Non-Nucleoside Lycorine-Based Analogs as Potential DENV/ZIKV NS5 Dual Inhibitors: Structure-Based Virtual Screening and Chemoinformatic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of DENV3 and ZIKV RdRp NS5 Structures
2.2. Generation of Lycorine Analog Library
2.3. Molecular Docking Screening
2.4. Molecular Dynamics Simulations
2.5. MM/GBSA Free Energy Calculations
2.6. Chemoinformatic Analysis
2.7. Activity Cliff Detection and Matched Molecular Pair Analysis
3. Results
3.1. Generation of Lycorine Analogs Library
3.2. Molecular Docking and MMGBSA
3.3. Chemoinformatic Analysis
3.4. GI (Gastrointestinal System), BBB (Blood–Brain Barrier), CYP (Cytochrome P)
3.5. Binding Pose Analysis of Lycorine
3.6. Molecular Dynamics Simulation
3.7. Validation of the Docking Performance and Accuracy
4. Discussion
Binding Poses Analysis of Lycorine
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Messina, J.P.; Brady, O.J.; Golding, N.; Kraemer, M.U.G.; Wint, G.R.W.; Ray, S.E.; Pigott, D.M.; Shearer, F.M.; Johnson, K.; Earl, L.; et al. The Current and Future Global Distribution and Population at Risk of Dengue. Nat. Microbiol. 2019, 4, 1508–1515. [Google Scholar] [CrossRef] [PubMed]
- Pierson, T.C.; Diamond, M.S. The Continued Threat of Emerging Flaviviruses. Nat. Microbiol. 2020, 5, 796–812. [Google Scholar] [CrossRef] [PubMed]
- Young, P.R. Arboviruses: A Family on the Move. Adv. Exp. Med. Biol. 2018, 1062, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, W.; Gong, P.; Gong, P. A Structural Overview of RNA-Dependent RNA Polymerases from the Flaviviridae Family. Int. J. Mol. Sci. 2015, 16, 12943–12957. [Google Scholar] [CrossRef] [PubMed]
- Holbrook, M.R. Historical Perspectives on Flavivirus Research. Viruses 2017, 9, 97. [Google Scholar] [CrossRef] [PubMed]
- Carrillo-Hernández, M.Y.; Ruiz-Saenz, J.; Villamizar, L.J.; Gómez-Rangel, S.Y.; Martínez-Gutierrez, M. Co-Circulation and Simultaneous Co-Infection of Dengue, Chikungunya, and Zika Viruses in Patients with Febrile Syndrome at the Colombian-Venezuelan Border. BMC Infect. Dis. 2018, 18, 61. [Google Scholar] [CrossRef]
- Paixão, E.S.; Teixeira, M.G.; Rodrigues, L.C. Zika, Chikungunya and Dengue: The Causes and Threats of New and Reemerging Arboviral Diseases. BMJ Glob. Health 2018, 3, e000530. [Google Scholar] [CrossRef]
- Obi, J.O.; Gutiérrez-Barbosa, H.; Chua, J.V.; Deredge, D.J. Current Trends and Limitations in Dengue Antiviral Research. Trop. Med. Infect. Dis. 2021, 6, 180. [Google Scholar] [CrossRef]
- Nasar, S.; Rashid, N.; Iftikhar, S. Dengue Proteins with Their Role in Pathogenesis, and Strategies for Developing an Effective Anti-Dengue Treatment: A Review. J. Med. Virol. 2020, 92, 941–955. [Google Scholar] [CrossRef]
- McEntire, C.R.S.; Song, K.W.; McInnis, R.P.; Rhee, J.Y.; Young, M.; Williams, E.; Wibecan, L.L.; Nolan, N.; Nagy, A.M.; Gluckstein, J.; et al. Neurologic Manifestations of the World Health Organization’s List of Pandemic and Epidemic Diseases. Front. Neurol. 2021, 12, 634827. [Google Scholar] [CrossRef]
- Koppolu, V.; Shantha Raju, T. Zika Virus Outbreak: A Review of Neurological Complications, Diagnosis, and Treatment Options. J. Neurovirol. 2018, 24, 255–272. [Google Scholar] [CrossRef] [PubMed]
