Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,279)

Search Parameters:
Keywords = acid oils

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1135 KiB  
Article
A Study on the Beneficiation of Very Fine Particle Rutile Ore Using Flotation
by Oyku Bilgin and Ilhan Ehsani
Minerals 2025, 15(8), 838; https://doi.org/10.3390/min15080838 (registering DOI) - 7 Aug 2025
Abstract
This study investigates the beneficiation of finely grinded rutile ore utilizing a combination of flocculation and flotation methods. Rutile, a Ti-bearing mineral with industrial significance, is often associated with heavy minerals found in coastal and metamorphic environments. A rutile ore sample from Azıtepe [...] Read more.
This study investigates the beneficiation of finely grinded rutile ore utilizing a combination of flocculation and flotation methods. Rutile, a Ti-bearing mineral with industrial significance, is often associated with heavy minerals found in coastal and metamorphic environments. A rutile ore sample from Azıtepe (Alaşehir, Türkiye) was reduced to −63 µm and enriched under varying pH conditions (2.5–12) using different reagent combinations and was used for our investigation of both flocculation and flotation processes using reagents such as Aero801(SIPX), Aero825, tannic acid (TA), and pomace oil. The best results were achieved at pH: 8 using Aero801(SIPX) and pomace oil during flocculation, and Aero801(SIPX), Aero825, and Aerofroth88 during flotation, yielding a concentrate with an 8.99% TiO2 grade and an 89.5% recovery rate. Meanwhile, a 7.00% TiO2 grade concentrate was obtained with a recovery rate of 71.92% at neutral pH. This study found that pH and reagent selection had an important effect on TiO2 enrichment efficiency in fine size, low-grade rutile ores. Future research is recommended to investigate selective depressants and multi-stage cleaning to improve separation. Full article
(This article belongs to the Special Issue Particle–Bubble Interactions in the Flotation Process)
18 pages, 3248 KiB  
Article
Evaluation Model of Climatic Suitability for Olive Cultivation in Central Longnan, China
by Li Liu, Ying Na and Yun Ma
Atmosphere 2025, 16(8), 948; https://doi.org/10.3390/atmos16080948 (registering DOI) - 7 Aug 2025
Abstract
Longnan is the largest olive cultivation area in China. The unique microclimates in Longnan make it an ideal testing ground for climate-resilient cultivation strategies with broader applications across similar regions, yet predictive models linking weather to oil quality remain scarce. This study establishes [...] Read more.
Longnan is the largest olive cultivation area in China. The unique microclimates in Longnan make it an ideal testing ground for climate-resilient cultivation strategies with broader applications across similar regions, yet predictive models linking weather to oil quality remain scarce. This study establishes a climate suitability evaluation model for olive cultivation in central Longnan based on meteorological data and olive quality data in the Fotanggou planting base. Four key climatic factors are identified: cumulative sunshine hours during the fruit coloring to ripening period, average temperature during the fruit coloring to harvesting period, number of cloudy and rainy days during the harvesting period, and relative humidity during the fruit setting to fruit enlargement period. Olive oil quality is graded into three levels (Excellent III, Good II, Fair I) based on acidity, linoleic acid, and peroxide value using K-means clustering. A climate suitability index is developed by integrating these factors, with weights determined via principal component analysis. The model is validated against an olive quality report from the Dabao planting base, showing an 80% match rate. From 1991 to 2023, 87.9% of years exhibit suitable or moderately suitable conditions, with 100% of years in the past decade (2014–2023) reaching “Good” or “Excellent” levels. This model provides a scientific basis for evaluating and predicting olive oil quality, supporting sustainable olive industry development in Longnan. This model provides policymakers and farmers with actionable insights to ensure the long-term sustainability of olive industry amid climate uncertainty. Full article
33 pages, 732 KiB  
Review
Transforming By-Products into Functional Resources: The Potential of Cucurbitaceae Family Seeds in Cosmetics
by Carla Sousa, Carla Guimarães Moutinho, Márcia Carvalho, Carla Matos and Ana Ferreira Vinha
Seeds 2025, 4(3), 36; https://doi.org/10.3390/seeds4030036 (registering DOI) - 7 Aug 2025
Abstract
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical [...] Read more.
Seeds of Cucurbitaceae crops represent a promising yet underexplored source of bioactive compounds with potential applications beyond nutrition, particularly in the cosmetics industry. This review examines the seeds of Citrullus lanatus (watermelon), Cucumis melo (melon), and Cucurbita pepo (pumpkin), focusing on their biochemical composition and evaluating their functional value in natural cosmetic development. Although these fruits are widely consumed, industrial processing generates substantial seed by-products that are often discarded. These seeds are rich in polyunsaturated fatty acids, proteins, carbohydrates, and phytochemicals, positioning them as sustainable raw materials for value-added applications. The incorporation of seed-derived extracts into cosmetic formulations offers multiple skin and hair benefits, including antioxidant activity, hydration, and support in managing conditions such as hyperpigmentation, acne, and psoriasis. They also contribute to hair care by improving oil balance, reducing frizz, and enhancing strand nourishment. However, challenges such as environmental instability and low dermal permeability of seed oils have prompted interest in nanoencapsulation technologies to improve delivery, stability, and efficacy. This review summarizes current scientific findings and highlights the potential of Cucurbitaceae seeds as innovative and sustainable ingredients for cosmetic and personal care applications. Full article
24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

