Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = Zika virus NS1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4740 KiB  
Article
Mosquito Exosomal Tetraspanin CD151 Facilitates Flaviviral Transmission and Interacts with ZIKV and DENV2 Viral Proteins
by Durga Neupane, Md Bayzid, Girish Neelakanta and Hameeda Sultana
Int. J. Mol. Sci. 2025, 26(15), 7394; https://doi.org/10.3390/ijms26157394 - 31 Jul 2025
Viewed by 215
Abstract
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of [...] Read more.
The expanding distribution and geographic range of mosquitoes have potentially contributed to increased flaviviral dissemination and transmission. Despite the growing burden of flaviviral infections, there are no effective antiviral treatments or vaccines, highlighting the need for novel therapeutic targets. Tetraspanins, a superfamily of transmembrane domain glycoproteins involved in cellular organization, signaling, and protein–protein interactions have been recognized as potential mediators of flaviviral infection and transmission. While their roles in vertebrate hosts have been explored, their involvement in flaviviral replication and dissemination within medically important vectors remains poorly understood. In this study, we investigated the role of arthropod tetraspanins in mosquito cells and extracellular vesicles (EVs) derived from cells infected with Zika virus (ZIKV) and dengue virus (serotype 2; DENV2). Among several of the tetraspanins analyzed, only CD151 was significantly upregulated in both mosquito cells and in EVs derived from ZIKV/DENV2-infected cells. RNAi-mediated silencing of CD151 led to a marked reduction in viral burden, suggesting its crucial role in flavivirus replication. Inhibition of EV biogenesis using GW4869 further demonstrated that EV-mediated viral transmission contributes to flavivirus propagation. Additionally, co-immunoprecipitation and immunofluorescence analyses revealed direct interactions between CD151 and ZIKV NS2B and DENV2 capsid proteins. Overall, our findings highlight the functional importance of mosquito CD151 in the replication and transmission of ZIKV and DENV2. This study provides new insights into the molecular mechanisms of flaviviral infection in mosquitoes and suggests that targeting vector tetraspanins may offer a potential approach to controlling mosquito-borne flaviviruses. Full article
(This article belongs to the Special Issue Advanced Perspectives on Virus–Host Interactions)
Show Figures

Figure 1

17 pages, 1413 KiB  
Article
Sensitivity and Cross-Reactivity Analysis of Serotype-Specific Anti-NS1 Serological Assays for Dengue Virus Using Optical Modulation Biosensing
by Sophie Terenteva, Linoy Golani-Zaidie, Shira Avivi, Yaniv Lustig, Victoria Indenbaum, Ravit Koren, Tran Mai Hoa, Tong Thi Kim Tuyen, Ma Thi Huyen, Nguyen Minh Hoan, Le Thi Hoi, Nguyen Vu Trung, Eli Schwartz and Amos Danielli
Biosensors 2025, 15(7), 453; https://doi.org/10.3390/bios15070453 - 14 Jul 2025
Viewed by 535
Abstract
Dengue virus (DENV) poses a major global health concern, with over 6.5 million cases and 7300 deaths reported in 2023. Accurate serological assays are essential for tracking infection history, evaluating disease severity, and guiding vaccination strategies. However, existing assays are limited in their [...] Read more.
Dengue virus (DENV) poses a major global health concern, with over 6.5 million cases and 7300 deaths reported in 2023. Accurate serological assays are essential for tracking infection history, evaluating disease severity, and guiding vaccination strategies. However, existing assays are limited in their specificity, sensitivity, and cross-reactivity. Using optical modulation biosensing (OMB) technology and non-structural protein 1 (NS1) antigens from DENV-1–3, we developed highly sensitive and quantitative serotype-specific anti-DENV NS1 IgG serological assays. The OMB-based assays offered a wide dynamic range (~4-log), low detection limits (~400 ng/L), fast turnaround (1.5 h), and a simplified workflow. Using samples from endemic (Vietnam) and non-endemic (Israel) regions, we assessed intra-DENV and inter-Flavivirus cross-reactivity. Each assay detected DENV infection with a 100% sensitivity for the corresponding serotype and 64% to 90% for other serotypes. Cross-reactivity with Zika, Japanese encephalitis, and West Nile viruses ranged from 21% to 65%, reflecting NS1 antigen conservation. Our study provides valuable insights into the cross-reactivity of DENV NS1 antigens widely used in research and highlights the potential of OMB-based assays for quantitative and epidemiological studies. Ongoing efforts should aim to minimize cross-reactivity while maintaining sensitivity and explore integration with complementary platforms for improved diagnostic precision. Full article
Show Figures

