Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (734)

Search Parameters:
Keywords = Zn–Pb industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1245 KiB  
Article
Geochemical Behaviour of Trace Elements in Diesel Oil-Contaminated Soil During Remediation Assisted by Mineral and Organic Sorbents
by Mirosław Wyszkowski and Natalia Kordala
Appl. Sci. 2025, 15(15), 8650; https://doi.org/10.3390/app15158650 (registering DOI) - 5 Aug 2025
Abstract
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or [...] Read more.
The topic of environmental pollution by petroleum products is highly relevant due to rapid urbanisation, including industrial development, road infrastructure and fuel distribution. Potential threat areas include refineries, fuel stations, pipelines, warehouses and transshipment bases, as well as sites affected by accidents or fuel spills. This study aimed to determine whether organic and mineral materials could mitigate the effects of diesel oil pollution on the soil’s trace element content. The used materials were compost, bentonite and calcium oxide. Diesel oil pollution had the most pronounced effect on the levels of Cd, Ni, Fe and Co. The levels of the first three elements increased, while the level of Co decreased by 53%. Lower doses of diesel oil (2.5 and 5 cm3 per kg of soil) induced an increase in the levels of the other trace elements, while higher doses caused a reduction, especially in Cr. All materials applied to the soil (compost, bentonite and calcium oxide) reduced the content of Ni, Cr and Fe. Compost and calcium oxide also increased Co accumulation in the soil. Bentonite had the strongest reducing effect on the Ni and Cr contents of the soil, reducing them by 42% and 53%, respectively. Meanwhile, calcium oxide had the strongest reducing effect on Fe and Co accumulation, reducing it by 12% and 31%, respectively. Inverse relationships were recorded for Cd (mainly bentonite), Pb (especially compost), Cu (mainly compost), Mn (mainly bentonite) and Zn (only compost) content in the soil. At the most contaminated site, the application of bentonite reduced the accumulation of Pb, Zn and Mn in the soil, while the application of compost reduced the accumulation of Cd. Applying various materials, particularly bentonite and compost, limits the content of certain trace elements in the soil. This has a positive impact on reducing the effect of minor diesel oil pollution on soil properties and can promote the proper growth of plant biomass. Full article
Show Figures

Figure 1

22 pages, 1289 KiB  
Article
Assessment of Heavy Metal Contamination and Human Health Risk in Parapenaeus longirostris from Coastal Tunisian Aquatic Ecosystems
by Walid Ben Ameur, Ali Annabi, Kaddachi Rania and Mauro Marini
Pollutants 2025, 5(3), 23; https://doi.org/10.3390/pollutants5030023 - 1 Aug 2025
Viewed by 232
Abstract
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the [...] Read more.
Seafood contamination by heavy metals is a growing public health concern, particularly in regions like Tunisia where seafood is a major dietary component. This study assessed concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) in the muscle tissue of the red shrimp Parapenaeus longirostris, collected in 2023 from four coastal regions: Bizerte, Monastir, Kerkennah, and Gabes. Metal analysis was conducted using flame atomic absorption spectroscopy. This species was chosen due to its ecological and economic importance. The study sites were chosen based on their differing levels of industrial, urban, and agricultural influence, providing a representative overview of regional contamination patterns. Mean concentrations were 1.04 µg/g for Zn, 0.59 µg/g for Cu, 1.56 µg/g for Pb, and 0.21 µg/g for Cd (dry weight). Pb was the most prevalent metal across sites. Statistically significant variation was observed only for Cu (p = 0.0334). All metal concentrations were below international safety limits set by FAO/WHO and the European Union. Compared to similar studies, the levels reported were similar or slightly lower. Human health risk was evaluated using target hazard quotient (THQ), hazard index (HI), and cancer risk (CR) values. For adults, THQ ranged from 5.44 × 10−6 to 8.43 × 10−4, while for children it ranged from 2.40 × 10−5 to 3.72 × 10−3. HI values were also well below 1, indicating negligible non-carcinogenic risk. CR values for Cd and Pb in both adults and children fell within the acceptable risk range (10−6 to <10−4), suggesting no significant carcinogenic concern. This study provides the first field-based dataset on metal contamination in P. longirostris from Tunisia, contributing valuable insights for seafood safety monitoring and public health protection. Full article
(This article belongs to the Special Issue Marine Pollutants: 3rd Edition)
Show Figures