19 pages, 3503 KiB  
Article
Discovery of Hub Genes Involved in Seed Development and Lipid Biosynthesis in Sea Buckthorn (Hippophae rhamnoides L.) Using UID Transcriptome Sequencing
by Siyang Zhao, Chengjiang Ruan, Alexey A. Dmitriev and Hyun Uk Kim
Plants 2025, 14(15), 2436; https://doi.org/10.3390/plants14152436 - 6 Aug 2025
Abstract
Sea buckthorn is a vital woody oil species valued for its role in soil conservation and its bioactive seed oil, which is rich in unsaturated fatty acids and other compounds. However, low seed oil content and small seed size are the main bottlenecks [...] Read more.
Sea buckthorn is a vital woody oil species valued for its role in soil conservation and its bioactive seed oil, which is rich in unsaturated fatty acids and other compounds. However, low seed oil content and small seed size are the main bottlenecks restricting the development and utilization of sea buckthorn. In this study, we tested the seed oil content and seed size of 12 sea buckthorn cultivars and identified the key genes and transcription factors involved in seed development and lipid biosynthesis via the integration of UID RNA-seq (Unique Identifiers, UID), WGCNA (weighted gene co-expression network analysis) and qRT-PCR (quantitative real-time PCR) analysis. The results revealed five cultivars (CY02, CY11, CY201309, CY18, CY21) with significantly higher oil contents and five cultivars (CY10, CY201309, CY18, CY21, CY27) with significantly heavier seeds. A total of 10,873 genes were significantly differentially expressed between the S1 and S2 seed developmental stages of the 12 cultivars. WGCNA was used to identify five modules related to seed oil content and seed weight/size, and 417 candidate genes were screened from these modules. Among them, multiple hub genes and transcription factors were identified; for instance, ATP synthase, ATP synthase subunit D and Acyl carrier protein 1 were related to seed development; plastid–lipid-associated protein, acyltransferase-like protein, and glycerol-3-phosphate 2-O-acyltransferase 6 were involved in lipid biosynthesis; and transcription factors DOF1.2, BHLH137 and ERF4 were associated with seed enlargement and development. These findings provide crucial insights into the genetic regulation of seed traits in sea buckthorn, offering targets for future breeding efforts aimed at improving oil yield and quality. Full article
(This article belongs to the Special Issue Molecular Regulation of Seed Development and Germination)
Show Figures

