Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = access rack

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 12065 KB  
Article
Comparing Outdoor to Indoor Performance for Bifacial Modules Affected by Polarization-Type Potential-Induced Degradation
by Dylan J. Colvin, Cécile Molto, Ryan M. Smith, Manjunath Matam, Peter Hacke, Fang Li, Brent A. Thompson, James Barkaszi, Govindasamy Tamizhmani and Hubert P. Seigneur
Solar 2025, 5(3), 43; https://doi.org/10.3390/solar5030043 - 4 Sep 2025
Viewed by 783
Abstract
Bifacial photovoltaic (PV) modules have the advantage of using light reflected off of the ground to contribute to power production. Predicting the energy gain is challenging and requires complex models to do so accurately. Often, module degradation over time is neglected in models [...] Read more.
Bifacial photovoltaic (PV) modules have the advantage of using light reflected off of the ground to contribute to power production. Predicting the energy gain is challenging and requires complex models to do so accurately. Often, module degradation over time is neglected in models for the sake of simplicity or is underestimated. Comparing outdoor and indoor current–voltage (I–V) performance for bifacial modules is more challenging than for monofacial modules, as there are additional variables to consider such as rear albedo non-uniformity, cell mismatch, and their effects on temperature. This challenge is compounded when heterogeneous degradation modes occur, such as polarization-type potential-induced degradation (PID-p). To examine the effects of PID-p on I–V predictions using an empirical data-driven approach, 16 bifacial PERC modules are installed outdoors on racks with different albedo conditions. A subset is exposed to high-voltage biases of −1500 V or +1500 V. Outdoor data are traced at irradiance ranges of 150–250 W/m2, 500–600 W/m2, and 900–1000 W/m2. These curves are corrected using control module temperature, wire resistivity, and module resistance measured indoors. We examine several methods to transform indoor I–V curves to accurately, and more simply than existing methods, approximate outdoor performance for bifacial modules without and with varying levels of PID-p degradation. This way, bifacial performance modeling can be more accessible and informed by fielded, degraded modules. Distributions of percent errors between indoor and outdoor performance parameters and Mean Absolute Percent Errors (MAPEs) are used to assess method quality. Results including low-irradiance data (150–250 W/m2) are discussed but are filtered for quantifying method quality as these data introduce substantial errors. The method with the most optimal tradeoff between low MAPE and analysis simplicity involves measuring the front side of a module indoors at an irradiance equal to plane-of-array irradiance plus the product of module bifaciality and albedo irradiance. This method gives MAPE values of 1–6.5% for non-degraded and 1.6–5.9% for PID-p degraded module performance. Full article
Show Figures

