Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,171)

Search Parameters:
Keywords = accumulated precipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 15953 KiB  
Article
Land Use Change and Its Climatic and Vegetation Impacts in the Brazilian Amazon
by Sérvio Túlio Pereira Justino, Richardson Barbosa Gomes da Silva, Rafael Barroca Silva and Danilo Simões
Sustainability 2025, 17(15), 7099; https://doi.org/10.3390/su17157099 - 5 Aug 2025
Abstract
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. [...] Read more.
The Brazilian Amazon is recognized worldwide for its biodiversity and it plays a key role in maintaining the regional and global climate balance. However, it has recently been greatly impacted by changes in land use, such as replacing native forests with agricultural activities. These changes have resulted in serious environmental consequences, including significant alterations to climate and hydrological cycles. This study aims to analyze changes in land use and land covered in the Brazilian Amazon between 2001 and 2023, as well as the resulting effects on precipitation variability, land surface temperature, and evapotranspiration. Data obtained via remote sensing and processed on the Google Earth Engine platform were used, including MODIS, CHIRPS, Hansen products. The results revealed significant changes: forest formation decreased by 8.55%, while agricultural land increased by 575%. Between 2016 and 2023, accumulated deforestation reached 242,689 km2. Precipitation decreased, reaching minimums of 772.7 mm in 2015 and 726.4 mm in 2020. Evapotranspiration was concentrated between 941 and 1360 mm in 2020, and surface temperatures ranged between 30 °C and 34 °C in 2015, 2020, and 2023. We conclude that anthropogenic transformations in the Brazilian Amazon directly impact vegetation cover and the regional climate. Therefore, conservation and monitoring measures are essential for mitigating these effects. Full article
(This article belongs to the Section Sustainable Forestry)
Show Figures

Figure 1

16 pages, 3034 KiB  
Article
Interannual Variability in Precipitation Modulates Grazing-Induced Vertical Translocation of Soil Organic Carbon in a Semi-Arid Steppe
by Siyu Liu, Xiaobing Li, Mengyuan Li, Xiang Li, Dongliang Dang, Kai Wang, Huashun Dou and Xin Lyu
Agronomy 2025, 15(8), 1839; https://doi.org/10.3390/agronomy15081839 - 29 Jul 2025
Viewed by 158
Abstract
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing [...] Read more.
Grazing affects soil organic carbon (SOC) through plant removal, livestock trampling, and manure deposition. However, the impact of grazing on SOC is also influenced by multiple factors such as climate, soil properties, and management approaches. Despite extensive research, the mechanisms by which grazing intensity influences SOC density in grasslands remain incompletely understood. This study examines the effects of varying grazing intensities on SOC density (0–30 cm) dynamics in temperate grasslands of northern China using field surveys and experimental analyses in a typical steppe ecosystem of Inner Mongolia. Results show that moderate grazing (3.8 sheep units/ha/yr) led to substantial consumption of aboveground plant biomass. Relative to the ungrazed control (0 sheep units/ha/yr), aboveground plant biomass was reduced by 40.5%, 36.2%, and 50.6% in the years 2016, 2019, and 2020, respectively. Compensatory growth failed to fully offset biomass loss, and there were significant reductions in vegetation carbon storage and cover (p < 0.05). Reduced vegetation cover increased bare soil exposure and accelerated topsoil drying and erosion. This degradation promoted the downward migration of SOC from surface layers. Quantitative analysis revealed that moderate grazing significantly reduced surface soil (0–10 cm) organic carbon density by 13.4% compared to the ungrazed control while significantly increasing SOC density in the subsurface layer (10–30 cm). Increased precipitation could mitigate the SOC transfer and enhance overall SOC accumulation. However, it might negatively affect certain labile SOC fractions. Elucidating the mechanisms of SOC variation under different grazing intensities and precipitation regimes in semi-arid grasslands could improve our understanding of carbon dynamics in response to environmental stressors. These insights will aid in predicting how grazing systems influence grassland carbon cycling under global climate change. Full article
Show Figures