Figure 1

21 pages, 8695 KiB  
Article
Identification of TRIM21 and TRIM14 as Antiviral Factors Against Langat and Zika Viruses
by Pham-Tue-Hung Tran, Mir Himayet Kabir, Naveed Asghar, Matthew R. Hathaway, Assim Hayderi, Roger Karlsson, Anders Karlsson, Travis Taylor, Wessam Melik and Magnus Johansson
Viruses 2025, 17(5), 644; https://doi.org/10.3390/v17050644 - 29 Apr 2025
Viewed by 764
Abstract
Flaviviruses are usually transmitted to humans via mosquito or tick bites, whose infections may lead to severe diseases and fatality. During intracellular infection, they remodel the endoplasmic reticulum (ER) membrane to generate compartments scaffolding the replication complex (RC) where replication of the viral [...] Read more.
Flaviviruses are usually transmitted to humans via mosquito or tick bites, whose infections may lead to severe diseases and fatality. During intracellular infection, they remodel the endoplasmic reticulum (ER) membrane to generate compartments scaffolding the replication complex (RC) where replication of the viral genome takes place. In this study, we purified the ER membrane fraction of virus infected cells to identify the proteins that were enriched during flavivirus infection. We found that tripartite motif-containing proteins (TRIMs) including TRIM38, TRIM21, and TRIM14 were significantly enriched during infection with mosquito-borne (West Nile virus strain Kunjin and Zika virus (ZIKV)) and tick-borne (Langat virus (LGTV)) flaviviruses. Further characterizations showed that TRIM21 and TRIM14 act as restriction factors against ZIKV and LGTV, while TRIM38 hinders ZIKV infection. These TRIMs worked as interferon-stimulated genes to mediate IFN-I response against LGTV and ZIKV infections. Restriction of ZIKV by TRIM14 and TRIM38 coincides with their colocalization with ZIKV NS3. TRIM14-mediated LGTV restriction coincides with its colocalization with LGTV NS3 and NS5 proteins. However, TRIM21 did not colocalize with ZIKV and LGTV NS3 or NS5 protein suggesting its antiviral activity is not dependent on direct targeting the viral enzyme. Finally, we demonstrated that overexpression of TRIM21 and TRIM14 restricted LGTV replication. Full article
(This article belongs to the Special Issue Advances in Alphavirus and Flavivirus Research, 2nd Edition)
Show Figures