Figure 1

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 989
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

16 pages, 3829 KiB  
Article
Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining
by Nour-Eddine Menad and Alassane Traoré
Metals 2025, 15(8), 834; https://doi.org/10.3390/met15080834 - 26 Jul 2025
Viewed by 239
Abstract
Global resource consumption continues to grow each year, exerting increasing pressure on their availability. This trend could lead to a shortage of raw materials in the coming years. Aware of the risks associated with this situation, the European Union has implemented policies and [...] Read more.
Global resource consumption continues to grow each year, exerting increasing pressure on their availability. This trend could lead to a shortage of raw materials in the coming years. Aware of the risks associated with this situation, the European Union has implemented policies and strategies aimed at diversifying its supply sources, including waste recycling. In this context, the present study was conducted with the objective of developing innovative processes to concentrate valuable metals present in the non-recovered fractions of waste electrical and electronic equipment (WEEE). Three types of samples were studied: washing table residues (WTRs), printed circuit boards (PCBs), and powders from cathode-ray tube screens (CRT powders). Several separation techniques, based on the physical properties of the elements, were implemented, including electrostatic separation, magnetic separation, and density and gravity-based separations. The results obtained are promising. For WTRs and PCBs, the recovery rates of targeted metals (Cu, Al, Pb, Zn, Sn) reached approximately 91% and 80%, respectively. In addition to these metals, other valuable metals, present in significant quantities, deserve further exploration. Regarding CRT powders, the performances are also encouraging, with recovery rates of 54.7% for zinc, 57.1% for yttrium, and approximately 71% for europium. Although these results are satisfactory, optimizations are possible to maximize the recovery of these critical elements. The techniques implemented have demonstrated their effectiveness in concentrating target metals in the treated fractions. These results confirm that recycling constitutes a viable alternative to address resource shortages and secure part of the supplies needed for the European Union’s industry. Full article
Show Figures