Figure 1

13 pages, 11152 KB  
Article
Direct Multi-Target Teaching Interface for Autonomous Handling of Multi-Stack Logistics in a Warehouse
by Haegyeom Choi, Jaehyun Jeong, Taezoon Park and Donghun Lee
Sensors 2024, 24(17), 5470; https://doi.org/10.3390/s24175470 - 23 Aug 2024
Cited by 1 | Viewed by 1099
Abstract
This study presents a framework for enabling autonomous pick–place operations, addressing the need for efficiency in complex logistics environments using a direct multi-target teaching interface. First, tag and segmentation information were combined to recognize products in a complex warehouse, and a camera was [...] Read more.
This study presents a framework for enabling autonomous pick–place operations, addressing the need for efficiency in complex logistics environments using a direct multi-target teaching interface. First, tag and segmentation information were combined to recognize products in a complex warehouse, and a camera was installed on the rack to allow workers to remotely see the work environment, allowing workers to view the work environment in real time through a tablet. Workers can access the camera view showing the rack containing the target product through a swiping action and select the target product through direct teaching action. When the target product is finally selected, an optimal path is created through task planning, and an autonomous pick–place operation is performed based on the generated path. As a result of conducting a usability evaluation using the SUS (System Usability Scale) with six users on the interface that enables these tasks, it was confirmed that high user satisfaction was achieved with an average of 77.5 points. In conclusion, the proposed interface enhances operational efficiency and provides a user-friendly solution for complex warehouse tasks. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 22420 KB  
Technical Note
HUB3D: Intelligent Manufacturing HUB System
by Antonio Trejo-Morales, Edgar Adrián Franco-Urquiza, Hansell David Devilet-Castellanos and Dario Bringas-Posadas
Technologies 2024, 12(7), 109; https://doi.org/10.3390/technologies12070109 - 9 Jul 2024
Viewed by 3168
Abstract
HUB3D represents a cutting-edge solution for managing and operating a 3D printer farm through the integration of advanced hardware and software. It features intuitive, responsive interfaces that support seamless interaction across various devices. Leveraging cloud services ensures the system’s stability, security, and scalability, [...] Read more.
HUB3D represents a cutting-edge solution for managing and operating a 3D printer farm through the integration of advanced hardware and software. It features intuitive, responsive interfaces that support seamless interaction across various devices. Leveraging cloud services ensures the system’s stability, security, and scalability, enabling users from diverse locations to effortlessly upload and manage their 3D printing projects. The hardware component includes a purpose-built rack capable of housing up to four 3D printers, each synchronized and managed by a manipulator arm controlled via Raspberry Pi technology. This setup facilitates continuous operation and high automation, optimizing production efficiency and reducing downtime significantly. This integrated approach positions HUB3D at the forefront of additive manufacturing management. By combining robust hardware capabilities with sophisticated software functionalities and cloud integration, the system offers unparalleled advantages. It supports continuous manufacturing processes, enhances workflow efficiency, and enables remote monitoring and management of printing operations. Overall, HUB3D’s innovative design and comprehensive features cater to both individual users and businesses seeking to streamline 3D printing workflows. With scalability, automation, and remote accessibility at its core, HUB3D represents a pivotal advancement in modern manufacturing technology, promising increased productivity and operational flexibility in the realm of additive manufacturing. Full article
(This article belongs to the Special Issue 3D Printing Technologies II)
Show Figures

Figure 1

6 pages, 1873 KB  
Proceeding Paper
A Novel Low-Cost Mechanism for Energy Generation through Footsteps
by Syed Azfar Imam Zaidi, Shahid Iqbal, Fahad Hussain, Muhammad Hammad Ikram, Waqas Javid and Muhammad Mateen
Mater. Proc. 2024, 17(1), 18; https://doi.org/10.3390/materproc2024017018 - 15 Apr 2024
Cited by 2 | Viewed by 3827
Abstract
Energy is the primary concern of the modern era and the requirement of energy is being increased day by day; energy resources are not sufficiently available for sustainable development. It is crucial to generate affordable and pollution-free sources of energy to meet this [...] Read more.
Energy is the primary concern of the modern era and the requirement of energy is being increased day by day; energy resources are not sufficiently available for sustainable development. It is crucial to generate affordable and pollution-free sources of energy to meet this required demand. Walking is a common daily activity for humans; the kinetic energy from walking is converted into mechanical energy. Moreover, this energy is converted into electrical power using a rack-and-pinion mechanism which is simply a non-conventional method of producing electric current. In this research study, a simple and low-cost rack-and-pinion mechanism with a flywheel is introduced to enhance the performance and efficiency of energy conversion from kinetic energy to mechanical energy and subsequently into electrical energy. The results showed that the proposed footstep floor tile generated an average power of 3 watts for a 0.5 s duration with a peak load of 60 kg. The electrical energy produced per step was noted as 1.8 Joules. A percentage of 75% of the total potential energy theoretically accessible was transmitted by the energy-harvesting paver, and 50% of it was successfully converted into electricity. The generated energy is stored in a backup battery bank system and can be used to charge smart devices, providing a cost-effective and pollution-free solution. Full article
(This article belongs to the Proceedings of CEMP 2023)
Show Figures

