Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = acidic-responsive nanogels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3063 KiB  
Article
Gastric Acid-Protective and Intestinal Targeted Nanogels Enable Anti-Bacterial Activity of Cefquinome
by Xianqiang Li, Tianhui Wang, Shuo Han, Jinhuan Liu, Xiuping Zhang, Zhiqiang Zhou, Ali Sobhy Dawood and Wanhe Luo
Gels 2025, 11(7), 503; https://doi.org/10.3390/gels11070503 - 27 Jun 2025
Viewed by 304
Abstract
To enhance the antibacterial activity of cefquinome (CEF) against Escherichia coli, a Carboxymethylcellulose sodium (CMCNa)/D-Mannosamine hydrochloride (DMH)-based nanogels delivery system capable of protecting CEF from gastric acid degradation while enabling intestinal sustained release and targeted antibacterial enhancement was developed. Systematic research was [...] Read more.
To enhance the antibacterial activity of cefquinome (CEF) against Escherichia coli, a Carboxymethylcellulose sodium (CMCNa)/D-Mannosamine hydrochloride (DMH)-based nanogels delivery system capable of protecting CEF from gastric acid degradation while enabling intestinal sustained release and targeted antibacterial enhancement was developed. Systematic research was conducted on the best formulation, physicochemical characteristics, stability, gastrointestinal fluid-responsiveness, and antibacterial activity of the optimal formulation. The results showed that the optimized CEF nanogels demonstrated an enhanced loading capacity (13.0% ± 1.7%) and encapsulation efficiency (52.2% ± 1.0%). CEF nanogels appeared as uniform transparent spheres with a smooth surface under transmission electron microscopy and exhibited a three-dimensional porous network via scanning electron microscopy. More importantly, stability studies revealed that the CEF nanogels hold satisfactory stability. In addition, the formed CEF nanogels could effectively avoid the destruction of CEF by gastric acid in simulated gastric juice. In addition, they had the effect of slow and targeted release in the simulated intestinal tract. Compared to the free CEF, CEF nanogels have stronger antibacterial activity against Escherichia coli. In short, the prepared CEF nanogels had stronger antibacterial activity than CEF through sustained and targeted release. Full article
(This article belongs to the Special Issue Hydrogel for Sustained Delivery of Therapeutic Agents (2nd Edition))
Show Figures

Figure 1

24 pages, 19674 KiB  
Article
Nanogel Dressing with Targeted Glucose Reduction and pH/Hyaluronidase Dual-Responsive Release for Synergetic Therapy of Diabetic Bacterial Wounds
by Wanhe Luo, Yongtao Jiang, Jinhuan Liu, Samah Attia Algharib, Ali Sobhy Dawood and Shuyu Xie
Gels 2025, 11(6), 380; https://doi.org/10.3390/gels11060380 - 22 May 2025
Cited by 1 | Viewed by 498
Abstract
The hyperglycemic microenvironment in diabetic wounds predisposes them to bacterial infections, sustains chronic inflammation, and hinders therapeutic efficacy. In this study, antibiotic-loaded fast-crosslinked hybrid nanogel wound dressings (florfenicol nanogels) based on Schiff’s base bond were obtained through N, O-carboxymethyl chitosan (N, O-CMCS) and [...] Read more.
The hyperglycemic microenvironment in diabetic wounds predisposes them to bacterial infections, sustains chronic inflammation, and hinders therapeutic efficacy. In this study, antibiotic-loaded fast-crosslinked hybrid nanogel wound dressings (florfenicol nanogels) based on Schiff’s base bond were obtained through N, O-carboxymethyl chitosan (N, O-CMCS) and oxidized hyaluronic acid (OHA). The successfully prepared florfenicol N, O-CMCS/OHA nanogels exhibited obvious pH- and HAase-responsiveness release, which allowed it to quickly release florfenicol at infected wounds to exert on-demand antibacterial activity, as well as accelerate diabetic bacterial-infected wound healing. The nanogel dressings showed excellent antibacterial activity by destroying the bacterial cell membrane and wall. More specifically, the glucose oxidase in the dressings can catalyze the breakdown of high-concentration glucose, generating abundant ROS that directly cause cellular damage. According to the results of wound healing, the dressings showed satisfactory anti-inflammatory and therapeutic effects for the full-thickness mouse skin defect wounds. The nanogel dressings are anticipated to be excellent wound dressings to synergistically overcome the theraputic difficulty of diabetic bacterial wounds. Full article
(This article belongs to the Special Issue Functional Gels Applied in Drug Delivery)
Show Figures