Figure 1

10 pages, 221 KiB  
Article
The Effect of Water- and Ultrasonic Bath Systems on Bioactive Compounds and Fatty Acid Compositions of Unroasted and Roasted Pumpkin Seeds
by Isam A. Mohamed Ahmed, Mehmet Musa Özcan, Nurhan Uslu, Emad Karrar and Fahad Aljuhaimi
Foods 2025, 14(15), 2740; https://doi.org/10.3390/foods14152740 - 5 Aug 2025
Abstract
In this study, the effects of water bath and ultrasonic bath systems on bioactive properties, phenolic components and fatty acid profiles of unroasted and roasted pumpkin seeds were investigated. It is thought that determining the bioactive components, phenolic constituents and fatty acid profiles [...] Read more.
In this study, the effects of water bath and ultrasonic bath systems on bioactive properties, phenolic components and fatty acid profiles of unroasted and roasted pumpkin seeds were investigated. It is thought that determining the bioactive components, phenolic constituents and fatty acid profiles of unroasted and roasted pumpkin seeds will lead to the establishment of usage norms according to their composition characteristics. Total phenolic quantities of the pumpkin seed extracts obtained by water bath extraction of the seeds were defined to be between 7.58 (control) and 11.55 (25 min) and 10.20 (control) and 17.18 mg GAE/100 g (50 min), respectively. Phenolic content increased by 50% after 50 min of ultrasonic extraction, indicating the efficiency of this method. Also, total flavonoid amounts increased about 55% after 25 min of ultrasonic extraction, indicating the efficiency of this method. It was observed that the catechin contents of unroasted pumpkin seeds obtained in water and ultrasonic baths decreased significantly at the 50th minute of extraction compared to the control. The antioxidant activity values (DPPH) of roasted pumpkin seeds treated in water- and ultrasonic bath systems increased by approximately 10% compared to the control at 50 min of sonication in both systems, respectively. Also, the 3,4-dihydroxybenzoic acid amounts of the extracts obtained by both extraction systems of roasted pumpkin seeds were determined between 9.85 (50 min) and 17.22 mg/100 g (control) and 11.17 (25 min) and 13.74 mg/100 g (50 min), respectively. The linoleic acid amounts of unroasted pumpkin seed oils extracted in water- and ultrasonic baths varied between 52.34 (50 min) and 53.33% (control) to 52.90 (50 min) and 53.04% (control), respectively. The linoleic acid values of the roasted pumpkin seed oils were established to be between 52.30 (50 min) and 52.84 (25 min) and 52.32 (50 min) and 53.46% (25 min), respectively. In general, the phenolic compound amounts of roasted pumpkin seeds were higher than those of unroasted ones. The fatty acid amounts of pumpkin seed oils extracted with an ultrasonic bath were generally slightly higher than those extracted with a water bath. In future studies, changes in the phytochemical and bioactive properties of pumpkin seed oils obtained by applying different roasting techniques and extraction methods will be investigated. Full article
(This article belongs to the Section Food Engineering and Technology)
27 pages, 2559 KiB  
Review
Virgin Coconut Oil and Its Lauric Acid, Between Anticancer Activity and Modulation of Chemotherapy Toxicity: A Review
by Debalina Bose, Adetayo Olorunlana, Rania Abdel-Latif, Ademola C. Famurewa and Eman M. Othman
J. Xenobiot. 2025, 15(4), 126; https://doi.org/10.3390/jox15040126 - 5 Aug 2025
Viewed by 37
Abstract
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty [...] Read more.
Virgin coconut oil (VCO) has emerged as a functional food oil with considerable health benefits and wide applications in the food, pharmaceutical, and cosmetic industries due to its resident bioactive compounds, including lauric acid (LA). LA is the most abundant saturated medium-chain fatty acid in VCO and has been associated with several pharmacological activities. The literatures show the pharmacological effects of VCO and LA on chronic pathologies, infectious diseases, and metabolic disorders. A robust body of evidence shows that LA and other phenolic compounds are responsible for the VCO protection against toxicities and pharmacological efficacies. This review elucidates the anticancer mechanisms of VCO/LA and their modulation of the chemotherapy-induced side effect toxicity. VCO, LA, and their nanomaterial/encapsulated derivatives promote ROS generation, antiproliferation, apoptosis, cell cycle arrest, the inhibition of metastasis, and the modulation of cancer-related signaling pathways for cancer cell death in vivo and in vitro. VCO mitigates oxidative inflammation and apoptosis to block the underlying mechanisms of the side effect toxicity of chemotherapy. However, the possible beneficial effect of LA on the toxicity of chemotherapy is currently unknown. The available evidence emphasizes the anticancer effect and mechanism of VCO and LA, and the VCO potential to combat adverse side effects of chemotherapy. Thus, VCO and LA are potential adjuvant therapeutic agents in the management of various cancers. Nevertheless, future studies should be targeted at elucidating cancer-related molecular mechanisms to bridge the gap in knowledge. Full article
Show Figures