Figure 1

17 pages, 309 KiB  
Article
Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment
by Jarosław Chmielewski, Elżbieta Wszelaczyńska, Jarosław Pobereżny, Magdalena Florek-Łuszczki and Barbara Gworek
Sustainability 2025, 17(15), 6666; https://doi.org/10.3390/su17156666 - 22 Jul 2025
Viewed by 408
Abstract
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, [...] Read more.
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, and fruits collected from 16 allotment gardens (AGs) located in Warsaw. A total of 112 samples were analyzed (72 vegetable and 40 fruit samples). Vegetables from AGs accumulated significantly higher levels of HMs than fruits. Leafy vegetables, particularly those cultivated near high-traffic roads, exhibited markedly elevated levels of Pb, Cd, and Zn compared to those grown in peripheral areas. Lead concentrations exceeded permissible limits by six to twelve times, cadmium by one to thirteen times, and zinc by 0.7 to 2.4 times. Due to high levels of Pb and Cd, tomatoes should not be cultivated in urban environments. Regardless of location, only trace amounts of HMs were detected in fruits. The greatest health risk is associated with the consumption of leafy vegetables. Lettuce should be considered an indicator plant for assessing environmental contamination. The obtained Hazard Index (HI) values indicate that only the tested fruits are safe for consumption. Meanwhile, the values of the Hazard Quotient (HQ) indicate no health risk associated with the consumption of lettuce, cherries, and red currants. Among the analyzed elements, Pb showed a higher potential health risk than other metals. This study emphasizes the need for continuous monitoring of HM levels in urban soils and the establishment of baseline values for public health purposes. Remediation of contaminated soils and the implementation of safer agricultural practices are recommended to reduce the exposure of urban populations to the risks associated with the consumption of contaminated produce. In addition, the safety of fruits and vegetables grown in urban areas is influenced by the location of the AGs and the level of industrialization of the agglomeration. Therefore, the safety assessment of plant products derived from AGs should be monitored on a continuous basis, especially in vegetables. Full article
(This article belongs to the Special Issue Soil Microorganisms, Plant Ecology and Sustainable Restoration)
18 pages, 3550 KiB  
Article
Monitoring and Assessment of the Trace Element Accumulation in the Polychaete Hediste diversicolor from Tunisian Coastal Localities (Southwest of Mediterranean Sea)
by Ali Annabi, Walid Ben Ameur, Nermine Akermi and Mauro Marini
J. Mar. Sci. Eng. 2025, 13(7), 1353; https://doi.org/10.3390/jmse13071353 - 16 Jul 2025
Viewed by 348
Abstract
The study of the impact of anthropogenic and natural pollution on living organisms has become a major social issue. In this context, the objective of this work is to assess the use of the polychaete annelid Hediste diversicolor as a bioindicator organism for [...] Read more.
The study of the impact of anthropogenic and natural pollution on living organisms has become a major social issue. In this context, the objective of this work is to assess the use of the polychaete annelid Hediste diversicolor as a bioindicator organism for the quality of the marine environment. The concentration of four heavy metals (lead, copper, zinc, and cadmium) was determined in natural populations of H. diversicolor captured from four locations along the Tunisian coast using atomic absorption spectroscopy. Concentration ranges (µg/g dry weight) across all sites were as follows: Cd (0.12–0.43), Cu (3.80–6.45), Zn (18.35–42.78), and Pb (22.64–63.91). Statistical analysis confirmed significant spatial variation (Pb: F = 12.15, p < 0.001; Zn: F = 3.32, p = 0.04; Cd: F = 48.66, p < 0.001; Cu: F = 9.08, p < 0.001), with peak Pb in Bizerte and Cu in Sfax. These results highlight the influence of local environmental factors, such as industrial and urban pollution on metal accumulation in Hediste diversicolor. In this study, the accumulation of the analyzed elements in the tissues of H. diversicolor follows an increasing order as follows: Cd < Cu < Zn < Pb. Additionally, lead metal concentrations were higher than those of cadmium, zinc, and copper for all four studied locations. To our knowledge, this is the first study in Tunisia to assess heavy metal accumulation in H. diversicolor. The recorded levels were similar to, or lower than, those reported in other studies worldwide. These findings underscore the potential of H. diversicolor as a sensitive and effective bioindicator for monitoring coastal contamination and guiding environmental management strategies in Tunisia. Full article
(This article belongs to the Topic Conservation and Management of Marine Ecosystems)
Show Figures

Figure 1

20 pages, 4992 KiB  
Article
Spatial Heterogeneity and Controlling Factors of Heavy Metals in Groundwater in a Typical Industrial Area in Southern China
by Jiaxu Du, Fu Liao, Ziwen Zhang, Aoao Du and Jiale Qian
Water 2025, 17(13), 2012; https://doi.org/10.3390/w17132012 - 4 Jul 2025
Viewed by 573
Abstract
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling [...] Read more.
Heavy metal contamination in groundwater has emerged as a significant environmental issue, driven by rapid industrialization and intensified human activities, particularly in southern China. Heavy metal pollution in groundwater often presents complex spatial patterns and multiple sources; understanding the spatial heterogeneity and controlling factors of heavy metals is crucial for pollution prevention and water resource management in industrial regions. This study applied spatial autocorrelation analysis and self-organizing maps (SOM) coupled with K-means clustering to investigate the spatial distribution and key influencing factors of nine heavy metals (Cr, Fe, Mn, Ni, Cu, Zn, As, Ba, and Pb) in a typical industrial area in southern China. Heavy metals show significant spatial heterogeneity in concentrations. Cr, Mn, Fe, and Cu form local hotspots near urban and peripheral zones; Ni and As present downstream enrichment along the river pathway with longitudinal increase trends; Zn, Ba, and Pb exhibit a fluctuating pattern from west to east in the piedmont region. Local Moran’s I analysis further revealed spatial clustering in the northwest, riverine zones, and coastal outlet areas, providing insight into potential source regions. SOM clustering identified three types of groundwater: Cluster 1 (characterized by Cr, Mn, Fe, and Ni) is primarily influenced by industrial pollution and present spatially scattered distribution; Cluster 2 (dominated by As, NO3, Ca2+, and K+) is associated with domestic sewage and distributes following river flow; Cluster 3 (enriched in Zn, Ba, Pb, and NO3) is shaped by agricultural activities and natural mineral dissolution, with a lateral distribution along the piedmont zone. The findings of this study provide a scientific foundation for groundwater pollution prevention and environmental management in industrialized areas. Full article
Show Figures

