Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining
Abstract
1. Introduction
1.1. Management of Waste Electrical and Electronic Equipment (WEEE)
- GEM F (Large Cold Household Appliances)—e.g., refrigerators, air conditioners.
- GEM HF (Large Non-Cold Household Appliances)—e.g., dishwashers, washing machines.
- Screens—e.g., cathode-ray tube screens, flat screens.
- PAM (Small Mixed Appliances)—e.g., toasters, printers, phones, computers.
- LAMPS.
- PP (Photovoltaic Panels)—included since 2015.
1.2. Description of Samples and Study Objective
- CRT powders (cathode-ray tube powders)
- WTRs (washing table residues)
- Used printed circuit boards (PCBs)
- CRT (cathode-ray tube) powders: Specifically, phosphor powders found inside cathode-ray tubes. These powders are collected through dust extraction via cyclonic separation during the shredding of cathode-ray tubes. They are extremely fine (75% of the mass <20 microns) and contain significant concentrations of zinc and lead, as well as rare earth elements such as yttrium and europium.
- WTRs (washing table residues): These are residues from the unrecovered fractions generated during the recycling of small mixed appliances (PAM) at Environnement Recycling. This fraction is rich in metals such as copper, aluminum, lead, zinc, tin, etc.
- Printed circuit boards (PCBs): These electronic circuit boards come from small mixed appliances. They are rich in base metals such as copper (Cu), zinc (Zn), lead (Pb), and tin (Sn), as well as precious metals like gold (Au), silver (Ag), and palladium (Pd).
2. Materials and Methods
2.1. Materials
2.1.1. Cathode-Ray Tubes (CRTs)
2.1.2. Washing Table Residues (WTRs)
2.1.3. Printed Circuit Boards (PCBs)
2.2. Methods
Analysis Methods
3. Separation Techniques Used
3.1. Classification
3.2. Magnetic Separation
3.3. Electrostatic Separation
3.4. Density Separation
4. Result
4.1. Chemical Composition of the Studied Samples
Thermal Analysis of Studied Samples
4.2. Classification
4.3. Recovery of Metals from WTRs and PCBs
4.4. Recovery of Metals from CRT Powder
5. Conclusions and Perpsectives
- Optimization of grinding: reduce or avoid the overproduction of fine fractions (below 200 µm) by exploring new grinding techniques or adopting more suitable equipment to limit the generation of particles of this size.
- Improvement of density separation: in cases where the production of fine fractions is unavoidable, consider using denser solutions for density separation. This could help increase metal recovery during this stage and improve overall yields.
- Use of more sophisticated chemical analysis methods: implement advanced analytical techniques to quantify the precious metals such as gold and palladium in these samples.
- Enhancing the performance of Falcon separation by adjusting its parameters (flow rate, rotation speed, etc.) to determine optimal values for maximizing the recovery of target elements.
- Implementing processes such as flotation with the use of specific reagents to effectively separate the target elements from silica and then to separate rare earth oxides from sphalerite.
- Improving or changing shredding (grinding) and sample recovery techniques at the plant; grinding cathode ray tube (CRT) screens and then vacuuming the fine particles increases the likelihood of silica dust being recovered with phosphor powders. A possible solution would be to vacuum the phosphor powders before grinding.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Portail Statista.com: Production Mondiale de Déchets Électroniques 2010–2022|Statista. Available online: https://www.statista.com/ (accessed on 23 August 2024).
- Li, J.; Lopez, B.N.; Liu, L.; Zhao, N.; Yu, K.; Zheng, L. Regional or global WEEE recycling. Where to go? Waste Manag. 2013, 33, 923–934. [Google Scholar] [CrossRef]
- Baldé, C.P.; Forti, V.; Gray, V.; Kuehr, R.; Stegmann, P. Quantities, Flows and Resources, The Global E-waste Monitor 2017; United Nations University: Tokyo, Japan, 2017. [Google Scholar]
- ADEME, Octobre 2022. Equipements Électriques et Électroniques: Données 2021—Rapport Annuel. Available online: https://librairie.ademe.fr/ (accessed on 17 July 2025).
- La Gestion des Déchets Ménagers et Assimilés par les Collectivités, ADEME, 2021. Available online: https://optigede.ademe.fr/collecte-separee-deee (accessed on 17 July 2025).