Figure 1

21 pages, 11371 KB  
Article
A Novel Parts-to-Picker System with Buffer Racks and Access Racks in Flexible Warehousing Systems
by Miao He, Zailin Guan, Guoxiang Hou and Xiaofen Wang
Sustainability 2024, 16(4), 1388; https://doi.org/10.3390/su16041388 - 6 Feb 2024
Cited by 2 | Viewed by 2309
Abstract
With the tremendous development of the logistics industry, the global market of automated warehousing has been growing rapidly. Meanwhile, the warehousing industry shows drawbacks, such as low storage capacity and poor efficiency. By comparing and analyzing the shuttle-based storage and retrieval system (SBS/RS), [...] Read more.
With the tremendous development of the logistics industry, the global market of automated warehousing has been growing rapidly. Meanwhile, the warehousing industry shows drawbacks, such as low storage capacity and poor efficiency. By comparing and analyzing the shuttle-based storage and retrieval system (SBS/RS), miniload automated storage and retrieval system (AS/RS), and KIVA system, a novel efficient parts-to-picker approach in flexible warehousing systems is proposed. Among them, buffer racks and access racks, associated with the access of automated mobile robots (AMRs) and stackers are used. The results show that compared with other parts-to-picker systems (such as the KIVA system), this system provides a significant increase in storage capacity (more than three times), and the picking efficiency is also very high at various layout scales, where the picking efficiency is no less than the KIVA system when the number of AMRs reaches the max. The novel system is suitable for small-, medium-, and large-scale warehouses in terms of showing high capacity and producing excellent space utilization. More importantly, this system can easily compete with its traditional counterparts by using a layout of high density without much increase in cost. This sustainable improvement realizes the efficient utilization of spatial resources and provides important support for the construction of green supply chains. Full article
Show Figures

Figure 1

35 pages, 9924 KB  
Article
Wood- and Cable-Based Variable Tilt Stilt-Mounted Solar Photovoltaic Racking System
by Uzair Jamil, Nicholas Vandewetering, Seyyed Ali Sadat and Joshua M. Pearce
Designs 2024, 8(1), 6; https://doi.org/10.3390/designs8010006 - 9 Jan 2024
Cited by 9 | Viewed by 4264
Abstract
The prohibitive costs of small-scale solar photovoltaic (PV) racks decrease PV adoption velocity. To overcome these costs challenges, an open hardware design method is used to develop two novel variable tilt racking designs. These are the first stilt-mounted racking designs that allow for [...] Read more.
The prohibitive costs of small-scale solar photovoltaic (PV) racks decrease PV adoption velocity. To overcome these costs challenges, an open hardware design method is used to develop two novel variable tilt racking designs. These are the first stilt-mounted racking designs that allow for the manual change of the tilt angle from zero to 90 degrees by varying the length of cables. The racks are designed using the calculated dead, wind, and snow loads for Canada as a conservative design for most of the rest of the world. Structural capacities of the wooden members are then ascertained and the resisting bending moment, shear force, tensile force, and compressive force is calculated for them. A structural and truss analysis is performed to ensure that the racking design withstands the applicable forces. Moreover, the implications of changing the tilt angle on the wooden members/cables used to build the system are also determined. The systems offer significant economic savings ranging from one third to two thirds of the capital expenses of the commercially available alternatives. In addition, the racking designs are easy-to-build and require minimal manufacturing operations, which increases their accessibility. The stilt-mounted designs can be employed for agrivoltaic settings while allowing farm workers shaded, ergonomic access to perform planting, weeding, and harvesting. Full article
(This article belongs to the Section Energy System Design)
Show Figures