Figure 1

19 pages, 8452 KiB  
Article
Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment
by Aline M. Meiguins de Lima, Vitor Gabriel Queiroz do Nascimento, Saulo Siqueira Martins, Arthur Cesar Souza de Oliveira and Yuri Antonio da Silva Rocha
GeoHazards 2025, 6(3), 40; https://doi.org/10.3390/geohazards6030040 - 29 Jul 2025
Viewed by 269
Abstract
This study aims to investigate the processes associated with mass movements and their relationship with the behavior of the Amazon River delta-estuary (ADE) wetlands. The methodological approach involves using water spectral indices and ground-penetrating radar (GPR) to diagnose areas of soil water saturation [...] Read more.
This study aims to investigate the processes associated with mass movements and their relationship with the behavior of the Amazon River delta-estuary (ADE) wetlands. The methodological approach involves using water spectral indices and ground-penetrating radar (GPR) to diagnose areas of soil water saturation and characterize regions affected by mass movements in Amazonian cities. It also involves identifying areas of critical saturation content and consequent mass movements. Analysis of risk and land use data revealed that the affected areas coincide with zones of high susceptibility to mass movements induced by water. The results showed the following: the accumulated annual precipitation ranged from 70.07 ± 55.35 mm·month−1 to 413.34 ± 127.51 mm·month−1; the response similarity across different sensors obtained an accuracy greater than 90% for NDWI, MNDWI, and AWEI for the same targets; and a landfill layer with a thickness variation between 1 and 2 m defined the mass movement concentration in Abaetetuba city. The interaction between infiltration, water saturation, and human-induced land alteration suggests that these areas act as wetlands with unstable dynamics. The analysis methodology developed for this study aimed to address this scenario by systematically mapping areas with mass movement potential and high-water saturation. Due to the absence of geological and geotechnical data, remote sensing was employed as an alternative, and in situ ground-penetrating radar (GPR) evaluation was suggested as a means of investigating the causes of a previously observed movement. Full article
Show Figures

Graphical abstract

20 pages, 3401 KiB  
Article
Fusarium Head Blight in Barley from Subtropical Southern Brazil: Associated Fusarium Species and Grain Contamination Levels of Deoxynivalenol and Nivalenol
by Emanueli Bizarro Furtado, Eduardo Guatimosim, Danielle Ribeiro de Barros, Carlos Augusto Mallmann, Jeronimo Vieira de Araujo Filho, Sabrina de Oliveira Martins, Dauri José Tessmann, Cesar Valmor Rombaldi, Luara Medianeira de Lima Schlösser, Adriana Favaretto and Leandro José Dallagnol
Plants 2025, 14(15), 2327; https://doi.org/10.3390/plants14152327 - 27 Jul 2025
Viewed by 449
Abstract
Fusarium head blight in barley (Hordeum vulgare) reduces grain yield and can lead to the accumulation of deoxynivalenol (DON) and nivalenol (NIV) in grains. We surveyed Fusarium species and evaluated DON and NIV concentrations in barley grains in four regions of [...] Read more.
Fusarium head blight in barley (Hordeum vulgare) reduces grain yield and can lead to the accumulation of deoxynivalenol (DON) and nivalenol (NIV) in grains. We surveyed Fusarium species and evaluated DON and NIV concentrations in barley grains in four regions of Rio Grande do Sul, the southernmost state in subtropical Brazil. Seven Fusarium species were identified: F. asiaticum, F. avenaceum, F. cortaderiae, F. graminearum, F. gerlachii, F. meridionale and F. poae. DON (0 to 10,200 µg/kg) and NIV (0 to 1630 µg/kg) were detected in 74% and 70% of the samples, respectively, with higher concentrations found in experimental fields. However, in commercial barley fields, most samples fell below 2000 µg/kg of DON, which is the maximum limit allowed by Brazilian legislation for grains intended for processing. The seasonality of temperature and precipitation influenced mycotoxin concentrations. Therefore, the variability of Fusarium species in Rio Grande do Sul and a high incidence of DON and NIV in barley grains highlight the complexity of this pathosystem. This variability of Fusarium species may also influence the effectiveness of measures to control the disease, particularly in relation to genetic resistance and fungicide application. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