- European Parliament and Council. Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE); European Parliament and Council: Strasbourg, France, 2012. [Google Scholar]
- European Parliament and Council. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives; European Parliament and Council: Strasbourg, France, 2008. [Google Scholar]
- European Commission. Directorate-General for Internal Market Entrepreneurship and SMEs, Study on the Critical Raw Materials for the EU 2023—Final Report; Publications Office of the EU: Luxembourg, 2023. [Google Scholar]
- Environnement Recycling. Available online: https://www.environnement-recycling.com/ (accessed on 17 July 2025).
- Barnwal, A.; Dhawan, N. Recovery of Copper Values from Discarded Random Access Memory Cards via Fluidization and Thermal Exposure. J. Clean. Prod. 2020, 256, 120516. [Google Scholar] [CrossRef]
- Christian, T. Recyclage des cartes électroniques: Un aperçu de l’état de l’art. Ann. Des Mines-Responsab. Environ. 2016, 82, 57. [Google Scholar] [CrossRef]
- de Buzin, P.J.W.K.; Ambrós, W.M.; de Brum, I.A.S.; Tubino, R.M.C.; Sampaio, C.H.; Moncunill, J.O. Development of a physical separation route for the concentration of base metals from old wasted printed circuit boards. Minerals 2021, 11, 1014. [Google Scholar] [CrossRef]
- Franke, T.S.; Nuckowski, P.M.; Gołombek, K.; Hyra, K. Recovery of metals from PCB by means of electrostatic separation. Manag. Syst. Prod. Eng. 2020, 28, 213–219. [Google Scholar]
- de Souza, R.A.; Veit, H.M. Study of electrostatic separation to concentrate silver, aluminium, and silicon from solar panel scraps. Circ. Econ. 2023, 2, 100027. [Google Scholar]
- Zeghloul, T.; Touhami, S.; Richard, G.; Miloudi, M.; Dahou, O.; Dascalescu, L. Optimal operation of a plate-type corona-electrostatic separator for the recovery of metals and plastics from granular wastes. IEEE Trans. Ind. Appl. 2016, 52, 2506–2512. [Google Scholar] [CrossRef]
- Tilmatine, A. Synthèse sur Les Séparateurs Électrostatiques des Mélanges Granulaires et Leurs Composants. Ph.D. Thesis, Djilali Liabes University Sidi Bel Abbès, Algérie, North Africa, 2004. Available online: https://www.researchgate.net/publication/283516594 (accessed on 17 July 2025).
- Richard, G. Étude Expérimentale et Optimisation Fonctionnelle des Installations de Séparation Électrostatique de Mélanges de Matériaux Granulaires. Ph.D. Thesis, Université de Poitiers, Poitiers, France, 2018. Available online: https://theses.fr/2018POIT2260 (accessed on 17 July 2025).
- Moulai, H. Procède de Séparation Électrostatique Pour la Récupération des Métaux de Valeur Des Fractions Fines Issues du Traitement des Déchets D’équipements Électriques et Électroniques. Ph.D. Thesis, Université de Poitier, Poitier, France, 2024. [Google Scholar]
- Ambaye, T.G.; Vaccari, M.; Castro, F.D.; Prasad, S.; Rtimi, S. Emerging technologies for the recovery of rare earth elements (REEs) from the end-of-life electronic wastes: A review on progress, challenges, and perspectives. Environ. Sci. Pollut. Res. 2020, 27, 36052–36074. [Google Scholar] [CrossRef]
- Kroll-Rabotin, J.-S. Analyse Physique et Modélisation de la Séparation Centrifuge de Particules Ultrafines en Film Fluant: Application au Séparateur Industriel Falcon. Génie des Procédés; Institut National Polytechnique de Toulouse—INPT: Toulouse, France, 2010. [Google Scholar]
Samples | Fractions | |
---|---|---|
Heavy/Sinking | Light/Floating | |
CRT | Sphalerite, yttrium, and europium oxides | Silicates, glass |
WTR and PCBs | All metals | Plastics, glass, woods |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menad, N.-E.; Traoré, A. Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining. Metals 2025, 15, 834. https://doi.org/10.3390/met15080834
Menad N-E, Traoré A. Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining. Metals. 2025; 15(8):834. https://doi.org/10.3390/met15080834
Chicago/Turabian StyleMenad, Nour-Eddine, and Alassane Traoré. 2025. "Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining" Metals 15, no. 8: 834. https://doi.org/10.3390/met15080834
APA StyleMenad, N.-E., & Traoré, A. (2025). Process Development for Concentrating Valuable Metals Present in the Non-Valorized Solid Fractions from Urban Mining. Metals, 15(8), 834. https://doi.org/10.3390/met15080834