Figure 1

14 pages, 2687 KiB  
Article
Baseline Seroprevalence of Arboviruses in Liberia Using a Multiplex IgG Immunoassay
by Albert To, Varney M. Kamara, Davidetta M. Tekah, Mohammed A. Jalloh, Salematu B. Kamara, Teri Ann S. Wong, Aquena H. Ball, Ludwig I. Mayerlen, Kyle M. Ishikawa, Hyeong Jun Ahn, Bode Shobayo, Julius Teahton, Brien K. Haun, Wei-Kung Wang, John M. Berestecky, Vivek R. Nerurkar, Peter S. Humphrey and Axel T. Lehrer
Trop. Med. Infect. Dis. 2025, 10(4), 92; https://doi.org/10.3390/tropicalmed10040092 - 3 Apr 2025
Viewed by 2266
Abstract
Insect-borne viruses may account for a significant proportion of non-malaria and non-bacterial febrile illnesses in Liberia. Although the presence of many arthropod vectors has been documented, the collective burden of arbovirus infections and baseline pre-existing immunity remains enigmatic. Our goal was to determine [...] Read more.
Insect-borne viruses may account for a significant proportion of non-malaria and non-bacterial febrile illnesses in Liberia. Although the presence of many arthropod vectors has been documented, the collective burden of arbovirus infections and baseline pre-existing immunity remains enigmatic. Our goal was to determine the seroprevalence of arbovirus exposure across the country using a resource-sparing, multiplex immunoassay to determine IgG responses to immunodominant antigens. 532 human serum samples, from healthy adults, collected from 10 counties across Liberia, were measured for IgG reactivity against antigens of eight common flavi-, alpha-, and orthobunya/nairoviruses suspected to be present in West Africa. Approximately 32.5% of our samples were reactive to alphavirus (CHIKV) E2, ~7% were reactive separately to West Nile (WNV) and Zika virus (ZIKV) NS1, while 4.3 and 3.2% were reactive to Rift Valley Fever virus (RVFV) N and Dengue virus-2 (DENV-2) NS1, respectively. Altogether, 21.6% of our samples were reactive to ≥1 flavivirus NS1s. Of the CHIKV E2 reactive samples, 8.5% were also reactive to at least one flavivirus NS1, and six samples were concurrently reactive to antigens of all three arbovirus groups, suggesting a high burden of multiple arbovirus infections for some participants. These insights suggest the presence of these four arbovirus families in Liberia with low and moderate rates of flavi- and alphavirus infections, respectively, in healthy adults. Further confirmational investigation, such as mosquito surveillance or other serological tests, is warranted and should be conducted before initiating additional flavivirus vaccination campaigns. The findings of these studies can help guide healthcare resource mobilization, vector control, and animal husbandry practices. Full article
(This article belongs to the Special Issue Beyond Borders—Tackling Neglected Tropical Viral Diseases)
Show Figures

Figure 1

22 pages, 3780 KiB  
Article
Discovery of Arylfuran and Carbohydrate Derivatives from the BraCoLi Library as Potential Zika Virus NS3pro Inhibitors
by Fernanda Kelly Marcelino e Oliveira, Beatriz Murta Rezende Moraes Ribeiro, Ellen Gonçalves de Oliveira, Marina Mol Sena Andrade Verzola, Thales Kronenberger, Vinícius Gonçalves Maltarollo, Ricardo José Alves, Renata Barbosa de Oliveira, Rafaela Salgado Ferreira, Jônatas Santos Abrahão and Mateus Sá Magalhães Serafim
Future Pharmacol. 2025, 5(1), 9; https://doi.org/10.3390/futurepharmacol5010009 - 15 Feb 2025
Viewed by 929
Abstract
Background/Objectives: Zika fever is a disease caused by the Zika virus (ZIKV). Symptomatic cases may be associated with neurological disorders in adults, as well as congenital Zika syndrome and other birth defects during pregnancy. In 2016, Zika fever was considered a public health [...] Read more.
Background/Objectives: Zika fever is a disease caused by the Zika virus (ZIKV). Symptomatic cases may be associated with neurological disorders in adults, as well as congenital Zika syndrome and other birth defects during pregnancy. In 2016, Zika fever was considered a public health problem by the World Health Organization (WHO), highlighting the need to develop new therapies against the disease. Currently, there is no antiviral or vaccine available to treat or prevent severe cases. Due to the lack of available therapeutics and few promising hit molecules, we computationally screened the well-described ZIKV protease (NS3pro) as a drug target to revisit the small-molecule database Brazilian Compound Library (BraCoLi) and select potential inhibitors. Methods: We employed a consensus docking screening of a library of 1176 compounds using GOLD and DockThor. We selected 28 hits based on predicted binding affinity, and only the remnants of three compounds were available in the library at the time of this study for experimental validation. The hits were evaluated for their cytotoxic (CC50) and effective concentrations (EC50) for their potential antiviral activity in Vero cells. Results: The three hit compounds presented modest CC50 values of 89.15 ± 3.72, >100, and 29.67 ± 1.01 μM, with the latter, a carbohydrate derivative, having an EC50 value of >12.5 μM (~40% inhibition) against ZIKV PE243. Additionally, the essentially non-toxic compound, an arylfuran derivative, also inhibited the ZIKV NS3pro with an IC50 value of 17 μM but presented evidence of acting through a promiscuous mechanism for enzyme inhibition. Conclusion: This study highlights the relevance of revisiting existing small-molecule assets to identify novel therapeutic starting points against ZIKV, aiming for potential lead candidates in the future. Full article
Show Figures