Figure 1

26 pages, 4805 KiB  
Article
Comparison of Heavy Metal Pollution, Health Risk, and Sources Between Surface and Deep Layers for an Agricultural Region Within the Pearl River Delta: Implications for Soil Environmental Research
by Zhenwei Bi, Yu Guo, Zhao Wang, Zhaoyu Zhu, Mingkun Li and Tingping Ouyang
Toxics 2025, 13(7), 548; https://doi.org/10.3390/toxics13070548 - 29 Jun 2025
Viewed by 315
Abstract
During the past decades, agricultural soil heavy metal pollution has been becoming increasingly severe due to urbanization and industrialization. However, the impact of externally input heavy metals on deep soils remains unclear because most previous relevant research only focused on surface soils. In [...] Read more.
During the past decades, agricultural soil heavy metal pollution has been becoming increasingly severe due to urbanization and industrialization. However, the impact of externally input heavy metals on deep soils remains unclear because most previous relevant research only focused on surface soils. In the present study, Concentrations of eight heavy metals (Cu, Zn, Ni, Pb, Cr, Cd, As, and Hg) were determined for 72 pairs of surface and deep soil samples collected from an agricultural region close to the Pearl River estuary. Subsequently, heavy metal pollution and potential health risks were assessed using the Geo-accumulation Index and Potential Ecological Risk Index, a dose response model and Monte Carlo simulation, respectively. Principal component analysis (PCA) and the positive matrix factorization (PMF) receptor model were combined to analyze heavy metal sources. The results indicated that average concentrations of all heavy metals exceeded their corresponding background values. Cd was identified as the main pollutant due to its extremely high values of Igeo and Er. Unacceptable potential heavy metal non-carcinogenic and carcinogenic risks indicated by respectively calculated HI and TCR, higher than thresholds 1.0 and 1.0 × 10−4, mainly arose from heavy metals As, Cd, Cr, and Ni through food ingestion and dermal absorption. Anthropogenic sources respectively contributed 19.7% and 38.9% for soil As and accounted for the main contributions to Cd, Cu, and Hg (Surface: 90.2%, 65.4%, 67.3%; Deep: 53.8%, 54.6%, 56.2%) within surface and deep layers. These results indicate that soil heavy metal contents with deep layers were also significantly influenced by anthropogenic input. Therefore, we suggest that both surface and deep soils should be investigated simultaneously to gain relatively accurate results for soil heavy metal pollution and source apportionments. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Graphical abstract

24 pages, 4413 KiB  
Article
Trace Elements in Indoor Dust Exposure from Child Development Centers and Health Risk Assessment in Haze and Industrial Areas, Thailand
by Susira Bootdee, Sopittaporn Sillapapiromsuk and Sawaeng Kawichai
Toxics 2025, 13(7), 547; https://doi.org/10.3390/toxics13070547 - 29 Jun 2025
Viewed by 514
Abstract
This study aimed to examine trace element concentrations in indoor dust and evaluate health risks in child development centers in haze and industrial areas of Thailand from November 2023 to April 2024. The samples were extracted using a microwave oven and analyzed via [...] Read more.
This study aimed to examine trace element concentrations in indoor dust and evaluate health risks in child development centers in haze and industrial areas of Thailand from November 2023 to April 2024. The samples were extracted using a microwave oven and analyzed via ICP-OES. The finding indicated that the levels of As, Cr, Pb, V, Fe, Mn, and Zn in the dust from child development centers in the industrial area were significantly higher than those in the haze area (p < 0.05). The presence of trace element contaminants in indoor dust is indicative of anthropogenic sources. Cd and Zn in both areas have shown significantly elevated risks, according to the probable ecological risk factor. Source apportionment identified traffic, road dust, and biomass combustion as the principal sources of pollution in the haze area, while traffic and combustion activities were significant in the industrial area. Non-carcinogenic risk assessments for children exposed to As, Pb, Cu, and Cr revealed potential health risks (HI > 1). Furthermore, the total cancer risk (TCR) linked to As, Cr, and Ni is considered acceptable within the criteria of 10−6 to 10−4. However, long-term exposure may increase the risk of cancer in children. Full article
Show Figures

