.66 Hz/°C. During the cooling process, the frequency increased from 309 kHz to 341.8 kHz, with an average sensitivity of 18.43 Hz/°C. After cooling to room temperature, the sensor’s resonant frequency returned to its initial value of 341.8 kHz, demonstrating excellent repeatability and thermal stability. This provides a reliable technical foundation for its application in actual high-temperature environments. Full article
Show Figures

Figure 1

19 pages, 23096 KiB  
Article
GAN-Based Super-Resolution in Linear R-SAM Imaging for Enhanced Non-Destructive Semiconductor Measurement
by Thi Thu Ha Vu, Tan Hung Vo, Trong Nhan Nguyen, Jaeyeop Choi, Le Hai Tran, Vu Hoang Minh Doan, Van Bang Nguyen, Wonjo Lee, Sudip Mondal and Junghwan Oh
Appl. Sci. 2025, 15(12), 6780; https://doi.org/10.3390/app15126780 - 17 Jun 2025
Viewed by 506
Abstract
The precise identification and non-destructive measurement of structural features and defects in semiconductor wafers are essential for ensuring process integrity and sustaining high yield in advanced manufacturing environments. Unlike conventional measurement techniques, scanning acoustic microscopy (SAM) is an advanced method that provides detailed [...] Read more.
The precise identification and non-destructive measurement of structural features and defects in semiconductor wafers are essential for ensuring process integrity and sustaining high yield in advanced manufacturing environments. Unlike conventional measurement techniques, scanning acoustic microscopy (SAM) is an advanced method that provides detailed visualizations of both surface and internal wafer structures. However, in practical industrial applications, the scanning time and image quality of SAM significantly impact its overall performance and utility. Prolonged scanning durations can lead to production bottlenecks, while suboptimal image quality can compromise the accuracy of defect detection. To address these challenges, this study proposes LinearTGAN, an improved generative adversarial network (GAN)-based model specifically designed to improve the resolution of linear acoustic wafer images acquired by the breakthrough rotary scanning acoustic microscopy (R-SAM) system. Empirical evaluations demonstrate that the proposed model significantly outperforms conventional GAN-based approaches, achieving a Peak Signal-to-Noise Ratio (PSNR) of 29.479 dB, a Structural Similarity Index Measure (SSIM) of 0.874, a Learned Perceptual Image Patch Similarity (LPIPS) of 0.095, and a Fréchet Inception Distance (FID) of 0.445. To assess the measurement aspect of LinearTGAN, a lightweight defect segmentation module was integrated and tested on annotated wafer datasets. The super-resolved images produced by LinearTGAN significantly enhanced segmentation accuracy and improved the sensitivity of microcrack detection. Furthermore, the deployment of LinearTGAN within the R-SAM system yielded a 92% improvement in scanning performance for 12-inch wafers while simultaneously enhancing image fidelity. The integration of super-resolution techniques into R-SAM significantly advances the precision, robustness, and efficiency of non-destructive measurements, highlighting their potential to have a transformative impact in semiconductor metrology and quality assurance. Full article
Show Figures

Figure 1

16 pages, 4737 KiB  
Article
Horn Use Patterns and Acoustic Characteristics in Congested Urban Traffic: A Case Study of Ho Chi Minh City
by Thulan Nguyen, Yuya Nishimura and Sohei Nishimura
Acoustics 2025, 7(2), 36; https://doi.org/10.3390/acoustics7020036 - 16 Jun 2025
Viewed by 562
Abstract
Motorcycle horns are a dominant source of urban noise in many Southeast Asian cities, driven by high two-wheeler density and limited public transport infrastructure. Although automobiles have been in use for over a century, regulations governing horn design and volume control remain inadequate. [...] Read more.
Motorcycle horns are a dominant source of urban noise in many Southeast Asian cities, driven by high two-wheeler density and limited public transport infrastructure. Although automobiles have been in use for over a century, regulations governing horn design and volume control remain inadequate. This study investigates horn use behavior in Vietnamese urban traffic, identifying distinct acoustic patterns categorized as “attention” and “warning” signals. Measurements conducted in an anechoic chamber reveal that these patterns can increase sound pressure levels by up to 17 dB compared to standard horn use, with notable differences in frequency components. These levels often exceed the daytime noise thresholds recommended by the World Health Organization (WHO), indicating potential risks for adverse health outcomes, such as elevated stress, hearing damage, sleep disturbance, and cardiovascular effects. The findings are contextualized within broader efforts to manage traffic noise in rapidly developing urban areas. Drawing parallels with studies on aircraft noise exposure in Japan, this study suggests that long-term exposure, rather than peak noise levels alone, plays a critical role in shaping community sensitivity. The study results support the need for updated noise regulations that address both the acoustic and perceptual dimensions of road traffic noise. Full article
Show Figures