Graphical abstract

18 pages, 3056 KiB  
Article
TRIM38 Inhibits Zika Virus by Upregulating RIG-I/MDA5 Pathway and Promoting Ubiquitin-Mediated Degradation of Viral NS3 Protein
by Jing He, Yulian Kuang, Kui Xu, Rong Huang, Xiaoyao Yang, Liyao Deng, Xiaojuan Feng, Yang Ren, Jian Yang and Lei Yuan
Viruses 2025, 17(2), 199; https://doi.org/10.3390/v17020199 - 30 Jan 2025
Viewed by 1233
Abstract
Members of the tripartite motif (TRIM)-containing protein family play crucial roles in regulating immune system responses. The TRIM38 protein regulates host innate immunity and directly degrades some viral proteins through its E3 ubiquitin ligase activity. This study demonstrated that Zika virus (ZIKV) infection [...] Read more.
Members of the tripartite motif (TRIM)-containing protein family play crucial roles in regulating immune system responses. The TRIM38 protein regulates host innate immunity and directly degrades some viral proteins through its E3 ubiquitin ligase activity. This study demonstrated that Zika virus (ZIKV) infection can promote the expression of TRIM38 in human glioma cells (U251). TRIM38 overexpression restricted ZIKV replication in U251 cells, while TRIM38 knockout enhanced ZIKV replication. TRIM38 overexpression upregulated the RIG-I/MDA5 pathway and promoted the level of IFN-β early during viral infection, while TRIM38 knockout had the opposite effect. In addition, TRIM38 interacts with ZIKV non-structural protein 3 (NS3) and degrades the NS3 protein through a lysosome-dependent manner via the E3 ligase activity of TRIM38. Deletion of the RING domain of TRIM38 abrogates its interaction with NS3 and impairs the antiviral activity of TRIM38. Our results indicate that TRIM38 is a novel antiviral protein against ZIKV, and it exerts antiviral activity by upregulating the RIG-I/MDA5 pathway, increasing IFN-β levels, and degrading the viral NS3 protein. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

17 pages, 4611 KiB  
Article
Identifying Allosteric Small-Molecule Binding Sites of Inactive NS2B-NS3 Proteases of Pathogenic Flaviviridae
by Hovakim Grabski, Siranuysh Grabska and Ruben Abagyan
Viruses 2025, 17(1), 6; https://doi.org/10.3390/v17010006 - 24 Dec 2024
Viewed by 1495
Abstract
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral–host protein interactions is problematic due to the fast mutation rate and rapid emergence [...] Read more.
Dengue, West Nile, Zika, Yellow fever, and Japanese encephalitis viruses persist as significant global health threats. The development of new therapeutic strategies based on inhibiting essential viral enzymes or viral–host protein interactions is problematic due to the fast mutation rate and rapid emergence of drug resistance. This study focuses on the NS2B-NS3 protease as a promising target for antiviral drug development. Promising allosteric binding sites were identified in two conformationally distinct inactive states and characterized for five flaviviruses and four Dengue virus subtypes. Their shapes, druggability, inter-viral similarity, sequence variation, and susceptibility to drug-resistant mutations have been studied. Two identified allosteric inactive state pockets appear to be feasible alternatives to a larger closed pocket near the active site, and they can be targeted with specific drug-like small-molecule inhibitors. Virus-specific sequence and structure implications and the feasibility of multi-viral inhibitors are discussed. Full article
(This article belongs to the Special Issue Recent Advances in Anti-HCV, Anti-HBV and Anti-flavivirus Agents)
Show Figures