Graphical abstract

23 pages, 1432 KB  
Article
Assessing Obesogenic School Environments in Sibiu County, Romania: Adapting the ISCOLE School Environment Questionnaire
by Mihai Octavian Negrea, Gabriel Octavian Negrea, Gabriela Săndulescu, Bogdan Neamtu, Raluca Maria Costea, Minodora Teodoru, Călin Remus Cipăian, Adelaida Solomon, Mirela Livia Popa and Carmen Daniela Domnariu
Children 2023, 10(11), 1746; https://doi.org/10.3390/children10111746 - 27 Oct 2023
Cited by 3 | Viewed by 2085
Abstract
The impact of the school environment on childhood weight status has garnered significant attention in recent years. This study aimed to adapt and validate the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) School and Environment questionnaire in order to assess [...] Read more.
The impact of the school environment on childhood weight status has garnered significant attention in recent years. This study aimed to adapt and validate the International Study of Childhood Obesity, Lifestyle and the Environment (ISCOLE) School and Environment questionnaire in order to assess the potential obesogenic impact of school environments in Sibiu County, Romania. The ISCOLE questionnaire was chosen for its rigorous methodology. It was derived from a comprehensive study conducted across 12 countries which aimed to capture multifaceted influences on childhood weight while emphasizing educational settings in the collection of data. To guide the translation and adaptation of the questionnaire, a multidisciplinary committee was assembled which comprised experts in teaching and school administration to ensure target responder relevance, experts in clinical research to ensure methodological robustness, experts in language adaptation to preserve the original intent of the survey, and experts in public health to steer the interpretation of the results, with potential policy implications. The data were analyzed by distinguishing between urban and rural settings, and a two-step cluster analysis was implemented to identify potential intervention targets. To assess the validity of the adapted tool, the questionnaire’s construct validity and internal consistency were explored. A response rate of 71.2% of the approached schools in Sibiu County was achieved. Of the 84 responding school representatives, 37 (44%) were from a rural setting. The rural schools had significantly more limited access to gymnasiums, secured lockers, showers, and bicycle racks, and exhibited more serious problems regarding the inadequate disposal of garbage in the school vicinity. A two-step cluster analysis revealed distinct school categories, providing opportunities for public policy interventions. One of these primarily concerned rural schools with limited infrastructure but with proactive practices and policies which were termed “unable but willing”; on the opposing spectrum, the category “able but unwilling” mainly comprised urban schools which had available facilities but lacked local proactive initiatives. The findings emphasize the urgent need for targeted measures to bridge these discrepancies by investing in infrastructure in rural schools and promoting active school practices and policies in urban settings. The assessment of obesogenic school environments in Sibiu County provides a pilot model for broader applications due to the diverse school landscape and supportive local authorities. The results, which were achieved using low-cost methods, can guide future educational policies, health promotion initiatives, and preventive interventions. Full article
(This article belongs to the Special Issue Promoting Physical Activity in the School Setting)
Show Figures

Figure 1

17 pages, 2067 KB  
Article
Geographical Dependence of Open Hardware Optimization: Case Study of Solar Photovoltaic Racking
by Shafquat Rana, Nicholas Vandewetering, Jadyn Powell, Jonathan Álvarez Ariza and Joshua M. Pearce
Technologies 2023, 11(2), 62; https://doi.org/10.3390/technologies11020062 - 21 Apr 2023
Cited by 5 | Viewed by 3957
Abstract
Open-source technological development is well-known for rapid innovation and providing opportunities to reduce costs and thus increase accessibility for a wide range of products. This is done through distributed manufacturing, in which products are produced close to end users. There is anecdotal evidence [...] Read more.
Open-source technological development is well-known for rapid innovation and providing opportunities to reduce costs and thus increase accessibility for a wide range of products. This is done through distributed manufacturing, in which products are produced close to end users. There is anecdotal evidence that these opportunities are heavily geographically dependent, with some locations unable to acquire components to build open hardware at accessible prices because of trade restrictions, tariffs, taxes, or market availability. Supply chain disruptions during the COVID-19 pandemic exacerbated this and forced designers to pivot towards a la carte-style design frameworks for critical system components. To further develop this phenomenon, a case study of free and open-source solar photovoltaic (PV) racking systems is provided. Two similar open-source designs made from different materials are compared in terms of capital costs for their detailed bill of materials throughout ten locations in North, Central and South America. The differences in economic optimization showed that the costs of wood-based racks were superior in North America and in some South American countries, while metal was less costly in Central and South America. The results make it clear that open hardware designs would be best to allow for local optimization based on material availability in all designs. Full article
(This article belongs to the Collection Electrical Technologies)
Show Figures