Figure 1

26 pages, 931 KiB  
Article
Nutritional Quality, Fatty Acids Profile, and Phytochemical Composition of Unconventional Vegetable Oils
by Wiktoria Kamińska, Anna Grygier, Katarzyna Rzyska-Szczupak, Anna Przybylska-Balcerek, Kinga Stuper-Szablewska and Grażyna Neunert
Molecules 2025, 30(15), 3269; https://doi.org/10.3390/molecules30153269 - 4 Aug 2025
Viewed by 220
Abstract
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The [...] Read more.
This study compares the nutritional and metabolic properties of unconventional cold-pressed vegetable oils available on the Polish market. Twelve oils—milk thistle, evening primrose, flaxseed, camelina sativa, black cumin, pumpkin seed, sesame, mustard seed, sea buckthorn, blue poppy seed, borage, and safflower—were examined. The chosen oils were investigated based on their fatty acids profiles, total phenolic compounds (TPC), tocopherols, and pigment contents. Despite the high polyunsaturated fatty acids (PUFAs) content raising concerns about oxidative stability, the significant tocopherol levels and polyphenols content contribute to antioxidative protection. These oils’ favorable hypocholesterolemic, antiatherogenic, and antithrombogenic properties were highlighted by key nutritional indices, showing potential benefits for cardiovascular health. These results suggest that these oils are a promising dietary supplement for promoting both cardiovascular health and sustainability, owing to their rich content of essential fatty acids and bioactive compounds. Moreover, high correlations were found between theoretical and experimental established oxidative stability of the tested oils at the ending stage of the thermostat test. Full article
Show Figures

Figure 1

20 pages, 346 KiB  
Review
Dietary Strategies in the Prevention of MASLD: A Comprehensive Review of Dietary Patterns Against Fatty Liver
by Barbara Janota, Karolina Janion, Aneta Buzek and Ewa Janczewska
Metabolites 2025, 15(8), 528; https://doi.org/10.3390/metabo15080528 - 4 Aug 2025
Viewed by 298
Abstract
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. [...] Read more.
Understanding the components of the diet, food groups, and nutritional strategies that help prevent MASLD (Metabolic Dysfunction-Associated Steatotic Liver Disease) is essential for identifying dietary behaviors that can stop the progression of this condition, which currently affects over one-quarter of the global population. This review highlights the importance of including antioxidant nutrients in the diet, such as vitamins C and E, CoQ10, and polyphenolic compounds. It also emphasizes substances that support lipid metabolism, including choline, alpha-lipoic acid, and berberine. Among food groups, it is crucial to choose those that help prevent metabolic disturbances. Among carbohydrate-rich foods, vegetables, fruits, and high-fiber products are recommended. For protein sources, eggs, fish, and white meat are preferred. Among fat sources, plant oils and fatty fish are advised due to their content of omega-3 and omega-6 fatty acids. Various dietary strategies aimed at preventing MASLD should include elements of the Mediterranean diet or be personalized to provide anti-inflammatory compounds and substances that inhibit fat accumulation in liver cells. Other recommended dietary models include the DASH diet, the flexitarian diet, intermittent fasting, and diets that limit fructose and simple sugars. Additionally, supplementing the diet with spirulina or chlorella, berberine, probiotics, or omega-3 fatty acids, as well as drinking several cups of coffee per day, may be beneficial. Full article
(This article belongs to the Special Issue Metabolic Dysregulation in Fatty Liver Disease)
Show Figures