Graphical abstract

15 pages, 2602 KiB  
Article
A Novel Approach for the Synthesis of Responsive Core–Shell Nanogels with a Poly(N-Isopropylacrylamide) Core and a Controlled Polyamine Shell
by Anna Harsányi, Attila Kardos, Pinchu Xavier, Richard A. Campbell and Imre Varga
Polymers 2024, 16(18), 2584; https://doi.org/10.3390/polym16182584 - 13 Sep 2024
Cited by 1 | Viewed by 1283
Abstract
Microgel particles can play a key role, e.g., in drug delivery systems, tissue engineering, advanced (bio)sensors or (bio)catalysis. Amine-functionalized microgels are particularly interesting in many applications since they can provide pH responsiveness, chemical functionalities for, e.g., bioconjugation, unique binding characteristics for pollutants and [...] Read more.
Microgel particles can play a key role, e.g., in drug delivery systems, tissue engineering, advanced (bio)sensors or (bio)catalysis. Amine-functionalized microgels are particularly interesting in many applications since they can provide pH responsiveness, chemical functionalities for, e.g., bioconjugation, unique binding characteristics for pollutants and interactions with cell surfaces. Since the incorporation of amine functionalities in controlled amounts with predefined architectures is still a challenge, here, we present a novel method for the synthesis of responsive core–shell nanogels (dh < 100 nm) with a poly(N-isopropylacrylamide) (pNIPAm) core and a polyamine shell. To achieve this goal, a surface-functionalized pNIPAm nanogel was first prepared in a semi-batch precipitation polymerization reaction. Surface functionalization was achieved by adding acrylic acid to the reaction mixture in the final stage of the precipitation polymerization. Under these conditions, the carboxyl functionalities were confined to the outer shell of the nanogel particles, preserving the core’s temperature-responsive behavior and providing reactive functionalities on the nanogel surface. The polyamine shell was prepared by the chemical coupling of polyethyleneimine to the nanogel’s carboxyl functionalities using a water-soluble carbodiimide (EDC) to facilitate the coupling reaction. The efficiency of the coupling was assessed by varying the EDC concentration and reaction temperature. The molecular weight of PEI was also varied in a wide range (Mw = 0.6 to 750 kDa), and we found that it had a profound effect on how many polyamine repeat units could be immobilized in the nanogel shell. The swelling and the electrophoretic mobility of the prepared core–shell nanogels were also studied as a function of pH and temperature, demonstrating the successful formation of the polyamine shell on the nanogel core and its effect on the nanogel characteristics. This study provides a general framework for the controlled synthesis of core–shell nanogels with tunable surface properties, which can be applied in many potential applications. Full article
(This article belongs to the Special Issue Smart and Bio-Medical Polymers)
Show Figures

Graphical abstract

16 pages, 2389 KiB  
Review
Cholesterol-Bearing Polysaccharide-Based Nanogels for Development of Novel Immunotherapy and Regenerative Medicine
by Tetsuya Adachi, Yoshiro Tahara, Kenta Yamamoto, Toshiro Yamamoto, Narisato Kanamura, Kazunari Akiyoshi and Osam Mazda
Gels 2024, 10(3), 206; https://doi.org/10.3390/gels10030206 - 18 Mar 2024
Cited by 2 | Viewed by 2695
Abstract
Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel [...] Read more.
Novel functional biomaterials are expected to bring about breakthroughs in developing immunotherapy and regenerative medicine through their application as drug delivery systems and scaffolds. Nanogels are defined as nanoparticles with a particle size of 100 nm or less and as having a gel structure. Nanogels have a three-dimensional network structure of cross-linked polymer chains, which have a high water content, a volume phase transition much faster than that of a macrogel, and a quick response to external stimuli. As it is possible to transmit substances according to the three-dimensional mesh size of the gel, a major feature is that relatively large substances, such as proteins and nucleic acids, can be taken into the gel. Furthermore, by organizing nanogels as a building block, they can be applied as a scaffold material for tissue regeneration. This review provides a brief overview of the current developments in nanogels in general, especially drug delivery, therapeutic applications, and tissue engineering. In particular, polysaccharide-based nanogels are interesting because they have excellent complexation properties and are highly biocompatible. Full article
(This article belongs to the Special Issue Development of Nanogels/Microgels for Regenerative Medicine)
Show Figures