Figure 1

22 pages, 6368 KB  
Article
Open-Source Vertical Swinging Wood-Based Solar Photovoltaic Racking Systems
by Nicholas Vandewetering, Koami Soulemane Hayibo and Joshua M. Pearce
Designs 2023, 7(2), 34; https://doi.org/10.3390/designs7020034 - 22 Feb 2023
Cited by 16 | Viewed by 5264
Abstract
Vertical bifacial solar photovoltaic (PV) racking systems offer the opportunity for large-scale agrivoltaics to be employed at farms producing field crops with conventional farming equipment. Unfortunately, commercial proprietary vertical racks cost more than all types of conventional PV farm racking solutions. To overcome [...] Read more.
Vertical bifacial solar photovoltaic (PV) racking systems offer the opportunity for large-scale agrivoltaics to be employed at farms producing field crops with conventional farming equipment. Unfortunately, commercial proprietary vertical racks cost more than all types of conventional PV farm racking solutions. To overcome these cost barriers, this study reports on the development of a new wood-based PV racking design. The open-source design consists of a hinge mechanism, which reduces mechanical loading and enables wood to be used as the main structural material, and is the first of its kind. This open-source vertical wood-based PV rack is (i) constructed from locally accessible (domestic) renewable and sustainable materials, (ii) able to be made with hand tools by the average farmer on site, (iii) possesses a 25-year lifetime to match PV warranties, and (iv) is structurally sound, following Canadian building codes to weather high wind speeds and heavy snow loads. The results showed that the capital cost of the racking system is less expensive than the commercial equivalent and all of the previous wood-based rack designs, at a single unit retail cost of CAD 0.21. The racking LCOE is 77% of the cost of an equivalent commercial racking system using retail small-scale component costs, and is 22%, 34%, and 38% less expensive than commercial metal vertical racking, wood fixed tilt racking, and wood seasonal tilt racking costs, respectively. Overall, wooden vertical swinging PV racking provides users with a low-cost, highly available alternative to conventional metal vertical racking, along with a potential increase in energy yield in high wind areas thanks to its unique swinging mechanism. Full article
(This article belongs to the Section Smart Manufacturing System Design)
Show Figures

Figure 1

14 pages, 3676 KB  
Article
A Novel Decomposed Optical Architecture for Satellite Terrestrial Network Edge Computing
by Xiaotao Guo, Ying Zhang, Yu Jiang, Shenggang Wu and Hengnian Li
Mathematics 2022, 10(14), 2515; https://doi.org/10.3390/math10142515 - 19 Jul 2022
Cited by 1 | Viewed by 2256
Abstract
Aiming at providing a high-performance terrestrial network for edge computing in satellite networks, we experimentally demonstrate a high bandwidth and low latency decomposed optical computing architecture based on distributed Nanoseconds Optical Switches (NOS). Experimental validation of the decomposed computing network prototype employs a [...] Read more.
Aiming at providing a high-performance terrestrial network for edge computing in satellite networks, we experimentally demonstrate a high bandwidth and low latency decomposed optical computing architecture based on distributed Nanoseconds Optical Switches (NOS). Experimental validation of the decomposed computing network prototype employs a four-port NOS to interconnect four processor/memory cubes. The SOA-based optical gates provide an ON/OFF ratio greater than 60 dB, enabling none-error transmission at a Bit Error Rate (BER) of 1 × 10−9. An end-to-end access latency of 122.3 ns and zero packet loss are obtained in the experimental assessment. Scalability and physical performance considering signal impairments when increasing the NOS port count are also investigated. An output OSNR of up to 30.5 dB and an none-error transmission with 1.5 dB penalty is obtained when scaling the NOS port count to 64. Moreover, exploiting the experimentally measured parameters, the network performance of NOS-based decomposed computing architecture is numerically assessed under larger network scales. The results indicate that, under a 4096-cube network scale, the NOS-based decomposed computing architecture achieves 148.5 ns end-to-end latency inside the same rack and zero packet loss at a link bandwidth of 40 Gb/s. Full article
(This article belongs to the Special Issue Mathematical Problems in Aerospace)
Show Figures

Figure 1

32 pages, 14632 KB  
Article
Impacts of Location on Designs and Economics of DIY Low-Cost Fixed-Tilt Open Source Wood Solar Photovoltaic Racking
by Nicholas Vandewetering, Koami Soulemane Hayibo and Joshua M. Pearce
Designs 2022, 6(3), 41; https://doi.org/10.3390/designs6030041 - 21 Apr 2022
Cited by 19 | Viewed by 6994
Abstract
Although small solar photovoltaic (PV) systems avoid most soft costs, they still have a relatively high $/W value due to racking costs. In order to fulfill the promise of small-scale plug-and-play solar, a do-it-yourself PV rack design is provided and analyzed here for [...] Read more.
Although small solar photovoltaic (PV) systems avoid most soft costs, they still have a relatively high $/W value due to racking costs. In order to fulfill the promise of small-scale plug-and-play solar, a do-it-yourself PV rack design is provided and analyzed here for six criteria: (1) made from locally-accessible renewable materials, (2) 25-year lifetime to match PV warranties, (3) able to be fabricated by average consumers, (4) able to meet Canadian structural building codes, (5) low cost and (6) that it is shared using an open-source license. The open-source wood-based fixed-tilt ground-mounted bifacial photovoltaic rack design evaluated here was found to be appropriate throughout North America. Economic analysis of the bill of materials showed the racking system ranges from 49% to 77% less expensive compared to commercial proprietary racking in Canada. The racking design, however, is highly dependent on the cost of lumber that varies widely throughout the world. Even for an absolute lower-cost design in Togo due to a lower fixed tilt angle and lower loads from lack of snow, it was not found to be economic because of the relatively high cost of wood. The recent volatile lumber market warrants local evaluation from those considering the use of the open-source design. This design, however, provides for a PV rack that can be manufactured with distributed means throughout most of the world enabling more equitable access to solar energy to support a circular bioeconomy. Full article
(This article belongs to the Topic Building Energy and Environment)
Show Figures