29 pages, 4258 KiB  
Review
Corrosion Performance of Atmospheric Corrosion Resistant Steel Bridges in the Current Climate: A Performance Review
by Nafiseh Ebrahimi, Melina Roshanfar, Mojtaba Momeni and Olga Naboka
Materials 2025, 18(15), 3510; https://doi.org/10.3390/ma18153510 - 26 Jul 2025
Viewed by 519
Abstract
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance [...] Read more.
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance strategies. The protective patina, composed of stable iron oxyhydroxides, develops over time under favorable wet–dry cycles but can be disrupted by environmental aggressors such as chlorides, sulfur dioxide, and prolonged moisture exposure. Key alloying elements like Cu, Cr, Ni, and Nb enhance corrosion resistance, while design considerations—such as drainage optimization and avoidance of crevices—are critical for performance. The study highlights the vulnerability of WS bridges to microenvironments, including de-icing salt exposure, coastal humidity, and debris accumulation. Regular inspections and maintenance, such as debris removal, drainage system upkeep, and targeted cleaning, are essential to mitigate corrosion risks. Climate change exacerbates challenges, with rising temperatures, altered precipitation patterns, and ocean acidification accelerating corrosion in coastal regions. Future research directions include optimizing WS compositions with advanced alloys (e.g., rare earth elements) and integrating climate-resilient design practices. This review highlights the need for a holistic approach combining material science, proactive maintenance, and adaptive design to ensure the longevity of WS bridges in evolving environmental conditions. Full article
Show Figures

Figure 1

9 pages, 2733 KiB  
Data Descriptor
Investigating Mid-Latitude Lower Ionospheric Responses to Energetic Electron Precipitation: A Case Study
by Aleksandra Kolarski, Vladimir A. Srećković, Zoran R. Mijić and Filip Arnaut
Data 2025, 10(8), 121; https://doi.org/10.3390/data10080121 - 26 Jul 2025
Viewed by 217
Abstract
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to [...] Read more.
Localized ionization enhancements (LIEs) in altitude range corresponding to the D-region ionosphere, disrupting Very-Low-Frequency (VLF) signal propagation. This case study focuses on Lightning-induced Electron Precipitation (LEP), analyzing amplitude and phase variations in VLF signals recorded in Belgrade, Serbia, from worldwide transmitters. Due to the localized, transient nature of Energetic Electron Precipitation (EEP) events and the path-dependence of VLF responses, research relies on event-specific case studies to model reflection height and sharpness via numerical simulations. Findings show LIEs are typically under 1000 × 500 km, with varying internal structure. Accumulated case studies and corresponding data across diverse conditions contribute to a broader understanding of ionospheric dynamics and space weather effects. These findings enhance regional modeling, support aerosol–electricity climate research, and underscore the value of VLF-based ionospheric monitoring and collaboration in Europe. Full article
(This article belongs to the Section Spatial Data Science and Digital Earth)
Show Figures

Figure 1

17 pages, 6360 KiB  
Article
Integrating Lanthanide-Reclaimed Wastewater and Lanthanide Phosphate in Corn Cultivation: A Novel Approach for Sustainable Agriculture
by George William Kajjumba, Savanna Vacek and Erica J. Marti
Sustainability 2025, 17(15), 6734; https://doi.org/10.3390/su17156734 - 24 Jul 2025
Viewed by 343
Abstract
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater [...] Read more.
With increasing global challenges related to water scarcity and phosphorus depletion, the recovery and reuse of wastewater-derived nutrients offer a sustainable path forward. This study evaluates the dual role of lanthanides (Ce3+ and La3+) in recovering phosphorus from municipal wastewater and supporting corn (Zea mays) cultivation through lanthanide phosphate (Ln-P) and lanthanide-reclaimed wastewater (LRWW, wastewater spiked with lanthanide). High-purity precipitates of CePO4 (98%) and LaPO4 (92%) were successfully obtained without pH adjustment, as confirmed by X-ray photoelectron spectroscopy (XPS) and energy-dispersive spectroscopy (EDS). Germination assays revealed that lanthanides, even at concentrations up to 2000 mg/L, did not significantly alter germination rates compared to traditional coagulants, though root and shoot development declined above this threshold—likely due to reduced hydrogen peroxide (H2O2) production and elevated total dissolved solids (TDSs), which induced physiological drought. Greenhouse experiments using desert-like soil amended with Ln-P and irrigated with LRWW showed no statistically significant differences in corn growth parameters—including plant height, stem diameter, leaf number, leaf area, and biomass—when compared to control treatments. Photosynthetic performance, including stomatal conductance, quantum efficiency, and chlorophyll content, remained unaffected by lanthanide application. Metal uptake analysis indicated that lanthanides did not inhibit phosphorus absorption and even enhanced the uptake of calcium and magnesium. Minimal lanthanide accumulation was detected in plant tissues, with most retained in the root zone, highlighting their limited mobility. These findings suggest that lanthanides can be safely and effectively used for phosphorus recovery and agricultural reuse, contributing to sustainable nutrient cycling and aligning with the United Nations’ Sustainable Development Goals of zero hunger and sustainable cities. Full article
Show Figures