Figure 1

16 pages, 5521 KiB  
Article
In Situ Synthesis of Gold Nanoparticles from Chitin Nanogels and Their Drug Release Response to Stimulation
by Jianwei Zhang, Wenjin Zhu, Jingyi Liang, Limei Li, Longhui Zheng, Xiaowen Shi, Chao Wang, Youming Dong, Cheng Li and Xiuhong Zhu
Polymers 2024, 16(3), 390; https://doi.org/10.3390/polym16030390 - 31 Jan 2024
Cited by 7 | Viewed by 1896
Abstract
In this study, gold nanoparticles (AuNPs) were synthesized in situ using chitin nanogels (CNGs) as templates to prepare composites (CNGs@AuNPs) with good photothermal properties, wherein their drug release properties in response to stimulation by near-infrared (NIR) light were investigated. AuNPs with particle sizes [...] Read more.
In this study, gold nanoparticles (AuNPs) were synthesized in situ using chitin nanogels (CNGs) as templates to prepare composites (CNGs@AuNPs) with good photothermal properties, wherein their drug release properties in response to stimulation by near-infrared (NIR) light were investigated. AuNPs with particle sizes ranging from 2.5 nm to 90 nm were prepared by varying the reaction temperature and chloroauric acid concentration. The photothermal effect of different materials was probed by near-infrared light. Under 1 mg/mL of chloroauric acid at 120 °C, the prepared CNGs@AuNPs could increase the temperature by 32 °C within 10 min at a power of 2 W/cm2. The Adriamycin hydrochloride (DOX) was loaded into the CNGs@AuNPs to investigate their release behaviors under different pH values, temperatures, and near-infrared light stimulations. The results showed that CNGs@AuNPs were pH- and temperature-responsive, suggesting that low pH and high temperature could promote drug release. In addition, NIR light stimulation accelerated the drug release. Cellular experiments confirmed the synergistic effect of DOX-loaded CNGs@AuNPs on chemotherapy and photothermal therapy under NIR radiation. Full article
(This article belongs to the Special Issue Polymers and Drug Delivery II)
Show Figures

Figure 1

21 pages, 4949 KiB  
Article
Improvement of the Antioxidant and Antitumor Activities of Benzimidazole-Chitosan Quaternary Ammonium Salt on Drug Delivery Nanogels
by Bing Ma, Qing Li, Jingjing Zhang, Yingqi Mi, Wenqiang Tan and Zhanyong Guo
Mar. Drugs 2024, 22(1), 40; https://doi.org/10.3390/md22010040 - 11 Jan 2024
Cited by 5 | Viewed by 2825
Abstract
The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method. The method resulted in nanogels [...] Read more.
The present study focused on the design and preparation of acid-responsive benzimidazole-chitosan quaternary ammonium salt (BIMIXHAC) nanogels for a controlled, slow-release of Doxorubicin HCl (DOX.HCl). The BIMIXHAC was crosslinked with sodium tripolyphosphate (TPP) using the ion crosslinking method. The method resulted in nanogels with low polydispersity index, small particle size, and positive zeta potential values, indicating the good stability of the nanogels. Compared to hydroxypropyl trimethyl ammonium chloride chitosan-Doxorubicin HCl-sodium tripolyphosphate (HACC-D-TPP) nanogel, the benzimidazole-chitosan quaternary ammonium salt-Doxorubicin HCl-sodium tripolyphosphate (BIMIXHAC-D-TPP) nanogel show higher drug encapsulation efficiency and loading capacity (BIMIXHAC-D-TPP 93.17 ± 0.27% and 31.17 ± 0.09%), with acid-responsive release profiles and accelerated release in vitro. The hydroxypropyl trimethyl ammonium chloride chitosan-sodium tripolyphosphate (HACC-TPP), and benzimidazole-chitosan quaternary ammonium salt-sodium tripolyphosphate (BIMIXHAC-TPP) nanogels demonstrated favorable antioxidant capability. The assay of cell viability, measured by the MTT assay, revealed that nanogels led to a significant reduction in the cell viability of two cancer cells: the human lung adenocarcinoma epithelial cell line (A549) and the human breast cancer cell line (MCF-7). Furthermore, the BIMIXHAC-D-TPP nanogel was 2.96 times less toxic than DOX.HCl to the mouse fibroblast cell line (L929). It was indicated that the BIMIXHAC-based nanogel with enhanced antioxidant and antitumor activities and acidic-responsive release could serve as a potential nanocarrier. Full article
Show Figures