Figure 1

24 pages, 1894 KiB  
Article
Honey as a Bioindicator: Pollution’s Effects on Its Quality in Mining vs. Protected Sites
by Mirel Glevitzky, Mihai-Teopent Corcheş, Maria Popa and Mihaela Laura Vică
Appl. Sci. 2025, 15(13), 7297; https://doi.org/10.3390/app15137297 - 28 Jun 2025
Viewed by 351
Abstract
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, [...] Read more.
Heavy metal toxicity is an ecological concern in regions affected by processes like mining. This study underscores the potential of honey as a natural bioindicator for monitoring and assessing the levels of environmental contamination in mining-impacted areas. The study evaluated the physico-chemical characteristics, heavy metal content, and antimicrobial activity of honey samples collected from areas adjacent to former mining sites, as well as from protected areas within the same county in Romania. The results revealed significant differences between the two categories of locations. The samples from the protected areas showed higher levels of bioactive compounds (phenols and flavonoids) and exhibited stronger antibacterial activity. The heavy metal analysis indicated significantly higher concentrations of lead, cadmium, and iron in the honey samples from former mining areas compared to those from protected zones, suggesting pronounced industrial-origin contamination. The maximum recorded values were for Pb (0.607 mg/kg), Cd (0.02 mg/kg), Fe (12.131 mg/kg), Cu (0.545 mg/kg), and Zn (6.170 mg/kg). Their antimicrobial activity was tested against several bacterial and fungal strains, including Escherichia coli, Salmonella enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Listeria monocytogenes, Candida albicans, Aspergillus niger, Aspergillus flavus, Penicillium chrysogenum, Rhizopus stolonifer, Fusarium oxysporum, and Alternaria alternata. The antibacterial and antifungal activity were more pronounced in the honey samples from the protected areas. These findings support the use of honey as a bioindicator of environmental quality and highlight the influence of its geographical origin on its therapeutic and chemical properties. Full article
(This article belongs to the Special Issue Advances in Honeybee and Their Biological and Environmental Threats)
Show Figures

Figure 1

22 pages, 2332 KiB  
Review
Glutamate-Mediated Neural Alterations in Lead Exposure: Mechanisms, Pathways, and Phenotypes
by Wagner A. Tamagno and Jennifer L. Freeman
Toxics 2025, 13(7), 519; https://doi.org/10.3390/toxics13070519 - 21 Jun 2025
Viewed by 514
Abstract
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial [...] Read more.
Lead (Pb) is a pervasive neurotoxicant with well-documented detrimental effects on the central nervous system, particularly in vulnerable populations such as children. Despite historical recognition of its toxicity, Pb exposure remains a significant public health concern due to its environmental persistence, historical industrial use, and ongoing applications in modern technologies. This review focuses on the mechanisms by which Pb disrupts glutamatergic signaling, a critical pathway for learning, memory, and synaptic plasticity. Pb’s interference with glutamate receptors (ionotropic NMDA and AMPA, as well as metabotropic receptors), transporters (EAATs, VGLUTs, and SNATs), and metabolic pathways (glutamate–glutamine cycle, TCA cycle, and glutathione synthesis) are detailed. By mimicking divalent cations like Ca2+ and Zn2+, Pb2+ disrupts calcium homeostasis, exacerbates excitotoxicity, and induces oxidative stress, ultimately impairing neuronal communication and synaptic function. These molecular disruptions manifest cognitive deficits, behavioral abnormalities, and increased susceptibility to neurodevelopmental and neurodegenerative disorders. Understanding Pb’s impact on glutamatergic neurotransmission offers critical insights into its neurotoxic profile and highlights the importance of addressing its effects on neural function. Full article
Show Figures