Figure 1

22 pages, 3803 KiB  
Article
Advanced Self-Powered Sensor for Carbon Dioxide Monitoring Utilizing Surface Acoustic Wave (SAW) Technology
by Hicham Mastouri, Mohammed Remaidi, Amine Ennawaoui, Meryiem Derraz and Chouaib Ennawaoui
Energies 2025, 18(12), 3082; https://doi.org/10.3390/en18123082 - 11 Jun 2025
Viewed by 576
Abstract
In the context of autonomous environmental monitoring, this study investigates a surface acoustic wave (SAW) sensor designed for selective carbon dioxide (CO2) detection. The sensor is based on a LiTaO3 piezoelectric substrate with copper interdigital transducers and a polyetherimide (PEI) [...] Read more.
In the context of autonomous environmental monitoring, this study investigates a surface acoustic wave (SAW) sensor designed for selective carbon dioxide (CO2) detection. The sensor is based on a LiTaO3 piezoelectric substrate with copper interdigital transducers and a polyetherimide (PEI) layer, chosen for its high electromechanical coupling and strong CO2 affinity. Finite element simulations were conducted to analyze the resonance frequency response under varying gas concentrations, film thicknesses, pressures, and temperatures. Results demonstrate a linear and sensitive frequency shift, with detection capability starting from 10 ppm. The sensor’s autonomy is ensured by a piezoelectric energy harvester composed of a cantilever beam structure with an attached seismic mass, where mechanical vibrations induce stress in a piezoelectric layer (PZT-5H or PVDF), generating electrical energy via the direct piezoelectric effect. Analytical and numerical analyses were performed to evaluate the influence of excitation frequency, material properties, and optimal load on power output. This integrated configuration offers a compact and energy-independent solution for real-time CO2 monitoring in low-power or inaccessible environments. Full article
Show Figures

Figure 1

24 pages, 51676 KiB  
Article
Acoustic Tomography of the Atmosphere: A Large-Eddy Simulation Sensitivity Study
by Emina Maric, Bumseok Lee, Regis Thedin, Eliot Quon and Nicholas Hamilton
Remote Sens. 2025, 17(11), 1892; https://doi.org/10.3390/rs17111892 - 29 May 2025
Viewed by 483
Abstract
Accurate measurement of atmospheric turbulent fluctuations is critical for understanding environmental dynamics and improving models in applications such as wind energy. Advanced remote sensing technologies are essential for capturing instantaneous velocity and temperature fluctuations. Acoustic tomography (AT) offers a promising approach that utilizes [...] Read more.
Accurate measurement of atmospheric turbulent fluctuations is critical for understanding environmental dynamics and improving models in applications such as wind energy. Advanced remote sensing technologies are essential for capturing instantaneous velocity and temperature fluctuations. Acoustic tomography (AT) offers a promising approach that utilizes sound travel times between an array of transducers to reconstruct turbulence fields. This study presents a systematic evaluation of the time-dependent stochastic inversion (TDSI) algorithm for AT using synthetic travel-time measurements derived from large-eddy simulation (LES) fields under both neutral and convective atmospheric boundary-layer conditions. Unlike prior work that relied on field observations or idealized fields, the LES framework provides a ground-truth atmospheric state, enabling quantitative assessment of TDSI retrieval reliability, sensitivity to travel-time measurement noise, and dependence on covariance model parameters and temporal data integration. A detailed sensitivity analysis was conducted to determine the best-fit model parameters, identify the tolerance thresholds for parameter mismatch, and establish a maximum spatial resolution. The TDSI algorithm successfully reconstructed large-scale velocity and temperature fluctuations with root mean square errors (RMSEs) below 0.35 m/s and 0.12 K, respectively. Spectral analysis established a maximum spatial resolution of approximately 1.4 m, and reconstructions remained robust for travel-time measurement uncertainties up to 0.002 s. These findings provide critical insights into the operational limits of TDSI and inform future applications of AT for atmospheric turbulence characterization and system design. Full article
(This article belongs to the Special Issue New Insights from Wind Remote Sensing)
Show Figures