Graphical abstract

20 pages, 1774 KiB  
Review
Hyaluronic Acid Nanogels: A Promising Platform for Therapeutic and Theranostic Applications
by Su Sundee Myint, Chavee Laomeephol, Sirikool Thamnium, Supakarn Chamni and Jittima Amie Luckanagul
Pharmaceutics 2023, 15(12), 2671; https://doi.org/10.3390/pharmaceutics15122671 - 25 Nov 2023
Cited by 19 | Viewed by 5351
Abstract
Hyaluronic acid (HA) nanogels are a versatile class of nanomaterials with specific properties, such as biocompatibility, hygroscopicity, and biodegradability. HA nanogels exhibit excellent colloidal stability and high encapsulation capacity, making them promising tools for a wide range of biomedical applications. HA nanogels can [...] Read more.
Hyaluronic acid (HA) nanogels are a versatile class of nanomaterials with specific properties, such as biocompatibility, hygroscopicity, and biodegradability. HA nanogels exhibit excellent colloidal stability and high encapsulation capacity, making them promising tools for a wide range of biomedical applications. HA nanogels can be fabricated using various methods, including polyelectrolyte complexation, self-assembly, and chemical crosslinking. The fabrication parameters can be tailored to control the physicochemical properties of HA nanogels, such as size, shape, surface charge, and porosity, enabling the rational design of HA nanogels for specific applications. Stimulus-responsive nanogels are a type of HA nanogels that can respond to external stimuli, such as pH, temperature, enzyme, and redox potential. This property allows the controlled release of encapsulated therapeutic agents in response to specific physiological conditions. HA nanogels can be engineered to encapsulate a variety of therapeutic agents, such as conventional drugs, genes, and proteins. They can then be delivered to target tissues with high efficiency. HA nanogels are still under development, but they have the potential to become powerful tools for a wide range of theranostic or solely therapeutic applications, including anticancer therapy, gene therapy, drug delivery, and bioimaging. Full article
(This article belongs to the Special Issue Polymer-Based Delivery System)
Show Figures

Figure 1

13 pages, 3560 KiB  
Article
Preparation of Cholesterol-Modified Hyaluronic Acid Nanogel-Based Hydrogel and the Inflammatory Evaluation Using Macrophage-like Cells
by Kohei Yabuuchi, Mika Suzuki, Chen Liang, Yoshihide Hashimoto, Tsuyoshi Kimura, Kazunari Akiyoshi and Akio Kishida
Gels 2023, 9(11), 866; https://doi.org/10.3390/gels9110866 - 31 Oct 2023
Cited by 3 | Viewed by 2762
Abstract
Nanogels are candidate biomaterials for tissue engineering and drug delivery. In the present study, a cholesterol–hyaluronic acid hydrogel was developed, and the pro-inflammatory response of macrophages to the hydrogel was investigated to determine its use in biomedical applications. Hyaluronic acid modified with cholesterol [...] Read more.
Nanogels are candidate biomaterials for tissue engineering and drug delivery. In the present study, a cholesterol–hyaluronic acid hydrogel was developed, and the pro-inflammatory response of macrophages to the hydrogel was investigated to determine its use in biomedical applications. Hyaluronic acid modified with cholesterol (modification rate: 0–15%) and maleimide (Chol-HA) was synthesized. The Chol-HA nanogel was formed through self-assembly via hydrophobic cholesterol interactions in aqueous solution. The Chol-HA hydrogel was formed through chemical crosslinking of the Chol-HA nanogel via a Michael addition reaction between the maleimide and thiol groups of 4arm−PEGSH. We found that the Chol-HA hydrogels with 5, 10, and 15% cholesterol inhibited the pro-inflammatory response of HiBiT−THP−1 cells, suggesting that the cholesterol contributed to the macrophage response. Furthermore, Interleukin 4 (IL−4) encapsulated in the hydrogel of the Chol-HA nanogel enhanced the inhibition of the inflammatory response in HiBiT-THP-1 cells. These results provide useful insights into the biomedical applications of hydrogels. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Biomedical Application)
Show Figures