Graphical abstract

20 pages, 2361 KiB  
Article
Abelmoschus esculentus Ameliorates Cognitive Impairment in Hyperlipidemic ApoE−/− Mice via Modulation of Oxidative Stress and Neuronal Differentiation
by Chiung-Huei Peng, Hsin-Wen Liang, Chau-Jong Wang, Chien-Ning Huang and Huei-Jane Lee
Antioxidants 2025, 14(8), 955; https://doi.org/10.3390/antiox14080955 - 4 Aug 2025
Viewed by 187
Abstract
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE [...] Read more.
Cardiovascular disease (CVD) and dementia may share common pathogenic factors such as atherosclerosis and hyperlipoproteinemia. Dyslipidemia-induced oxidative stress contributes to dementia comorbidity in CVD. Abelmoschus esculentus (AE, okra) potentiates in alleviating hyperlipidemia and diabetes-related cognitive impairment. This study evaluated the effects of AE in hyperlipidemic ApoE−/− mice treated with streptozotocin (50 mg/kg) and fed a high-fat diet (17% lard oil, 1.2% cholesterol). AE fractions F1 or F2 (0.65 mg/kg) were administered for 8 weeks. AE significantly reduced serum LDL-C, HDL-C, triglycerides, and glucose, improved cognitive and memory function, and protected hippocampal neurons. AE also lowered oxidative stress markers (8-hydroxy-2′-deoxyguanosine, 8-OHdG) and modulated neuronal nuclei (NeuN) and doublecortin (DCX) expression. In vitro, AE promoted neurite outgrowth and neuronal differentiation in retinoic acid (RA)-differentiated human SH-SY5Y cells under metabolic stress (glucose and palmitate), alongside the upregulation of heme oxygenase-1 (HO-1), Nuclear factor-erythroid 2-related factor 2 (Nrf2), and brain-derived neurotrophic factor (BDNF). These findings suggest AE may counter cognitive decline via oxidative stress regulation and the enhancement of neuronal differentiation. Full article
Show Figures

Graphical abstract

16 pages, 1167 KiB  
Article
Upcycling of Sunflower and Sesame Press Cakes as Functional Ingredients in Cookies
by Iwona Jasińska-Kuligowska, Maciej Kuligowski, Mateusz Wyszyński and Marcin Kidoń
Sustainability 2025, 17(15), 7056; https://doi.org/10.3390/su17157056 - 4 Aug 2025
Viewed by 177
Abstract
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic [...] Read more.
The aim of the study was to evaluate the use of sunflower and sesame oilseed press cakes, which are by-products of oil extraction, as functional ingredients in cookie production. The quality characteristics of these by-products were assessed, including water activity, pH, total phenolic content, and antioxidant activity, and HPLC analysis of the phenolic compounds was performed. Subsequently, cookies were prepared by replacing wheat flour with 30% or 50% press cake. The addition of sunflower press cake significantly increased the total phenolic content (up to 8.6 mg GAE/g dm) and antioxidant activity (up to 75.9%) in the cookies, whereas adding sesame press cake showed a less pronounced effect, reaching 0.91 g GAE/g dm and 8.9% for total phenolic content and antioxidant activity, respectively. HPLC analysis indicated that chlorogenic acid and its derivatives dominated in sunflower-enriched cookies, while sesame samples contained lignans such as sesamol and sesamin. Our study shows that 50% substitution improves the health-promoting properties of cookies and does not differ significantly from the 30% level in consumer sensory evaluations. These findings support the use of sunflower and sesame press cakes as valuable ingredients in food applications. This represents an important step toward developing healthier and more nutritious food products while supporting the principles of the circular economy through the upcycling of valuable raw materials. Full article
(This article belongs to the Special Issue By-Products of the Agri-Food Industry: Use for Food Fortification)
Show Figures