Figure 1

22 pages, 7129 KiB  
Article
Acoustic Shell Optimization in Opera Houses for Concert Halls
by Umberto Derme, Silvana Sukaj and Amelia Trematerra
Appl. Sci. 2025, 15(11), 5943; https://doi.org/10.3390/app15115943 - 25 May 2025
Cited by 1 | Viewed by 552
Abstract
Opera houses are often used as concert halls with the use of a temporary acoustic shell set on stage. In most cases, the shell shape and its position in the fly tower are decided by theatre technicians, after evaluating the concert programme and [...] Read more.
Opera houses are often used as concert halls with the use of a temporary acoustic shell set on stage. In most cases, the shell shape and its position in the fly tower are decided by theatre technicians, after evaluating the concert programme and considering the conductor and the musicians’ requests, without being supported by an acoustic analysis. This paper describes the acoustic shell influence on the acoustic field of a baroque theatre when changing its dimensions and the orchestra staff, with and without the choir, when the theatre is used as a concert hall. The “Opera di Roma” case study is presented, and the main acoustic parameters’ trends and their sensitivity are analyzed. The shell layout optimization, which is suggested in the prediction analysis of the case study, does not coincide with the ones preferred by the musicians. The main reasons for this controversial result are explained in the paper, underlining the rules determining the musicians’ opinions during the acoustic design and/or analysis process, to better focalize the applied acoustics activities. Full article
(This article belongs to the Special Issue Recent Advances in Architectural Acoustics and Noise Control)
Show Figures

Figure 1

26 pages, 17515 KiB  
Article
Research on Design and Energy-Saving Performance of Gate Rudder
by Chunhui Wang, Qian Gao, Lin Li, Feng Gao, Zhiyuan Wang and Chao Wang
J. Mar. Sci. Eng. 2025, 13(6), 1029; https://doi.org/10.3390/jmse13061029 - 24 May 2025
Viewed by 413
Abstract
As a novel energy-saving and maneuvering device for ships, the gate rudder system (GRS) functions similarly to an accelerating duct. While providing additional thrust, its independently controllable rudder blades on either side of the propeller also enhance ship maneuverability. The GRS was first [...] Read more.
As a novel energy-saving and maneuvering device for ships, the gate rudder system (GRS) functions similarly to an accelerating duct. While providing additional thrust, its independently controllable rudder blades on either side of the propeller also enhance ship maneuverability. The GRS was first fully implemented on a container ship in Japan, demonstrating improved propulsion efficiency, fuel savings, and excellent performance in maneuvering, noise, and vibration reduction. In recent years, extensive research has been conducted on the hydrodynamic performance, acoustic characteristics, and energy-saving effects of the GRS. However, certain gaps remain in the research, such as a lack of systematic studies on optimal GRS design in the publicly available literature. Only Ahmet Yusuf Gurkan has investigated the sensitivity of propulsion performance to parameters such as rudder angle, rudder X-shift, rudder tip skewness, and blade tip chord ratio. Therefore, this study employs the JBC benchmark vessel and adopts a coupled CFD-CAESES approach to develop a matching optimization design for the GRS. The influence of geometric parameters—including GRS airfoil camber, maximum camber position, chord length, thickness, distance from the leading edge to the propeller plane, and the gap between the GRS and propeller blades—on ship propulsion performance is investigated. The sensitivity of these design variables to propulsion performance is analyzed, and the optimal GRS design is selected to predict and evaluate its energy-saving effects. This research establishes a rapid and comprehensive CFD-based optimization methodology for GRS matching design. The findings indicate that the gap between the GRS and propeller, the distance from the GRS to the stern, and the airfoil camber of the GRS significantly contribute to various performance responses. After GRS installation, the viscous pressure resistance of the JBC ship decreases, resulting in an 8.05% energy-saving effect at the designated speed. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