Graphical abstract

21 pages, 4180 KiB  
Article
Topical Delivery of Terbinafine HCL Using Nanogels: A New Approach to Superficial Fungal Infection Treatment
by Shams ul Hassan, Ikrima Khalid, Liaqat Hussain, Mohammad T. Imam and Imran Shahid
Gels 2023, 9(11), 841; https://doi.org/10.3390/gels9110841 - 24 Oct 2023
Cited by 9 | Viewed by 4004
Abstract
This study investigated pH-responsive Terbinafine HCL (TBH)-loaded nanogels as a new approach to treating superficial fungal infections. Acrylic acid (AA) is a synthetic monomer that was crosslinked with a natural polymer (gelatin) using a free radical polymerization technique to fabricate gelatin-g-poly-(acrylic acid) nanogels. [...] Read more.
This study investigated pH-responsive Terbinafine HCL (TBH)-loaded nanogels as a new approach to treating superficial fungal infections. Acrylic acid (AA) is a synthetic monomer that was crosslinked with a natural polymer (gelatin) using a free radical polymerization technique to fabricate gelatin-g-poly-(acrylic acid) nanogels. Ammonium persulphate (APS) and N, N′-methylene bisacrylamide (MBA) were used as the initiator and crosslinker, respectively. Developed gelatin-g-poly-(acrylic acid) nanogels were evaluated for the swelling study (pH 1.2, 5, 7.4), DEE, particle size, FTIR, thermal stability (TGA, DSC), XRD, SEM, DEE, and in vitro drug release study to obtain optimized nanogels. Optimized nanogels were incorporated into 1% HPMC gel and then evaluated in comparison with Lamisil cream 1% for TBH stratum corneum retention, skin irritation, and in vitro and in vivo antifungal activity studies. Optimized nanogels (AAG 7) demonstrated a 255 nm particle size, 82.37% DEE, pH-dependent swelling, 92.15% of drug release (pH) 7.4 within 12 h, and a larger zone of inhibition compared to Lamisil cream. HPMC-loaded nanogels significantly improved the TBH skin retention percentage, as revealed by an ex vivo skin retention study, indicating the usefulness of nanogels for topical use. In vivo studies conducted on animal models infected with a fungal infection have further confirmed the effectiveness of nanogels compared with the Lamisil cream. Hence, Gelatin-g-poly-(acrylic acid) nanogels carrying poorly soluble TBH can be a promising approach for treating superficial fungal infections. Full article
(This article belongs to the Special Issue Gels in Medicine and Pharmacological Therapies (2nd Edition))
Show Figures

Figure 1

14 pages, 3449 KiB  
Article
Construction and Performance Evaluation of Nicandra physalodes (Linn.) Gaertn. Polysaccharide-Based Nanogel
by Fangyan Liu, Chen Shen, Xuelian Chen, Fei Gao and Yin Chen
Polymers 2023, 15(8), 1933; https://doi.org/10.3390/polym15081933 - 19 Apr 2023
Cited by 1 | Viewed by 1988
Abstract
The nanogels made from these polysaccharides and their derivatives are often used to construct drug delivery systems owing to their biocompatible, biodegradable, non-toxic, water-soluble, and bioactive characteristics. In this work, a novel pectin with unique gelling properties was extracted from the seed of [...] Read more.
The nanogels made from these polysaccharides and their derivatives are often used to construct drug delivery systems owing to their biocompatible, biodegradable, non-toxic, water-soluble, and bioactive characteristics. In this work, a novel pectin with unique gelling properties was extracted from the seed of Nicandra physalodes (NPGP). The structural research indicated that NPGP was a low methoxyl pectin with a high content of galacturonic acid. NPGP-based nanogels (NGs) were accomplished employing the water in oil (W/O) nano-emulsion method. The cysteamine containing reduction-responsive bond and integrin-targeting RGD peptide were also grafted onto NPGP. The anti-tumor drug doxorubicin hydrochloride (DOX) was loaded during the formation of NGs, and the performance of DOX delivery was studied. The NGs were characterized by UV-vis, DLS, TEM, FT-IR, and XPS. The results showed that the prepared NGs were nanosized (167.6 ± 53.86 nm), had excellent encapsulation efficiency (91.61 ± 0.85%), and possessed a fine drug loading capacity (8.40 ± 0.16%). The drug release experiment showed that DOX@NPGP-SS-RGD had good redox-responsive performance. Furthermore, the results of cell experiments revealed good biocompatibility of prepared NGs, along with selective absorption by HCT-116 cells through integrin receptor-mediated endocytosis to play an anti-tumor effect. These studies indicated the potential application of NPGP-based NGs as targeted drug delivery systems. Full article
(This article belongs to the Special Issue Polymeric Materials for Drug Delivery II)
Show Figures