Graphical abstract

21 pages, 2626 KB  
Article
Wireless Sensor Networks for Enabling Smart Production Lines in Industry 4.0
by Brecht De Beelde, David Plets and Wout Joseph
Appl. Sci. 2021, 11(23), 11248; https://doi.org/10.3390/app112311248 - 26 Nov 2021
Cited by 11 | Viewed by 3246
Abstract
With the deployment of data-driven assembly and production factories, challenges arise in sensor data acquisition and gathering. Different wireless technologies are currently used for transferring data, each with different advantages and constraints. In this paper, we present a hybrid network architecture for providing [...] Read more.
With the deployment of data-driven assembly and production factories, challenges arise in sensor data acquisition and gathering. Different wireless technologies are currently used for transferring data, each with different advantages and constraints. In this paper, we present a hybrid network architecture for providing Quality of Service (QoS) in an industrial environment where guaranteed minimal data rates and maximal latency are of utmost importance for controlling devices and processes. The location of the access points (APs) is determined during the initial network-planning action, together with physical parameters such as frequency, transmit power, and modulation and coding schemes. Instead of performing network-planning just once before the network rollout, the network is monitored continuously by adding telemetry data to the frame header of all data streams, and the network is automatically reconfigured in real-time if the requirements are not met. By not using maximum transmit powers during the initial roll-out, more APs are needed, but coverage is guaranteed when new obstructions such as metallic racks or machinery are added. It is found that decreasing the transmit power by 6 dB gives the best trade-off between the number of required APs and network robustness. The proposed architecture is validated via simulations and via a proof-of-concept setup. Full article
(This article belongs to the Special Issue Advanced Design and Manufacturing in Industry 4.0)
Show Figures

Figure 1

21 pages, 5554 KB  
Article
Real-Time Volumetric Ultrasound Research Platform with 1024 Parallel Transmit and Receive Channels
by Christoph Risser, Holger Hewener, Marc Fournelle, Heinrich Fonfara, Selina Barry-Hummel, Steffen Weber, Daniel Speicher and Steffen Tretbar
Appl. Sci. 2021, 11(13), 5795; https://doi.org/10.3390/app11135795 - 22 Jun 2021
Cited by 15 | Viewed by 5339
Abstract
Volumetric ultrasound imaging is of great importance in many medical fields, especially in cardiology, but also in therapy monitoring applications. For development of new imaging technologies and scanning strategies, it is crucial to be able to use a hardware platform that is as [...] Read more.
Volumetric ultrasound imaging is of great importance in many medical fields, especially in cardiology, but also in therapy monitoring applications. For development of new imaging technologies and scanning strategies, it is crucial to be able to use a hardware platform that is as free and flexible as possible and does not restrict the user in his research in any way. For this purpose, multi-channel ultrasound systems are particularly suitable, as they are able to control each individual element of a matrix array without the use of a multiplexer. We set out to develop a fully integrated, compact 1024-channel ultrasound system that provides full access to all transmission parameters and all digitized raw data of each transducer element. For this purpose, we synchronize four research scanners of our latest “DiPhAS” ultrasound research system generation, each with 256 parallel channels, all connected to a single PC on whose GPUs the entire signal processing is performed. All components of the system are housed in a compact, movable 19-inch rack. The system is designed as a general-purpose platform for research in volumetric imaging; however, the first-use case will be therapy monitoring by tracking radiation-sensitive ultrasound contrast agents. Full article
(This article belongs to the Special Issue 3D Medical Ultrasound: Imaging and Hardware)
Show Figures