Graphical abstract

22 pages, 3522 KiB  
Article
Seasonal Variation in Volatile Profiles of Lemon Catnip (Nepeta cataria var. citriodora) Essential Oil and Hydrolate
by Milica Aćimović, Biljana Lončar, Milica Rat, Mirjana Cvetković, Jovana Stanković Jeremić, Milada Pezo and Lato Pezo
Horticulturae 2025, 11(7), 862; https://doi.org/10.3390/horticulturae11070862 - 21 Jul 2025
Viewed by 404
Abstract
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks [...] Read more.
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks nepetalactones and is rich in terpene alcohols, such as nerol and geraniol, making it a promising substitute for lemon balm. Despite its diverse applications, little attention has been paid to the valorization of byproducts from essential oil distillation, such as hydrolates and their secondary recovery oils. This study aimed to thoroughly analyze the volatile compound profiles of the essential oil from Lemon catnip and the recovery oil derived from its hydrolate over three consecutive growing seasons, with particular emphasis on how temperature and precipitation influence the major volatile constituents. The essential oil was obtained via semi-industrial steam distillation, producing hydrolate as a byproduct, which was then further processed using a Likens–Nickerson apparatus to extract the recovery oil, also known as secondary oil. Both essential and recovery oils were predominantly composed of terpene alcohols, with nerol (47.5–52.3% in essential oils; 43.5–54.3% in recovery oils) and geraniol (25.2–27.9% in essential oils; 29.4–32.6% in recovery oils) as the primary components. While sesquiterpene hydrocarbons were mostly confined to the essential oil, the recovery oil was distinguished by a higher presence of monooxygenated and more hydrophilic terpenes. Over the three-year period, elevated temperatures led to increased levels of geraniol, geranial, neral, and citronellal in both oils, whereas cooler conditions favored the accumulation of nerol and linalool, especially in the recovery oils. Higher precipitation was associated with elevated concentrations of nerol and linalool but decreased levels of geraniol, geranial, and neral, possibly due to dilution or degradation processes. Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Show Figures

Figure 1

22 pages, 3879 KiB  
Article
Optimal Dark Tea Fertilization Enhances the Growth and Flower Quality of Tea Chrysanthemum by Improving the Soil Nutrient Availability in Simultaneous Precipitation and High-Temperature Regions
by Jiayi Hou, Jiayuan Yin, Lei Liu and Lu Xu
Agronomy 2025, 15(7), 1753; https://doi.org/10.3390/agronomy15071753 - 21 Jul 2025
Viewed by 326
Abstract
The simplex strategies of fertilizer management and problems caused by simultaneous precipitation and high-temperature (SPH) climate were the main factors that led to yield loss and quality decline in the continuous cropping of tea chrysanthemum (Dendranthema morifolium ‘Jinsi Huang’). In this study, [...] Read more.
The simplex strategies of fertilizer management and problems caused by simultaneous precipitation and high-temperature (SPH) climate were the main factors that led to yield loss and quality decline in the continuous cropping of tea chrysanthemum (Dendranthema morifolium ‘Jinsi Huang’). In this study, with sustainable biofertilizers being proposed as a potential solution. However, their effects under such constraints are underexplored. In this study, we compared different proportions of a sustainable dark tea biofertilizer, made with two commonly used fertilizers, by their contributions to the morphological, photosynthetic, and flowering traits of D. morifolium ‘Jinsi Huang’. The results showed that increasing the dark tea biofertilizer application to 4.5 kg·m−2 significantly enhanced the soil alkali hydrolyzed nitrogen (596.53% increase), available phosphorus (64.11%), and rapidly available potassium (75.56%) compared to the levels in yellow soil. This nutrient enrichment in soil caused D. morifolium ‘Jinsi Huang’ to produce more leaves (272.84% increase) and flower buds (1041.67%), along with a strengthened photosynthetic capacity (higher Fv/Fm values and light saturation point). These improvements alleviated the photoinhibition caused by SPH climate conditions, ultimately leading to significantly higher contents of chlorogenic acid (38.23% increase) and total flavonoids (80.28%) in the harvested flowers compared to the control group. Thus, dark tea biofertilizer is a cost-effective and efficient additive for growing tea chrysanthemum in SPH regions due to improving soil quality and causing nutritional and functional components to accumulate in harvest flowers, which greatly promotes the commercial value of rural revitalization industries centered around tea chrysanthemum. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