Figure 1

44 pages, 3907 KiB  
Review
Recent Advances in the Biomedical Applications of Functionalized Nanogels
by Kannan Badri Narayanan, Rakesh Bhaskar and Sung Soo Han
Pharmaceutics 2022, 14(12), 2832; https://doi.org/10.3390/pharmaceutics14122832 - 16 Dec 2022
Cited by 26 | Viewed by 4736
Abstract
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, [...] Read more.
Nanomaterials have been extensively used in several applications in the past few decades related to biomedicine and healthcare. Among them, nanogels (NGs) have emerged as an important nanoplatform with the properties of both hydrogels and nanoparticles for the controlled/sustained delivery of chemo drugs, nucleic acids, or other bioactive molecules for therapeutic or diagnostic purposes. In the recent past, significant research efforts have been invested in synthesizing NGs through various synthetic methodologies such as free radical polymerization, reversible addition-fragmentation chain-transfer method (RAFT) and atom transfer radical polymerization (ATRP), as well as emulsion techniques. With further polymeric functionalizations using activated esters, thiol–ene/yne processes, imines/oximes formation, cycloadditions, nucleophilic addition reactions of isocyanates, ring-opening, and multicomponent reactions were used to obtain functionalized NGs for targeted delivery of drug and other compounds. NGs are particularly intriguing for use in the areas of diagnosis, analytics, and biomedicine due to their nanodimensionality, material characteristics, physiological stability, tunable multi-functionality, and biocompatibility. Numerous NGs with a wide range of functionalities and various external/internal stimuli-responsive modalities have been possible with novel synthetic reliable methodologies. Such continuous development of innovative, intelligent materials with novel characteristics is crucial for nanomedicine for next-generation biomedical applications. This paper reviews the synthesis and various functionalization strategies of NGs with a focus on the recent advances in different biomedical applications of these surface modified/functionalized single-/dual-/multi-responsive NGs, with various active targeting moieties, in the fields of cancer theranostics, immunotherapy, antimicrobial/antiviral, antigen presentation for the vaccine, sensing, wound healing, thrombolysis, tissue engineering, and regenerative medicine. Full article
Show Figures

Figure 1

19 pages, 2842 KiB  
Article
Mesoporous Silica and Oligo (Ethylene Glycol) Methacrylates-Based Dual-Responsive Hybrid Nanogels
by Micaela A. Macchione, Dariana Aristizábal Bedoya, Eva Rivero-Buceta, Pablo Botella and Miriam C. Strumia
Nanomaterials 2022, 12(21), 3835; https://doi.org/10.3390/nano12213835 - 30 Oct 2022
Cited by 4 | Viewed by 2326
Abstract
Polymeric-inorganic hybrid nanomaterials have emerged as novel multifunctional platforms because they combine the intrinsic characteristics of both materials with unexpected properties that arise from synergistic effects. In this work, hybrid nanogels based on mesoporous silica nanoparticles, oligo (ethylene glycol) methacrylates, and acidic moieties [...] Read more.
Polymeric-inorganic hybrid nanomaterials have emerged as novel multifunctional platforms because they combine the intrinsic characteristics of both materials with unexpected properties that arise from synergistic effects. In this work, hybrid nanogels based on mesoporous silica nanoparticles, oligo (ethylene glycol) methacrylates, and acidic moieties were developed employing ultrasound-assisted free radical precipitation/dispersion polymerization. Chemical structure was characterized by infrared spectroscopy and nuclear magnetic resonance. Hydrodynamic diameters at different temperatures were determined by dynamic light scattering, and cloud point temperatures were determined by turbidimetry. Cell viability in fibroblast (NIH 3T3) and human prostate cancer (LNCaP) cell lines were studied by a standard colorimetric assay. The synthetic approach allows covalent bonding between the organic and inorganic components. The composition of the polymeric structure of hybrid nanogels was optimized to incorporate high percentages of acidic co-monomer, maintaining homogeneous nanosized distribution, achieving appropriate volume phase transition temperature values for biomedical applications, and remarkable pH response. The cytotoxicity assays show that cell viability was above 80% even at the highest nanogel concentration. Finally, we demonstrated the successful cell inhibition when they were treated with camptothecin-loaded hybrid nanogels. Full article
(This article belongs to the Special Issue Nanomaterials in Biomedicine)
Show Figures