Figure 1

12 pages, 2104 KiB  
Article
Antiviral Activity of Ecklonia cava Extracts and Dieckol Against Zika Virus
by Eun-A Kim, Nalae Kang, Jun-Ho Heo, Areumi Park, Seong-Yeong Heo, Hyun-Soo Kim and Soo-Jin Heo
Int. J. Mol. Sci. 2024, 25(24), 13694; https://doi.org/10.3390/ijms252413694 - 21 Dec 2024
Viewed by 1260
Abstract
Ecklonia cava and its major compound dieckol, both natural marine products, possess antioxidant, anti-inflammatory, and metabolic-regulating effects. Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is transmitted by mosquitoes and causes serious illnesses in humans. This study aimed to evaluate the anti-ZIKV [...] Read more.
Ecklonia cava and its major compound dieckol, both natural marine products, possess antioxidant, anti-inflammatory, and metabolic-regulating effects. Zika virus (ZIKV), an arbovirus from the Flaviviridae family, is transmitted by mosquitoes and causes serious illnesses in humans. This study aimed to evaluate the anti-ZIKV potential of Ecklonia cava and dieckol. The antiviral activity of Ecklonia cava extract (ECE), prepared with 80% ethanol, was assessed in ZIKV-infected Vero E6 cells through MTT assay, plaque assay, and quantitative polymerase chain reaction (qPCR), demonstrating no cytotoxicity and a significant reduction in viral titers and ZIKV mRNA levels. In addition, ECE decreased the expression of tumor necrosis factor-α and interferon-induced protein with tetratricopeptide repeats in the ZIKV-infected cells. Dieckol, the primary active compound in ECE, exhibited potent anti-ZIKV activity, with a half maximal inhibitory concentration (IC50), value of 4.8 µM. In silico molecular docking analysis revealed that dieckol forms stable complexes with key ZIKV proteins, including the envelope, NS2B/NS3, and RNA-dependent RNA polymerase (RdRp) protein, exhibiting high binding energies of −438.09 kcal/mol, −1040.51 kcal/mol, and −1043.40 kcal/mol, respectively. Overall, our findings suggest that ECE and dieckol are promising candidates for the development of anti-ZIKV agents. Full article
Show Figures

Figure 1

22 pages, 2615 KiB  
Article
The Laboratory Opossum (Monodelphis domestica) Is a Unique Model for Research on Zika Virus: Robust Immune Response, Widespread Dissemination, and Long-Term Persistence
by André Filipe Pastor, Susan M. Mahaney, Juan Garcia, Marisol Morales, Oscar Quintanilla, Marco A. Arriaga, John M. Thomas and John L. VandeBerg
Viruses 2024, 16(12), 1847; https://doi.org/10.3390/v16121847 - 28 Nov 2024
Viewed by 1226
Abstract
The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only [...] Read more.
The Zika virus (ZIKV) epidemic elicited a rapid commitment to the development of animal models for ZIKV research. Non-human primates (NHPs) and mice have made significant contributions to this research, but NHPs are expensive, have a long gestation period, and are available only in small numbers; non-genetically modified mice are resistant to infection. To address these deficiencies, we have established the laboratory opossum, Monodelphis domestica, as a small animal model that complements the mouse and monkey models. We developed and validated an indirect ELISA for measuring antibodies to ZIKV in opossums, as well as an immunohistochemistry (IHC) method to detect ZIKV NS1 protein in tissue samples. Opossum pups inoculated intracerebrally as embryos, juveniles inoculated by several routes, and mothers that cannibalized inoculated pups became persistently infected with ZIKV. The virus spread to multiple organs and persisted for up to 38 weeks (the latest endpoint of the experiments). A robust humoral immune response was mounted, and high titers of antibodies also persisted for 38 weeks. The results establish M. domestica as a natural, non-genetically modified animal model in which ZIKV persists long-term after experimental exposure and as a unique animal model for research on the immune response to ZIKV. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Graphical abstract