Figure 1

18 pages, 674 KiB  
Article
Oil Extraction Systems Influence the Techno-Functional and Nutritional Properties of Pistachio Processing By-Products
by Rito J. Mendoza-Pérez, Elena Álvarez-Olmedo, Ainhoa Vicente, Felicidad Ronda and Pedro A. Caballero
Foods 2025, 14(15), 2722; https://doi.org/10.3390/foods14152722 - 4 Aug 2025
Viewed by 186
Abstract
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) [...] Read more.
Low-commercial-value natural pistachios (broken, closed, or immature) can be revalorised through oil extraction, obtaining a high-quality oil and partially defatted flour as by-product. This study evaluated the techno-functional and nutritional properties of the flours obtained by hydraulic press (HP) and single-screw press (SSP) systems, combined with pretreatment at 25 °C and 60 °C. The extraction method significantly influenced flour’s characteristics, underscoring the need to tailor processing conditions to the specific technological requirements of each food application. HP-derived flours presented lighter colour, greater tocopherol content, and higher water absorption capacity (up to 2.75 g/g), suggesting preservation of hydrophilic proteins. SSP-derived flours showed higher concentration of protein (44 g/100 g), fibre (12 g/100 g), and minerals, and improved emulsifying properties, enhancing their suitability for emulsified products. Pretreatment at 25 °C enhanced functional properties such as swelling power (~7.0 g/g) and water absorption index (~5.7 g/g). The SSP system achieved the highest oil extraction yield, with no significant effect of pretreatment temperature. The oils extracted showed high levels of unsaturated fatty acids, particularly oleic acid (~48% of ω-9), highlighting their nutritional and industrial value. The findings support the valorisation of pistachio oil extraction by-products as functional food ingredients, offering a promising strategy for reducing food waste and promoting circular economy approaches in the agri-food sector. Full article
Show Figures

Figure 1

23 pages, 2626 KiB  
Article
Formulation, Optimization, and Comprehensive Characterization of Topical Essential Oil-Loaded Anti-Acne Microemulgels
by Adeola Tawakalitu Kola-Mustapha, Muhabat Adeola Raji, Yusra Abdulkarim Alzahrani, Noura Hatim Binsaeed, Doaa Rashed Adam, Ranim Abou Shameh, Noureldeen Mohammed Garaween and Ghada Garaween
Gels 2025, 11(8), 612; https://doi.org/10.3390/gels11080612 - 4 Aug 2025
Viewed by 168
Abstract
Cutibacterium acnes is linked to the prevalent inflammatory skin disorder known as Acne Vulgaris (AV). Some topical agents exhibit unfavorable side effects like dryness and skin inflammation, and antimicrobial resistance (AMR) poses an increasing risk to effective AV management. This study develops and [...] Read more.
Cutibacterium acnes is linked to the prevalent inflammatory skin disorder known as Acne Vulgaris (AV). Some topical agents exhibit unfavorable side effects like dryness and skin inflammation, and antimicrobial resistance (AMR) poses an increasing risk to effective AV management. This study develops and characterizes stable topical essential oil (EO)-loaded microemulgels with in vitro validated antimicrobial activities against C. acnes ATCC 6919, providing a solid scientific basis for their effectiveness. These microemulgels, with their potential to serve as an alternative to AMR-prone synthetic agents, could revolutionize the field of acne treatment. The MICs of the EOs (citronella, tea tree, and lemongrass) against C. acnes were determined. EO-loaded microemulgels were developed using a blend of microemulsion and carbopol/hyaluronic acid gel in a ratio of 1:1 and characterized, and their stability was observed over three months. The MICs of citronella, tea tree, and lemongrass EOs were 0.08, 0.16, and 0.62% v/v, respectively. The microemulgels were whitish and smooth, with characteristic EO odors. They demonstrated pH values ranging between 4.81 ± 0.20 and 5.00 ± 0.03, good homogeneity, a spreadability of 9.79 ± 0.6 and 12.76 ± 0.8 cm2, a viscosity of 29,500 and 31,130 cP, and retained stability at 4, 25, and 40 °C. EO-loaded microemulgels were developed with the potential of C. acnes management. The formulation shows adequate potential for further pharmaceutical development towards translational adoption in acne management. Full article
(This article belongs to the Special Issue Recent Advances in Microgels)
Show Figures