Graphical abstract

13 pages, 3174 KiB  
Article
Functional Nanogel from Natural Substances for Delivery of Doxorubicin
by Katya Kamenova, Lyubomira Radeva, Krassimira Yoncheva, Filip Ublekov, Martin A. Ravutsov, Maya K. Marinova, Svilen P. Simeonov, Aleksander Forys, Barbara Trzebicka and Petar D. Petrov
Polymers 2022, 14(17), 3694; https://doi.org/10.3390/polym14173694 - 5 Sep 2022
Cited by 14 | Viewed by 3313
Abstract
Nanogels (NGs) have attracted great attention because of their outstanding biocompatibility, biodegradability, very low toxicity, flexibility, and softness. NGs are characterized with a low and nonspecific interaction with blood proteins, meaning that they do not induce any immunological responses in the body. Due [...] Read more.
Nanogels (NGs) have attracted great attention because of their outstanding biocompatibility, biodegradability, very low toxicity, flexibility, and softness. NGs are characterized with a low and nonspecific interaction with blood proteins, meaning that they do not induce any immunological responses in the body. Due to these properties, NGs are considered promising candidates for pharmaceutical and biomedical application. In this work, we introduce the development of novel functional nanogel obtained from two naturally based products—citric acid (CA) and pentane-1,2,5-triol (PT). The nanogel was synthesized by precipitation esterification reaction of CA and PT in tetrahydrofuran using N-ethyl-N′-(3-dimethylaminopropyl) carbodiimide (EDC) and 4-(dimethylamino)pyridine (DMAP) catalyst system. Dynamic light scattering (DLS), cryogenic transmission electron microscopy (cryo-TEM) and atomic force microscopy (AFM) analyses revealed formation of spherical nanogel particles with a negative surface charge. Next, the nanogel was loaded with doxorubicin hydrochloride (DOX) by electrostatic interactions between carboxylic groups present in the nanogel and amino groups of DOX. The drug-loaded nanogel exhibited high encapsulation efficiency (EE~95%), and a bi-phasic release behavior. Embedding DOX into nanogel also stabilized the drug against photodegradation. The degradability of nanogel under acidic and neutral conditions with time was investigated as well. Full article
Show Figures