- da Silva, S.J.R.; Magalhães, J.J.F.D.; Pena, L. Simultaneous Circulation of DENV, CHIKV, ZIKV and SARS-CoV-2 in Brazil: An Inconvenient Truth. One Health 2021, 12, 100205. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.P.; Noble, C.G.; Seh, C.C.; Soh, T.S.; El Sahili, A.; Chan, G.K.Y.; Lescar, J.; Arora, R.; Benson, T.; Nilar, S.; et al. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. PLoS Pathog. 2016, 12, e1005737. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, N.; Rehman, A.U.; Badshah, S.L.; Ullah, A.; Mohammad, A.; Khan, K. Molecular Dynamics Simulation of Zika Virus NS5 RNA Dependent RNA Polymerase with Selected Novel Non-Nucleoside Inhibitors. J. Mol. Struct. 2020, 1203, 127428. [Google Scholar] [CrossRef]
- Gharbi-Ayachi, A.; Santhanakrishnan, S.; Wong, Y.H.; Chan, K.W.K.; Tan, S.T.; Bates, R.W.; Vasudevan, S.G.; El Sahili, A.; Lescar, J. Non-Nucleoside Inhibitors of Zika Virus RNA-Dependent RNA Polymerase. J. Virol. 2020, 94, e00794-20. [Google Scholar] [CrossRef]
- Chen, H.; Lao, Z.; Xu, J.; Li, Z.; Long, H.; Li, D.; Lin, L.; Liu, X.; Yu, L.; Liu, W.; et al. Antiviral Activity of Lycorine against Zika Virus in Vivo and in Vitro. Virology 2020, 546, 88–97. [Google Scholar] [CrossRef]
- Noble, C.G.; Lim, S.P.; Arora, R.; Yokokawa, F.; Nilar, S.; Seh, C.C.; Wright, S.K.; Benson, T.E.; Smith, P.W.; Shi, P.Y. A Conserved Pocket in the Dengue Virus Polymerase Identified through Fragment-Based Screening. J. Biol. Chem. 2016, 291, 8541–8548. [Google Scholar] [CrossRef]
- Arora, R.; Liew, C.W.; Soh, T.S.; Otoo, D.A.; Seh, C.C.; Yue, K.; Nilar, S.; Wang, G.; Yokokawa, F.; Noble, C.G.; et al. Two RNA Tunnel Inhibitors Bind in Highly Conserved Sites in Dengue Virus NS5 Polymerase: Structural and Functional Studies. J. Virol. 2020, 94, e01130-20. [Google Scholar] [CrossRef]
- Yang, Y.J.; Liu, J.N.; Pan, X.D. Synthesis and Antiviral Activity of Lycorine Derivatives. J. Asian Nat. Prod. Res. 2020, 22, 1188–1196. [Google Scholar] [CrossRef]
- Xiao, H.; Xu, X.; Du, L.; Li, X.; Zhao, H.; Wang, Z.; Zhao, L.; Yang, Z.; Zhang, S.; Yang, Y.; et al. Lycorine and Organ Protection: Review of Its Potential Effects and Molecular Mechanisms. Phytomedicine 2022, 104, 154266. [Google Scholar] [CrossRef]
- Ka, S.; Koirala, M.; Mérindol, N.; Desgagné-Penix, I. Biosynthesis and Biological Activities of Newly Discovered Amaryllidaceae Alkaloids. Molecules 2020, 25, 4901. [Google Scholar] [CrossRef] [PubMed]
- Nair, J.J.; van Staden, J. Insight to the Antifungal Properties of Amaryllidaceae Constituents. Phytomedicine 2020, 73, 152753. [Google Scholar] [CrossRef] [PubMed]
- Ka, S.; Merindol, N.; Sow, A.A.; Singh, A.; Landelouci, K.; Plourde, M.B.; Pépin, G.; Masi, M.; Di Lecce, R.; Evidente, A.; et al. Amaryllidaceae Alkaloid Cherylline Inhibits the Replication of Dengue and Zika Viruses. Antimicrob. Agents Chemother. 2021, 65, e0039821. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.N.; Zhang, Q.Y.; Li, X.D.; Xiong, J.; Xiao, S.Q.; Wang, Z.; Zhang, Z.R.; Deng, C.L.; Yang, X.L.; Wei, H.P.; et al. Gemcitabine, Lycorine and Oxysophoridine Inhibit Novel Coronavirus (SARS-CoV-2) in Cell Culture. Emerg. Microbes Infect. 2020, 9, 1170–1173. [Google Scholar] [CrossRef]
- Wan, H.; Selvaggio, G.; Pearlstein, R.A. Toward in Vivo-Relevant HERG Safety Assessment and Mitigation Strategies Based on Relationships between Non-Equilibrium Blocker Binding, Three-Dimensional Channel-Blocker Interactions, Dynamic Occupancy, Dynamic Exposure, and Cellular Arrhythmia. bioRxiv 2020, 44, 6. [Google Scholar] [CrossRef]
- Ren, P.X.; Shang, W.J.; Yin, W.C.; Ge, H.; Wang, L.; Zhang, X.L.; Li, B.Q.; Li, H.L.; Xu, Y.C.; Xu, E.H.; et al. A Multi-Targeting Drug Design Strategy for Identifying Potent Anti-SARS-CoV-2 Inhibitors. Acta Pharmacol. Sin. 2022, 43, 483–493. [Google Scholar] [CrossRef]