34 pages, 16612 KiB  
Article
Identification of Optimal Areas for the Cultivation of Genetically Modified Cotton in Mexico: Compatibility with the Center of Origin and Centers of Genetic Diversity
by Antonia Macedo-Cruz
Agriculture 2025, 15(14), 1550; https://doi.org/10.3390/agriculture15141550 - 19 Jul 2025
Viewed by 359
Abstract
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting [...] Read more.
The agricultural sector faces significant sustainability, productivity, and environmental impact challenges. In this context, geographic information systems (GISs) have become a key tool to optimize resource management and make informed decisions based on spatial data. These data support planning the best cotton planting and harvest dates based on agroclimatic conditions, such as temperature, precipitation, and soil type, as well as identifying areas with a lower risk of water or thermal stress. As a result, cotton productivity is optimized, and costs associated with supplementary irrigation or losses due to adverse conditions are reduced. However, data from automatic weather stations in Mexico are scarce and incomplete. Instead, grid meteorological databases (DMM, in Spanish) were used with daily temperature and precipitation data from 1983 to 2020 to determine the heat units (HUs) for each cotton crop development stage; daily and accumulated HU; minimum, mean, and maximum temperatures; and mean annual precipitation. This information was used to determine areas that comply with environmental, geographic, and regulatory conditions (NOM-059-SEMARNAT-2010, NOM-026-SAG/FITO-2014) to delimit areas with agricultural potential for planting genetically modified (GM) cotton. The methodology made it possible to produce thirty-four maps at a 1:250,000 scale and a digital GIS with 95% accuracy. These maps indicate whether a given agricultural parcel is optimal for cultivating GM cotton. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 2186 KiB  
Article
Impact of Interactions Between Zn(II) and Selenites in an Aquatic Environment on the Accumulation of Se and Zn in a Fungal Cell
by Małgorzata Kałucka, Piotr Podsadni, Agnieszka Szczepańska, Eliza Malinowska, Anna Błażewicz and Jadwiga Turło
Molecules 2025, 30(14), 3015; https://doi.org/10.3390/molecules30143015 - 18 Jul 2025
Viewed by 286
Abstract
Our attempts to obtain a new mushroom-derived immunostimulatory preparation containing organically bound selenium and zinc have focused on the interactions between selenites and zinc(II) in liquid culture media and their effects on transport into the mushroom cell. Previously, we found that, even if [...] Read more.
Our attempts to obtain a new mushroom-derived immunostimulatory preparation containing organically bound selenium and zinc have focused on the interactions between selenites and zinc(II) in liquid culture media and their effects on transport into the mushroom cell. Previously, we found that, even if Zn2+ and SeO32− concentrations in the liquid medium are not high enough to precipitate ZnSeO3, the accumulation of selenium in the presence of zinc, and zinc in the presence of selenites, significantly dropped. This effect was more dependent on the molar ratio of ions in the medium than on the concentration values. We hypothesized that the formation of zinc–selenite soluble complexes with charges depending on the ion concentration ratio in the aquatic environment affects the first stage of ion transport into the fungal cell—biosorption. To verify this, we found the zinc–selenite molar ratio at which the complexes of the highest stability are formed, examined the influence of the molar ratio of ions in the medium on the concentration of Zn and Se in the mushroom cell wall, and investigated the correlation between the concentration of selenites not bound in complex compounds and the Se concentration in the cell wall. The results indicate that the molar fraction of Zn(II) in a liquid medium in the range of 0.5–0.6 promotes the formation of the most stable complexes. At the same time, it significantly reduces the percentage of free selenites in the medium and most strongly inhibits the biosorption process of both zinc and selenium. Full article
Show Figures