18 pages, 2828 KiB  
Article
Non-Nucleoside Lycorine-Based Analogs as Potential DENV/ZIKV NS5 Dual Inhibitors: Structure-Based Virtual Screening and Chemoinformatic Analysis
by Adrián Camilo Rodríguez-Ararat, Yasser Hayek-Orduz, Andrés-Felipe Vásquez, Felipe Sierra-Hurtado, María-Francisca Villegas-Torres, Paola A. Caicedo-Burbano, Luke E. K. Achenie and Andrés Fernando González Barrios
Metabolites 2024, 14(10), 519; https://doi.org/10.3390/metabo14100519 - 26 Sep 2024
Viewed by 1550
Abstract
Dengue (DENV) and Zika (ZIKV) virus continue to pose significant challenges globally due to their widespread prevalence and severe health implications. Given the absence of effective vaccines and specific therapeutics, targeting the highly conserved NS5 RNA-dependent RNA polymerase (RdRp) domain has emerged as [...] Read more.
Dengue (DENV) and Zika (ZIKV) virus continue to pose significant challenges globally due to their widespread prevalence and severe health implications. Given the absence of effective vaccines and specific therapeutics, targeting the highly conserved NS5 RNA-dependent RNA polymerase (RdRp) domain has emerged as a promising strategy. However, limited efforts have been made to develop inhibitors for this crucial target. In this study, we employed an integrated in silico approach utilizing combinatorial chemistry, docking, molecular dynamics simulations, MM/GBSA, and ADMET studies to target the allosteric N-pocket of DENV3-RdRp and ZIKV-RdRp. Using this methodology, we designed lycorine analogs with natural S-enantiomers (LYCS) and R-enantiomers (LYCR) as potential inhibitors of non-structural protein 5 (NS5) in DENV3 and ZIKV. Notably, 12 lycorine analogs displayed a robust binding free energy (<−9.00 kcal/mol), surpassing that of RdRp-ribavirin (<−7.00 kcal/mol) along with promising ADMET score predictions (<4.00), of which (LYCR728-210, LYCS728-210, LYCR728-212, LYCS505-214) displayed binding properties to both DENV3 and ZIKV targets. Our research highlights the potential of non-nucleoside lycorine-based analogs with different enantiomers that may present different or even completely opposite metabolic, toxicological, and pharmacological profiles as promising candidates for inhibiting NS5-RdRp in ZIKV and DENV3, paving the way for further exploration for the development of effective antiviral agents. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Figure 1

27 pages, 3285 KiB  
Review
Orthoflaviviral Inhibitors in Clinical Trials, Preclinical In Vivo Efficacy Targeting NS2B-NS3 and Cellular Antiviral Activity via Competitive Protease Inhibition
by Lorenzo Cavina, Mathijs J. Bouma, Daniel Gironés and Martin C. Feiters
Molecules 2024, 29(17), 4047; https://doi.org/10.3390/molecules29174047 - 27 Aug 2024
Cited by 1 | Viewed by 2789
Abstract
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, [...] Read more.
Orthoflaviviruses, including zika (ZIKV), West Nile (WNV), and dengue (DENV) virus, induce severely debilitating infections and contribute significantly to the global disease burden, yet no clinically approved antiviral treatments exist. This review offers a comprehensive analysis of small-molecule drug development targeting orthoflaviviral infections, with a focus on NS2B-NS3 inhibition. We systematically examined clinical trials, preclinical efficacy studies, and modes of action for various viral replication inhibitors, emphasizing allosteric and orthosteric drugs inhibiting NS2B-NS3 protease with in vivo efficacy and in vitro-tested competitive NS2B-NS3 inhibitors with cellular efficacy. Our findings revealed that several compounds with in vivo preclinical efficacy failed to show clinical antiviral efficacy. NS3-NS4B inhibitors, such as JNJ-64281802 and EYU688, show promise, recently entering clinical trials, underscoring the importance of developing novel viral replication inhibitors targeting viral machinery. To date, the only NS2B-NS3 inhibitor that has undergone clinical trials is doxycycline, however, its mechanism of action and clinical efficacy as viral growth inhibitor require additional investigation. SYC-1307, an allosteric inhibitor, exhibits high in vivo efficacy, while temoporfin and methylene blue represent promising orthosteric non-competitive inhibitors. Compound 71, a competitive NS2B-NS3 inhibitor, emerges as a leading preclinical candidate due to its high cellular antiviral efficacy, minimal cytotoxicity, and favorable in vitro pharmacokinetic parameters. Challenges remain in developing competitive NS2B-NS3 inhibitors, including appropriate biochemical inhibition assays as well as the selectivity and conformational flexibility of the protease, complicating effective antiviral treatment design. Full article
(This article belongs to the Special Issue Featured Papers in Medicinal Chemistry II)
Show Figures