12 pages, 1418 KiB  
Communication
Bulk Acoustic Wave Resonance Characteristics of PMN-PT Orthorhombic Crystal Plates Excited by Lateral Electric Fields
by Boyue Su, Yujie Zhang, Feng Yu, Pengfei Kang, Tingfeng Ma, Peng Li, Zhenghua Qian, Iren Kuznetsova and Vladimir Kolesov
Micromachines 2025, 16(5), 600; https://doi.org/10.3390/mi16050600 - 21 May 2025
Viewed by 409
Abstract
For relaxor ferroelectric single crystal (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 (PMN-PT), through reasonable component regulation and electric field polarization, an orthogonal mm2 point group structure can be obtained, which has high piezoelectric constants and is, therefore, [...] Read more.
For relaxor ferroelectric single crystal (1 − x)Pb(Mg1/3Nb2/3)O3 − xPbTiO3 (PMN-PT), through reasonable component regulation and electric field polarization, an orthogonal mm2 point group structure can be obtained, which has high piezoelectric constants and is, therefore, a desired substrate material for lateral-field-excited (LFE) bulk acoustic wave (BAW) devices. In this work, acoustic wave resonance characteristics of (zxt) 45° PMN-PT BAW devices with LFE are investigated. Firstly, Mindlin first-order plate theory is used to obtain vibration governing equations of orthorhombic crystals excited by a lateral electric field. By analyzing the electrically forced vibrations of the finite plate, the basic vibration characteristics, such as motional capacitance, resonant frequency, and mode shape are obtained, and influences of different electrode parameters on resonance characteristics of the device are investigated. In addition, the effects of the structure parameters on the mass sensitivity of the devices are analyzed and further verified by FEM simulations. The model presented in this study can be conveniently used to optimize the structural parameters of LFE bulk acoustic wave devices based on orthorhombic crystals, which is crucial to obtain good resonance characteristics. The results provide an important basis for the design of LFE bulk acoustic wave resonators and sensors by using PMN-PT orthorhombic crystals. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

22 pages, 3466 KiB  
Article
Hardware-Efficient Phase Demodulation for Digital ϕ-OTDR Receivers with Baseband and Analytic Signal Processing
by Shangming Du, Tianwei Chen, Can Guo, Yuxing Duan, Song Wu and Lei Liang
Sensors 2025, 25(10), 3218; https://doi.org/10.3390/s25103218 - 20 May 2025
Viewed by 752
Abstract
This paper presents hardware-efficient phase demodulation schemes for FPGA-based digital phase-sensitive optical time-domain reflectometry (ϕ-OTDR) receivers. We first derive a signal model for the heterodyne ϕ-OTDR frontend, then propose and analyze three demodulation methods: (1) a baseband reconstruction approach via [...] Read more.
This paper presents hardware-efficient phase demodulation schemes for FPGA-based digital phase-sensitive optical time-domain reflectometry (ϕ-OTDR) receivers. We first derive a signal model for the heterodyne ϕ-OTDR frontend, then propose and analyze three demodulation methods: (1) a baseband reconstruction approach via zero-IF downconversion, (2) an analytic signal generation technique using the Hilbert transform (HT), and (3) a wavelet transform (WT)-based alternative for analytic signal extraction. Algorithm-hardware co-design implementations are detailed for both RFSoC and conventional FPGA platforms, with resource utilization comparisons. Additionally, we introduce an incremental DC-rejected phase unwrapper (IDRPU) algorithm to jointly address phase unwrapping and DC drift removal, minimizing computational overhead while avoiding numerical overflow. Experiments on simulated and real-world ϕ-OTDR data show that the HT method matches the performance of zero-IF demodulation with simpler hardware and lower resource usage, while the WT method offers enhanced robustness against fading noise (3.35–22.47 dB SNR improvement in fading conditions), albeit with slightly ambiguous event boundaries and higher hardware utilization. These findings provide actionable insights for demodulator design in distributed acoustic sensing (DAS) applications and advance the development of single-chip DAS systems. Full article
(This article belongs to the Special Issue Advances in Optical Sensing, Instrumentation and Systems: 2nd Edition)
Show Figures

Figure 1

Back to TopTop