Figure 1

17 pages, 3841 KiB  
Article
Temperature and Salt Responsive Amphoteric Nanogels Based on N-Isopropylacrylamide, 2-Acrylamido-2-methyl-1-propanesulfonic Acid Sodium Salt and (3-Acrylamidopropyl) Trimethylammonium Chloride
by Aigerim Ye. Ayazbayeva, Alexey V. Shakhvorostov, Iskander Sh. Gussenov, Tulegen M. Seilkhanov, Vladimir O. Aseyev and Sarkyt E. Kudaibergenov
Nanomaterials 2022, 12(14), 2343; https://doi.org/10.3390/nano12142343 - 8 Jul 2022
Cited by 9 | Viewed by 2485
Abstract
Polyampholyte nanogels based on N-isopropylacrylamide (NIPAM), (3-acrylamidopropyl) trimethylammonium chloride (APTAC) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) were synthesized via conventional redox-initiated free radical copolymerization. The resultant nanogels of various compositions, specifically [NIPAM]:[APTAC]:[AMPS] = 90:5:5; 90:7.5:2.5; 90:2.5:7.5 mol.%, herein abbreviated as NIPAM90 [...] Read more.
Polyampholyte nanogels based on N-isopropylacrylamide (NIPAM), (3-acrylamidopropyl) trimethylammonium chloride (APTAC) and 2-acrylamido-2-methyl-1-propanesulfonic acid sodium salt (AMPS) were synthesized via conventional redox-initiated free radical copolymerization. The resultant nanogels of various compositions, specifically [NIPAM]:[APTAC]:[AMPS] = 90:5:5; 90:7.5:2.5; 90:2.5:7.5 mol.%, herein abbreviated as NIPAM90-APTAC5-AMPS5, NIPAM90-APTAC7.5-AMPS2.5 and NIPAM90-APTAC2.5-AMPS7.5, were characterized by a combination of 1H NMR and FTIR spectroscopy, TGA, UV–Vis, DLS and zeta potential measurements. The temperature and salt-responsive properties of amphoteric nanogels were studied in aqueous and saline solutions in a temperature range from 25 to 60 °C and at ionic strengths (μ) of 10−3 to 1M NaCl. Volume phase transition temperatures (VPTT) of the charge-balanced nanogel were found to reach a maximum upon the addition of salt, whereas the same parameter for the charge-imbalanced nanogels exhibited a sharp decrease at higher saline concentrations. A wide bimodal distribution of average hydrodynamic sizes of nanogel particles had a tendency to transform to a narrow monomodal peak at elevated temperatures and higher ionic strengths. According to the DLS results, increasing ionic strength results in the clumping of nanogel particles. Full article
Show Figures

Figure 1

18 pages, 81824 KiB  
Article
In Vivo Biocompatible Self-Assembled Nanogel Based on Hyaluronic Acid for Aqueous Solubility and Stability Enhancement of Asiatic Acid
by Yu Yu Win, Penpimon Charoenkanburkang, Vudhiporn Limprasutr, Ratchanee Rodsiri, Yue Pan, Visarut Buranasudja and Jittima Amie Luckanagul
Polymers 2021, 13(23), 4071; https://doi.org/10.3390/polym13234071 - 23 Nov 2021
Cited by 13 | Viewed by 5664
Abstract
Asiatic acid (AA), a natural triterpene found in Centalla asiatica, possesses polypharmacological properties that can contribute to the treatment and prophylaxis of various diseases. However, its hydrophobic nature and rapid metabolic rate lead to poor bioavailability. The aim of this research was [...] Read more.
Asiatic acid (AA), a natural triterpene found in Centalla asiatica, possesses polypharmacological properties that can contribute to the treatment and prophylaxis of various diseases. However, its hydrophobic nature and rapid metabolic rate lead to poor bioavailability. The aim of this research was to develop a thermoresponsive nanogel from hyaluronic acid (HA) for solubility and stability enhancement of AA. Poly(N-isopropylacrylamide) (pNIPAM) was conjugated onto HA using a carbodiimide reaction followed by 1H NMR characterization. pNIPAM-grafted HA (HA-pNIPAM) nanogels were prepared with three concentrations of polymer, 0.1, 0.15 and 0.25% w/v, in water by the sonication method. AA was loaded into the nanogel by the incubation method. Size, morphology, AA loading capacity and encapsulation efficiency (EE) were analyzed. In vitro cytocompatibility was evaluated in fibroblast L-929 cells using the PrestoBlue assay. Single-dose toxicity was studied using rats. HA-pNIPAM nanogels at a 4.88% grafting degree showed reversible thermo-responsive behavior. All nanogel formulations could significantly increase AA water solubility and the stability was higher in nanogels prepared with high polymer concentrations over 180 days. The cell culture study showed that 12.5 µM AA in nanogel formulations was considered non-toxic to the L-929 cells; however, a dose-dependent cytotoxic effect was observed at higher AA-loaded concentrations. In vivo study proved the non-toxic effect of AA loaded in HA-pNIPAM nanogels compared with the control. Taken together, HA-pNIPAM nanogel is a promising biocompatible delivery system both in vitro and in vivo for hydrophobic AA molecules. Full article
Show Figures

Graphical abstract

Back to TopTop