Figure 1

15 pages, 1258 KiB  
Article
Synthesis and Evaluation of Sunflower-Oil-Based Esters as Biolubricant Base Oils Using Ca/TEA Alkoxide Catalyst
by Dimosthenis Filon, George Anastopoulos and Dimitrios Karonis
Lubricants 2025, 13(8), 345; https://doi.org/10.3390/lubricants13080345 - 2 Aug 2025
Viewed by 205
Abstract
This study evaluates the production of base oils for biolubricants using fatty acid methyl esters (FAMEs) derived from sunflower oil as the raw material. The production process involved the synthesis of oleochemical esters through a single-step alkaline transesterification reaction with a high-molecular-weight polyol, [...] Read more.
This study evaluates the production of base oils for biolubricants using fatty acid methyl esters (FAMEs) derived from sunflower oil as the raw material. The production process involved the synthesis of oleochemical esters through a single-step alkaline transesterification reaction with a high-molecular-weight polyol, such as trimethylolpropane (TMP). To assess the effectiveness of the developed catalytic system in conducting the transesterification reactions and its impact on the properties of the final product, two types of alkaline catalysts were used. Specifically, the reactions were carried out using either Ca/TEA alkoxide or sodium methoxide as catalysts in various configurations and concentrations to determine the optimal catalyst concentration and reaction conditions. Sodium methoxide served as the commercial benchmark catalyst, while the Ca/TEA alkoxide was prepared in the laboratory. The optimal concentration of Ca/TEA was determined to be 3.0% wt. in the presence of iso-octane and 3.5% wt. under vacuum, while the corresponding concentrations of CH3ONa for both cases were determined to be 2.0% wt. The synthesized biolubricant esters exhibit remarkable performance characteristics, such as high kinematic viscosities and low pour points—ranging from 33–48 cSt at 40 °C, 7.68–10.03 cSt at 100 °C, to −14 to −7 °C, respectively—which are comparable to or improved over those of mineral oils such as SN-150 or SN-500, with the Ca/TEA alkoxide-catalyzed systems showing superior oxidation stability and reduced byproduct formation. Full article
(This article belongs to the Special Issue Tribological Properties of Biolubricants)
Show Figures

Figure 1

18 pages, 957 KiB  
Article
Potential of Commercial Biorational and Conventional Pesticides to Manage the Ruellia Erinose Mite in Ornamental Landscapes
by Marcello De Giosa, Adam G. Dale, Xingbo Wu and Alexandra M. Revynthi
Insects 2025, 16(8), 801; https://doi.org/10.3390/insects16080801 - 2 Aug 2025
Viewed by 293
Abstract
Acalitus simplex is an eriophyoid mite pest of the ornamental plant Ruellia simplex. Acalitus simplex compromises the esthetics of R. simplex by inducing erinea formation. Management practices for A. simplex are currently lacking. This study assessed the potential of commercial biorational (citric [...] Read more.
Acalitus simplex is an eriophyoid mite pest of the ornamental plant Ruellia simplex. Acalitus simplex compromises the esthetics of R. simplex by inducing erinea formation. Management practices for A. simplex are currently lacking. This study assessed the potential of commercial biorational (citric acid, potassium salt of fatty acids, garlic, thyme, and mineral oil) and conventional (abamectin, fenpyroximate, bifenthrin, spiromesifen) pesticides under laboratory conditions, using two types of spray applications: (A) curative, after erinea formation, and (B) prophylactic, before erinea formation. In the curative application, abamectin, garlic oil, and mineral oil were most effective; in the prophylactic application, abamectin and mineral oil showed the highest efficacies. Abamectin and mineral oil were further tested under greenhouse conditions. Both treatments effectively controlled A. simplex by preventing erinea formation over a four-week post-application period, regardless of the application type. At the end of the experiment, mites were extracted from R. simplex plants. In the curative application, significantly fewer mites were extracted from abamectin and mineral oil treatments than in the control. In the prophylactic application, mites were absent in abamectin and mineral oil treatments but present in the control. Abamectin and mineral oil can be used to manage A. simplex in landscapes. Full article
(This article belongs to the Special Issue Advances in the Bio-Ecology and Control of Plant-Damaging Acari)
Show Figures

Figure 1

Back to TopTop