- Jimenez, A.; Santos, A.; Alonso, G.; Vazquez, D. Inhibitors of Protein Synthesis in Eukarytic Cells. Comparative Effects of Some Amaryllidaceae Alkaloids. Biochim. Biophys. Acta 1976, 425, 342–348. [Google Scholar] [CrossRef]
- Roy, M.; Liang, L.; Xiao, X.; Feng, P.; Ye, M.; Liu, J. Lycorine: A Prospective Natural Lead for Anticancer Drug Discovery. Biomed. Pharmacother. 2018, 107, 615–624. [Google Scholar] [CrossRef]
- Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and Regulators of Intracellular PH. Nat. Rev. Mol. Cell Biol. 2010, 11, 50–61. [Google Scholar] [CrossRef]
- Hu, X.; Hu, Y.; Vogt, M.; Stumpfe, D.; Bajorath, J. MMP-Cliffs: Systematic Identification of Activity Cliffs on the Basis of Matched Molecular Pairs. J. Chem. Inf. Model. 2012, 52, 1138–1145. [Google Scholar] [CrossRef]
- Chen, D.; Cai, J.; Cheng, J.; Jing, C.; Yin, J.; Jiang, J.; Peng, Z.; Hao, X. Design, Synthesis and Structure-Activity Relationship Optimization of Lycorine Derivatives for HCV Inhibition. Sci. Rep. 2015, 5, 14972. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra Precision Glide: Docking and Scoring Incorporating a Model of Hydrophobic Enclosure for Protein-Ligand Complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed]
- Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening. J. Med. Chem. 2004, 47, 1750–1759. [Google Scholar] [CrossRef] [PubMed]
- Godoy, A.S.; Lima, G.M.A.; Oliveira, K.I.Z.; Torres, N.U.; Maluf, F.V.; Guido, R.V.C.; Oliva, G. Crystal Structure of Zika Virus NS5 RNA-Dependent RNA Polymerase. Nat. Commun. 2017, 8, 14764. [Google Scholar] [CrossRef]
- Selisko, B.; Papageorgiou, N.; Ferron, F.; Canard, B. Structural and Functional Basis of the Fidelity of Nucleotide Selection by Flavivirus RNA-Dependent RNA Polymerases. Viruses 2018, 10, 59. [Google Scholar] [CrossRef]
- Sousa da Silva, A.W.; Vranken, W.F. ACPYPE—AnteChamber Python Parser Interface. BMC Res. Notes 2012, 5, 1–8. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and Drug-like Compounds: The Rule-of-Five Revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Tyrchan, C.; Evertsson, E. Matched Molecular Pair Analysis in Short: Algorithms, Applications and Limitations. Comput. Struct. Biotechnol. J. 2017, 15, 86–90. [Google Scholar] [CrossRef]
- Tamura, S.; Jasial, S.; Miyao, T.; Funatsu, K. Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel. Molecules 2021, 26, 4916. [Google Scholar] [CrossRef] [PubMed]
- Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742–754. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Michielin, O.; Zoete, V. ILOGP: A Simple, Robust, and Efficient Description of n-Octanol/Water Partition Coefficient for Drug Design Using the GB/SA Approach. J. Chem. Inf. Model. 2014, 54, 3284–3301. [Google Scholar] [CrossRef] [PubMed]
- Cheng, T.; Zhao, Y.; Li, X.; Lin, F.; Xu, Y.; Zhang, X.; Li, Y.; Wang, R.; Lai, L. Computation of Octanol−Water Partition Coefficients by Guiding an Additive Model with Knowledge. J. Chem. Inf. Model. 2007, 47, 2140–2148. [Google Scholar] [CrossRef]
- Baell, J.B.; Holloway, G.A. New Substructure Filters for Removal of Pan Assay Interference Compounds (PAINS) from Screening Libraries and for Their Exclusion in Bioassays. J. Med. Chem. 2010, 53, 2719–2740. [Google Scholar] [CrossRef]
- Langer, T.; Hoffmann, R.D. Methods and Principles in Medicinal Chemistry. Pharmacophores and Pharmacophore Searches; Vch Verlagsgesellschaft Mbh: Hoboken, NJ, USA, 2006; ISBN 3-527-31250-1. [Google Scholar]