Figure 1

22 pages, 1971 KiB  
Article
Integrated Investigation of the Time Dynamics of Forest Fire Sequences in Basilicata Region (Southern Italy)
by Luciano Telesca and Rosa Lasaponara
Appl. Sci. 2025, 15(14), 7974; https://doi.org/10.3390/app15147974 - 17 Jul 2025
Viewed by 192
Abstract
The time fluctuations of forest fires occurring in Basilicata, a region situated in Southern Italy, between 2004 and 2023 were investigated using various analytical approaches. Analysis revealed a clustering of fire occurrences over time, as indicated by a significantly high coefficient of variation. [...] Read more.
The time fluctuations of forest fires occurring in Basilicata, a region situated in Southern Italy, between 2004 and 2023 were investigated using various analytical approaches. Analysis revealed a clustering of fire occurrences over time, as indicated by a significantly high coefficient of variation. This suggests that the fire sequence does not follow a Poisson distribution and instead exhibits a clustered structure, largely driven by the heightened frequency of events during the summer seasons. The analysis of monthly forest fire occurrences and total burned area indicates a significant correlation between the two. This correlation is reinforced by shared patterns, notably an annual cycle that appears to be influenced by meteorological factors, aligning with the yearly fluctuations in the region’s weather conditions typical of a Mediterranean climate. Furthermore, the relationship between the Standardized Precipitation Evapotranspiration Index (SPEI) and forest fires revealed that the accumulation period of the SPEI corresponds to the cycle length of the fires: longer cycles in fire occurrences align with higher accumulation periods in SPEI data. Full article
Show Figures

Figure 1

16 pages, 2035 KiB  
Article
Optimizing Sunflower Cultivar Selection Under Climate Variability: Evidence from Coupled Meteorological-Growth Modeling in Arid Northwest China
by Jianguo Mu, Jianqin Wang, Ruiying Ma, Zengshuai Lv, Hongye Dong, Yantao Liu, Wei Duan, Shengli Liu, Peng Wang and Xuekun Zhang
Agronomy 2025, 15(7), 1724; https://doi.org/10.3390/agronomy15071724 - 17 Jul 2025
Viewed by 298
Abstract
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield [...] Read more.
Under the scenario of global climate warming, meteorological risks affecting sunflower cultivation in Xinjiang’s 10th Division were investigated by developing a meteorological-growth coupling model. Field experiments were conducted at three representative stations (A1–A3) during 2023–2024 to assess temperature and precipitation impacts on yield and quality traits among sunflower cultivars with varying maturation periods. The main findings were: (1) Early-maturing cultivar B1 (RH3146) exhibited superior adaptation at low-temperature station A1, achieving 12% higher plant height and an 18% yield increase compared to regional averages. (2) At thermally variable station A2 (daily average temperature fluctuation ± 8 °C, precipitation CV = 25%), the late-maturing cultivar B3 showed enhanced stress resilience, achieving 35.6% grain crude fat content (15% greater than mid-maturing B2) along with 8–10% increases in seed setting rate and 100-grain weight. These improvements were potentially due to optimized photoassimilated allocation and activation of stress-responsive genes. (3) At station A3, characterized by high thermal-humidity variability (CV > 15%) during grain filling, B3 experienced a 15-day delay in maturation and a 3% reduction in ripeness. Two principal mitigation strategies are recommended: preferential selection of early-to-mid maturing cultivars in regions with thermal-humidity CV > 10%, improving yield stability by 23%, and optimization of sowing schedules based on accumulated temperature-precipitation modeling, reducing meteorological losses by 15%. These evidence-based recommendations provide critical insights for climate-resilient cultivar selection and precision agricultural management in meteorologically vulnerable agroecosystems. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