Figure 1

20 pages, 6138 KiB  
Article
Employing Machine Learning-Based QSAR for Targeting Zika Virus NS3 Protease: Molecular Insights and Inhibitor Discovery
by Hisham N. Altayb and Hanan Ali Alatawi
Pharmaceuticals 2024, 17(8), 1067; https://doi.org/10.3390/ph17081067 - 15 Aug 2024
Cited by 3 | Viewed by 1697
Abstract
Zika virus infection is a mosquito-borne viral disease that has become a global health concern recently. Zika virus belongs to the Flavivirus genus and is primarily transmitted by Aedes mosquitoes. Prevention of Zika virus infection involves avoiding mosquito bites by using repellent, wearing [...] Read more.
Zika virus infection is a mosquito-borne viral disease that has become a global health concern recently. Zika virus belongs to the Flavivirus genus and is primarily transmitted by Aedes mosquitoes. Prevention of Zika virus infection involves avoiding mosquito bites by using repellent, wearing protective clothing, and staying in screened areas, especially for pregnant women. Treatment focuses on managing symptoms with rest, fluids, and acetaminophen, with close monitoring for pregnant women. Currently, there is no specific antiviral treatment or vaccine for the Zika virus, highlighting the importance of prevention strategies to control its spread. Therefore, in this study, the Zika virus non-structural protein NS3 was targeted to inhibit Zika infection by identifying the novel inhibitor through an in silico approach. Here, 2864 natural compounds were screened using a machine learning-based QSAR model, and later docking was performed to select the potential target. Subsequently, Tanimoto similarity and clustering were performed to obtain the potential target. The three most potential compounds were obtained: (a) 5297, (b) 432449, and (c) 85137543. The protein–ligand complex’s stability and flexibility were then investigated by dynamic modelling. The 300 ns simulation showed that 5297 exhibited the steadiest deviation and constant creation of hydrogen bonds. Compared to the other compounds, 5297 demonstrated a superior binding free energy (ΔG = −20.81 kcal/mol) with the protein when the MM/GBSA technique was used. The study determined that 5297 showed significant therapeutic potential and justifies further experimental investigation as a possible inhibitor of the NS2B-NS3 protease target implicated in Zika virus infection. Full article
(This article belongs to the Special Issue Application of 2D and 3D-QSAR Models in Drug Design)
Show Figures

Graphical abstract

29 pages, 2170 KiB  
Review
The Flavivirus Non-Structural Protein 5 (NS5): Structure, Functions, and Targeting for Development of Vaccines and Therapeutics
by Jarvis Z. H. Goh, Lachlan De Hayr, Alexander A. Khromykh and Andrii Slonchak
Vaccines 2024, 12(8), 865; https://doi.org/10.3390/vaccines12080865 - 1 Aug 2024
Cited by 11 | Viewed by 5126
Abstract
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and [...] Read more.
Flaviviruses, including dengue (DENV), Zika (ZIKV), West Nile (WNV), Japanese encephalitis (JEV), yellow fever (YFV), and tick-borne encephalitis (TBEV) viruses, pose a significant global emerging threat. With their potential to cause widespread outbreaks and severe health complications, the development of effective vaccines and antiviral therapeutics is imperative. The flaviviral non-structural protein 5 (NS5) is a highly conserved and multifunctional protein that is crucial for viral replication, and the NS5 protein of many flaviviruses has been shown to be a potent inhibitor of interferon (IFN) signalling. In this review, we discuss the functions of NS5, diverse NS5-mediated strategies adopted by flaviviruses to evade the host antiviral response, and how NS5 can be a target for the development of vaccines and antiviral therapeutics. Full article
Show Figures