Graphical abstract

32 pages, 5474 KiB  
Article
Research on the Characteristics of Heavy Metal Pollution in Lake and Reservoir Sediments in China Based on Meta-Analysis
by Huancheng Dai, Mingke Luo, Xia Jiang, Xixi Li, Peng Zhang and Yong Niu
Sustainability 2025, 17(12), 5489; https://doi.org/10.3390/su17125489 - 14 Jun 2025
Viewed by 726
Abstract
To clarify the current state of heavy metal contamination in the sediments of lakes in China, the data on six heavy metals derived from the sediment samples of 71 lakes across China from 2003 to 2022 are collected in this study through meta-analysis. [...] Read more.
To clarify the current state of heavy metal contamination in the sediments of lakes in China, the data on six heavy metals derived from the sediment samples of 71 lakes across China from 2003 to 2022 are collected in this study through meta-analysis. Uncertainty analysis is conducted using the Monte Carlo method to evaluate the heavy metals against cumulative characteristics, potential ecological risk, and toxicity indicators. The following conclusions are reached. (1) There is severe pollution in lake sediments in China. The concentrations of Cu, Pb, Zn, Ni, and Cd in lakes exceed their corresponding soil background values. Cr heavy metal contamination exceeded the soil background values in 54.5% of lakes. (2) Cd is the major pollutant in lake sediments across China, followed by Cu, Zn, Pb, Ni, and Cr in descending order. Lakes with higher ecological risk are predominantly concentrated in quadrants 2 and 3, indicating an overall high ecological risk status for Chinese lakes and significant potential ecological hazards. Pb and Cr are identified as the most toxic elements in lake sediments, with the lakes of higher toxicity mainly concentrated in quadrants 3 and 4. (3) Heavy metal pollution shows a significant trend of variation by region. The sources of heavy metals in lake sediments differ between the southern, central, and northern regions of China. In the lakes located in northern China, pollution is largely attributed to mining and industrial emissions, with agriculture as a less significant factor. In the central region, surface runoff and domestic sewage are the main contributors, while industrial and agricultural emissions play a minor role. In the south, industrial emission is the major source of pollution, with agricultural emission and natural factors being less significant. Full article
Show Figures

Figure 1

24 pages, 8335 KiB  
Article
Contamination, Ecotoxicological Risks, and Sources of Potentially Toxic Elements in Roadside Dust Along Lahore–Islamabad Motorway (M-2), Pakistan
by Ibrar Hayat, Wajid Ali, Said Muhammad, Muhammad Nafees, Abdur Raziq, Imran Ud Din, Jehanzeb Khan and Shahid Iqbal
Urban Sci. 2025, 9(6), 225; https://doi.org/10.3390/urbansci9060225 - 13 Jun 2025
Viewed by 1321
Abstract
The Lahore–Islamabad Motorway (M-2) is a critical transportation corridor in Pakistan, where contamination in roadside dust by potentially toxic elements (PTEs) presents potential environmental and health concerns. This study evaluates the concentration, spatial distribution, and ecological risks of PTEs (Mn, Ni, Cr, Cu, [...] Read more.
The Lahore–Islamabad Motorway (M-2) is a critical transportation corridor in Pakistan, where contamination in roadside dust by potentially toxic elements (PTEs) presents potential environmental and health concerns. This study evaluates the concentration, spatial distribution, and ecological risks of PTEs (Mn, Ni, Cr, Cu, Pb, Zn, Cd, Ag, Fe) in road dust along the M-2. PTE concentrations were determined using standard protocols and by analysis using an atomic absorption spectrometer. The findings indicate substantial variability in metal concentrations, with Fe (CV% = 9.35%) and Pb (CV% = 7.06%) displaying the highest consistency, whereas Ni exhibited the greatest fluctuation (CV% = 168.80%). Contamination factor analysis revealed low to moderate contamination for Ni and Fe, while Zn contamination was significant in 60% of samples. Cr and Cd exhibited persistently high contamination, and Pb was uniformly elevated across all locations. Ecological risk assessment categorized Ni, Zn, and Cu as low-risk elements, while Pb posed a substantial risk. Cd concentrations indicated high to extreme ecological hazards, emphasizing the necessity for urgent mitigation measures. Factor analysis suggested an interaction of various sources, including industrial, vehicular emissions, and construction materials. Strengthened pollution control strategies and systematic monitoring are essential for mitigating contamination and ensuring environmental sustainability along the motorway. Full article
Show Figures