Figure 1

16 pages, 3310 KB  
Article
Example of Warehouse System Design Based on the Principle of Logistics
by Janka Saderova, Andrea Rosova, Marian Sofranko and Peter Kacmary
Sustainability 2021, 13(8), 4492; https://doi.org/10.3390/su13084492 - 17 Apr 2021
Cited by 24 | Viewed by 22484
Abstract
The warehouse process, as one of many logistics processes, currently holds an irreplaceable position in logistics systems in companies and in the supply chain. The proper function of warehouse operations depends on, among other things, the type of the used technology and their [...] Read more.
The warehouse process, as one of many logistics processes, currently holds an irreplaceable position in logistics systems in companies and in the supply chain. The proper function of warehouse operations depends on, among other things, the type of the used technology and their utilization. The research in this article is focused on the design of a warehouse system. The selection of a suitable warehouse system is a current research topic as the warehouse system has an impact on warehouse capacity and utilization and on the speed of storage activities. The paper presents warehouse system design methodology that was designed applying the logistics principle-systematic (system) approach. The starting point for designing a warehouse system represents of the process of design logistics systems. The design process consists of several phases: project identification, design process paradigm selection, system analysis, synthesis, and project evaluation. This article’s contribution is the proposed methodology and design of the warehouse system for the specified conditions. The methodology was implemented for the design of a warehouse system in a cold box, which is a part of a distribution warehouse. The technology of pallet racking was chosen in the warehouse to store pallets. Pallets will be stored and removed by forklifts. For the specified conditions, the warehouse system was designed for two alternatives of racking assemblies, which are served by forklifts. Alternative 1—Standard pallet rack with wide aisles and Alternative 2—Pallet dynamic flow rack. The proposed systems were compared on the basis of selected indicators: Capacity—the number of pallet places in the system, Percentage ratio of storage area from the box area, Percentage ratio of handling aisles from the box area, Access to individual pallets by forklift, Investment costs for 1 pallet space in EUR. Based on the multicriteria evaluation, the Alternative 2 was chosen as the acceptable design of the warehouse system with storage capacity 720 pallet units. The system needs only two handling aisles. Loading and unloading processes are separate from each other, which means that there are no collisions with forklifts. The pallets with the goods are operated on the principle of FIFO (first in, first out), which will facilitate the control of the shelf life of batches or series of products. The methodology is a suitable tool for decision-making in selecting and designing a warehouse system. Full article
(This article belongs to the Special Issue Social Network Analysis for Logistics and Supply Chain Management)
Show Figures

Figure 1

14 pages, 3642 KB  
Article
Effect of Straw Provision in Racks on Tail Lesions, Straw Availability, and Pen Hygiene in Finishing Pigs
by Torun Wallgren and Stefan Gunnarsson
Animals 2021, 11(2), 379; https://doi.org/10.3390/ani11020379 - 2 Feb 2021
Cited by 8 | Viewed by 4122
Abstract
Unfulfilled exploratory behavior in pigs has been linked to tail biting, which causes reduced performance and welfare. Provision of straw can reduce tail biting, but large straw rations can cause poor hygiene in pens. This study examined whether provision of straw in racks, [...] Read more.
Unfulfilled exploratory behavior in pigs has been linked to tail biting, which causes reduced performance and welfare. Provision of straw can reduce tail biting, but large straw rations can cause poor hygiene in pens. This study examined whether provision of straw in racks, rather than on the pen floor, can enable larger straw rations without compromising hygiene. The study was conducted on a commercial farm with 458 undocked pigs in 42 pens provided with straw in racks or on the floor. Available straw and manual cleaning requirement were assessed daily, and presence of tail lesions was assessed weekly. Both treatments had a low requirement for manual cleaning (Floor: 1.7%, Rack: 1.8%). Pigs in the rack treatment had a higher incidence of lesions early in the production period, which coincided with these pigs initially not consuming straw from the rack, leading to low straw access. Late in the production period, these pigs had learned how to use the rack and had a lower incidence of lesions than pigs in the floor treatment. Delayed use of the rack may have been linked to undeveloped spatial skills in the pigs, which needs further research. Full article
Show Figures

Figure 1

Back to TopTop