Figure 1

14 pages, 3545 KiB  
Article
Antiviral Potential of Fucoxanthin, an Edible Carotenoid Purified from Sargassum siliquastrum, against Zika Virus
by Nalae Kang, Eun-A Kim, Areumi Park, Seong-Yeong Heo, Jun-Ho Heo and Soo-Jin Heo
Mar. Drugs 2024, 22(6), 247; https://doi.org/10.3390/md22060247 - 28 May 2024
Cited by 10 | Viewed by 1705
Abstract
Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural [...] Read more.
Considering the lack of antiviral drugs worldwide, we investigated the antiviral potential of fucoxanthin, an edible carotenoid purified from Sargassum siliquastrum, against zika virus (ZIKV) infection. The antiviral activity of fucoxanthin was assessed in ZIKV-infected Vero E6 cells, and the relevant structural characteristics were confirmed using molecular docking and molecular dynamics (MD) simulation. Fucoxanthin decreased the infectious viral particles and nonstructural protein (NS)1 mRNA expression levels at concentrations of 12.5, 25, and 50 µM in ZIKV-infected cells. Fucoxanthin also decreased the increased mRNA levels of interferon-induced proteins with tetratricopeptide repeat 1 and 2 in ZIKV-infected cells. Molecular docking simulations revealed that fucoxanthin binds to three main ZIKV proteins, including the envelope protein, NS3, and RNA-dependent RNA polymerase (RdRp), with binding energies of −151.449, −303.478, and −290.919 kcal/mol, respectively. The complex of fucoxanthin with RdRp was more stable than RdRp protein alone based on MD simulation. Further, fucoxanthin bonded to the three proteins via repeated formation and disappearance of hydrogen bonds. Overall, fucoxanthin exerts antiviral potential against ZIKV by affecting its three main proteins in a concentration-dependent manner. Thus, fucoxanthin isolated from S. siliquastrum is a potential candidate for treating zika virus infections. Full article
(This article belongs to the Special Issue Antiviral Effects and Molecular Mechanisms of Marine Compounds)
Show Figures

Figure 1

16 pages, 4483 KiB  
Article
Antiviral Activity of Flavonoids from Bauhinia holophylla Leaves against Zika virus
by Rodrigo Michelini de Oliveira Thomasi, Thaiz Rodrigues Teixeira, Gabriela Francine Martins Lopes, Simony Carvalho Mendonça, Brendo Araujo Gomes, Suzana Guimarães Leitão, Tiago Alves de Oliveira, Sara Thamires Dias da Fonseca, Alex Gutterres Taranto, Jaqueline Maria Siqueira Ferreira, Luciana Alves Rodrigues dos Santos Lima and Ana Hortência Fonsêca Castro
Microbiol. Res. 2024, 15(2), 582-597; https://doi.org/10.3390/microbiolres15020038 - 21 Apr 2024
Cited by 2 | Viewed by 2040
Abstract
Zika virus (ZIKV) is involved in the etiology of serious nervous system pathologies. Currently, there are no specific and effective vaccines or antiviral drugs to prevent the diseases caused by ZIKV. This study aimed to assess the activity of flavonoids present in crude [...] Read more.
Zika virus (ZIKV) is involved in the etiology of serious nervous system pathologies. Currently, there are no specific and effective vaccines or antiviral drugs to prevent the diseases caused by ZIKV. This study aimed to assess the activity of flavonoids present in crude hydroethanolic extract (CHE) and fractions obtained from B. holophylla leaves against ZIKV. O-glycosylated flavonoids were characterized by high-performance liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS/MS). The cytotoxic concentration and the effective concentration for 50% of the cells (CC50 and EC50, respectively) were determined, and the selectivity index (SI) was calculated. Molecular networks were constructed based on the chemical composition of the samples and global antiviral activity data using the Global Natural Products Social Molecular Networking (GNPS) platform. Protein–ligand docking was performed in the NS2B-NS3 protease, NS3 helicase, and NS5 methyltransferase of the ZIKV. CHE showed greater antiviral activity at a multiplicity of infection (MOI) of 1.0, with an EC50 of 11.93 µg/mL, SI = 13.38, and reduced cytopathic effects. Molecular networks indicated that O-glycosylated flavonoids are responsible for the activity against ZIKV, being quercetin-O-deoxyhexoside more selective and effective. Molecular docking confirmed the inhibitory activity of quercetin-O-deoxyhexoside, which showed an affinity for the tested targets, especially for NS2B-NS3 protease. The results showed that B. holophylla has flavonoids with potential for future therapeutic applications against ZIKV. Full article
Show Figures

Graphical abstract

Back to TopTop