25 pages, 2780 KiB  
Article
Motion of Magnetic Microcapsules Through Capillaries in the Presence of a Magnetic Field: From a Mathematical Model to an In Vivo Experiment
by Mikhail N. Zharkov, Mikhail A. Pyataev, Denis E. Yakobson, Valentin P. Ageev, Oleg A. Kulikov, Vasilisa I. Shlyapkina, Dmitry N. Khmelenin, Larisa A. Balykova, Gleb B. Sukhorukov and Nikolay A. Pyataev
Magnetochemistry 2025, 11(7), 60; https://doi.org/10.3390/magnetochemistry11070060 - 14 Jul 2025
Viewed by 335
Abstract
In this paper, we discuss the prediction of the delivery efficiency of magnetic carriers based on their properties and field parameters. We developed a theory describing the behavior of magnetic capsules in the capillaries of living systems. A partial differential equation for the [...] Read more.
In this paper, we discuss the prediction of the delivery efficiency of magnetic carriers based on their properties and field parameters. We developed a theory describing the behavior of magnetic capsules in the capillaries of living systems. A partial differential equation for the spatial distribution of magnetic capsules has been obtained. We propose to characterize the interaction between the magnetic field and the capsules using a single vector, which we call “specific magnetic force”. To test our theory, we performed experiments on a model of a capillary bed and on a living organism with two types of magnetic capsules that differ in size and amount of magnetic material. The experimental results show that the distribution of the capsules in the field correlated with the theory, but there were fewer actually accumulated capsules than predicted by the theory. In the weaker fields, the difference was more significant than in stronger ones. We proposed an explanation for this phenomenon based on the assumption that a certain level of magnetic force is needed to keep the capsules close to the capillary wall. We also suggested a formula for the relationship between the probability of capsule precipitation and the magnetic force. We found the effective value of a specific magnetic force at which all the capsules attracted by the magnet reach the capillary wall. This value can be considered as the minimum level for the field at which it is, in principle, possible to achieve a significant magnetic control effect. We demonstrated that for each type of capsule, there is a specific radius of magnet for which the effective magnetic force is achieved at the largest possible distance from the magnet’s surface. For the capsules examined in this study, the maximum distance where the effective field can be achieved does not exceed 1.5 cm. The results of the study contribute to our understanding of the behavior of magnetic particles in the capillaries of living organisms when exposed to a magnetic field. Full article
(This article belongs to the Special Issue Fundamentals and Applications of Novel Functional Magnetic Materials)
Show Figures

Graphical abstract

24 pages, 3361 KiB  
Article
Numerical Analysis of Bifacial Photovoltaic Systems Under Different Snow Climatic Conditions
by Furkan Dincer and Emre Ozer
Sustainability 2025, 17(14), 6350; https://doi.org/10.3390/su17146350 - 11 Jul 2025
Viewed by 381
Abstract
The reflective property (albedo) of the ground plays an important role in the performance of bifacial photovoltaic modules. Snow, as a natural light-colored surface, reflects most of the light that falls on it. However, snow does not have a fixed albedo value. Therefore, [...] Read more.
The reflective property (albedo) of the ground plays an important role in the performance of bifacial photovoltaic modules. Snow, as a natural light-colored surface, reflects most of the light that falls on it. However, snow does not have a fixed albedo value. Therefore, it is essential to investigate the high albedo provided by snow in bifacial panels, which are becoming increasingly common. The albedo value of snow is influenced by numerous factors, including the precipitation characteristics of the snow, its depth, and the time since the previous snowfall. This study aims to investigate the impact of snow cover and the number of days with snow cover on the energy production of bifacial panels. An innovative dynamic albedo model integrating the snow type, depth, and duration was developed to advance bifacial PV system performance analysis under various snow and climate scenarios. PVsyst simulations were conducted to analyze the annual energy yield of bifacial photovoltaic panels in Erzurum Province under various snow conditions and accumulation levels. Furthermore, the variation in the number of days with snow cover according to different climatic regions and its effect on the energy production were evaluated for seven different provinces located in seven different regions of Turkey. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

Back to TopTop