Figure 1

15 pages, 1939 KiB  
Article
Tailings Reuse in Low-Permeability Reactive Geochemical Barriers
by Roberto Rodríguez-Pacheco, Joanna Butlanska and Aldo Onel Oliva-González
Processes 2025, 13(6), 1870; https://doi.org/10.3390/pr13061870 - 13 Jun 2025
Viewed by 323
Abstract
This paper presents the physical, hydrogeological, and geochemical characterizations of two types of tailings: one from the nickel–cobalt (Ni–Co) and the other from the lead–zinc (Pb–Zn) industries. The study is restricted only to Ni and Zn ions behavior. The mineralogical composition of the [...] Read more.
This paper presents the physical, hydrogeological, and geochemical characterizations of two types of tailings: one from the nickel–cobalt (Ni–Co) and the other from the lead–zinc (Pb–Zn) industries. The study is restricted only to Ni and Zn ions behavior. The mineralogical composition of the studied tailings is primarily composed of oxides and hydroxides of iron, aluminum, and silica. Based on their grain size, these wastes are geotechnically classified as low plasticity silts, with permeability ranging from 10−8 m/s to less than 10−9 m/s. Batch and column flow tests, along with metal transport tests using heavy metal-contaminated wastewater, reveal that these tailings have an adsorption capacity for metals such as nickel (Ni) and zinc (Zn) ranging from 2000 to 6000 mg/kg of solid. This high adsorption capacity surpasses that of many clayey soils used for sealing municipal, industrial, mining, and metallurgical waste deposits. Additionally, these wastes can neutralize the acidity of wastewater. The results indicate that the mineralogical composition and pH of these tailings are key factors determining their adsorption characteristics and mechanisms. Due to their characteristics, these tailings could be evaluated for use as low-permeability reactive geochemical barriers (LPRGB) in the conditioning of repositories for the storage of industrial, urban, mining and metallurgical waste. This would allow large volumes of tailings to be repurposed effectively. Full article
Show Figures

Figure 1

18 pages, 4237 KiB  
Article
Sustainable Immobilization of Zn, Pb, and As in Lead Smelting Slag via Fe-S(II) Microencapsulation for Heavy Metal Recycling and Environmental Remediation
by Keyi Xiang, Ruosong Xie, Guangfei Qu, Zhishuncheng Li, Yongheng Yuan, Rui Xu and Chenyang Zhao
Sustainability 2025, 17(12), 5445; https://doi.org/10.3390/su17125445 - 13 Jun 2025
Viewed by 330
Abstract
Heavy metals in lead refining waste slag pose persistent environmental risks, challenging conventional treatment methods that struggle to balance long-term stabilization with resource recovery potential. To address this issue, we developed a sustainable stabilization strategy. The simultaneous and long-lasting stabilization of Zn, Pb, [...] Read more.
Heavy metals in lead refining waste slag pose persistent environmental risks, challenging conventional treatment methods that struggle to balance long-term stabilization with resource recovery potential. To address this issue, we developed a sustainable stabilization strategy. The simultaneous and long-lasting stabilization of Zn, Pb, and As heavy metals in lead refining waste slag was achieved by using an Fe-S(II) stabilizer, and the leaching toxicity of Zn, As and Pb was less than 1 mg/L, which is lower than the concentration limit of the Identification standards for hazardous wastes–Identification for extraction toxicity (GB5085.3-2007). The samples were analyzed by characterization before and after stabilization, and it was found that Fe-S(II) formed a protective layer of sulfide capsule on the surface of the samples. This stabilization mechanism, which has been termed the “nucleation-capture-sulfide encapsulation” process, involves after the oxidation of Fe0 to form a core–shell structure for trapping metal ions, where the external oxide layer undergoes mineralization via S(II) sulfide reduction. This microencapsulation-based passivation not only ensures long-term heavy metal immobilization but also preserves the slag’s potential for secondary resource recovery, aligning with circular economy principles. By minimizing environmental leakage risks while retaining metal reclamation feasibility, this approach offers a green and sustainable solution for heavy-metal-laden industrial waste management. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Graphical abstract

Back to TopTop