- Tarantino, D.; Cannalire, R.; Mastrangelo, E.; Croci, R.; Querat, G.; Barreca, M.L.; Bolognesi, M.; Manfroni, G.; Cecchetti, V.; Milani, M. Targeting Flavivirus RNA Dependent RNA Polymerase through a Pyridobenzothiazole Inhibitor. Antivir. Res. 2016, 134, 226–235. [Google Scholar] [CrossRef]
- Netzler, N.E.; Enosi Tuipulotu, D.; Eltahla, A.A.; Lun, J.H.; Ferla, S.; Brancale, A.; Urakova, N.; Frese, M.; Strive, T.; Mackenzie, J.M.; et al. Broad-Spectrum Non-Nucleoside Inhibitors for Caliciviruses. Antivir. Res. 2017, 146, 65–75. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, L.; Liu, Z. Multi-Objective de Novo Drug Design with Conditional Graph Generative Model. J. Cheminform. 2018, 10, 33. [Google Scholar] [CrossRef]
- Ertl, P.; Schuffenhauer, A. Estimation of Synthetic Accessibility Score of Drug-like Molecules Based on Molecular Complexity and Fragment Contributions. J. Cheminform. 2009, 1, 8. [Google Scholar] [CrossRef]
- Ramírez, D.; Caballero, J. Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data? Molecules 2018, 23, 1038. [Google Scholar] [CrossRef]
- Yi, D.; Li, Q.; Pang, L.; Wang, Y.; Zhang, Y.; Duan, Z.; Liang, C.; Cen, S. Identification of a Broad-Spectrum Viral Inhibitor Targeting a Novel Allosteric Site in the RNA-Dependent RNA Polymerases of Dengue Virus and Norovirus. Front. Microbiol. 2020, 11, 1440. [Google Scholar] [CrossRef]
Molecule | Lipinski | Ghose | Veber | Egan | Muegge | Synthetic Accessibility |
---|---|---|---|---|---|---|
Rivabirin | 0 | 1 | 1 | 1 | 0 | 3.89 |
Lycorine | 0 | 0 | 0 | 0 | 0 | 4.2 |
LYCS214-507 | 0 | 1 | 0 | 0 | 0 | 4.94 |
LYCS505-214 | 0 | 1 | 0 | 0 | 1 | 5.04 |
LYCR66-506 | 0 | 0 | 0 | 0 | 0 | 5.09 |
LYCS510-212 | 0 | 1 | 0 | 0 | 0 | 5.18 |
LYCR211-507 | 0 | 1 | 0 | 0 | 0 | 5.27 |
LYCS510-214 | 0 | 2 | 1 | 0 | 0 | 5.31 |
LYCS214-510 | 0 | 3 | 1 | 0 | 0 | 5.76 |
LYCS728-210 | 1 | 3 | 1 | 0 | 0 | 5.87 |
LYCR728-210 | 1 | 3 | 1 | 1 | 0 | 6.11 |
LYCR728-212 | 1 | 3 | 1 | 1 | 0 | 6.24 |
LYCR294-114 | 1 | 3 | 1 | 0 | 0 | 6.41 |
LYCR727-112 | 1 | 3 | 1 | 0 | 1 | 6.57 |
Molecule | GI Absorption | BBB-Permeant | Bioavailability Score | CYP Substrate/Inhibitor | ||||
---|---|---|---|---|---|---|---|---|
CYP1A2 | CYP2C19 | CYP2C9 | CYP2D6 | CYP3A4 | ||||
Rivabirin | Low | No | 0.55 | No | No | No | No | No |
Lycorine | High | No | 0.55 | No | No | No | Yes | No |
LYCS214-507 | High | No | 0.55 | No | No | No | No | No |
LYCS505-214 | High | No | 0.55 | No | No | No | No | No |
LYCR66-506 | High | No | 0.55 | No | No | No | No | No |
LYCS510-212 | High | No | 0.55 | No | No | No | No | No |
LYCR211-507 | High | No | 0.55 | No | No | No | No | No |
LYCS510-214 | High | No | 0.55 | No | No | No | No | No |
LYCS214-510 | High | No | 0.55 | No | No | No | No | Yes |
LYCS728-210 | High | No | 0.55 | No | No | No | No | Yes |
LYCR728-210 | High | No | 0.55 | No | No | No | No | Yes |
LYCR728-212 | High | No | 0.55 | No | No | No | No | Yes |
LYCR294-114 | High | No | 0.55 | No | No | No | No | No |
LYCR727-112 | High | No | 0.55 | No | No | No | No | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Ararat, A.C.; Hayek-Orduz, Y.; Vásquez, A.-F.; Sierra-Hurtado, F.; Villegas-Torres, M.-F.; Caicedo-Burbano, P.A.; Achenie, L.E.K.; Barrios, A.F.G. Non-Nucleoside Lycorine-Based Analogs as Potential DENV/ZIKV NS5 Dual Inhibitors: Structure-Based Virtual Screening and Chemoinformatic Analysis. Metabolites 2024, 14, 519. https://doi.org/10.3390/metabo14100519
Rodríguez-Ararat AC, Hayek-Orduz Y, Vásquez A-F, Sierra-Hurtado F, Villegas-Torres M-F, Caicedo-Burbano PA, Achenie LEK, Barrios AFG. Non-Nucleoside Lycorine-Based Analogs as Potential DENV/ZIKV NS5 Dual Inhibitors: Structure-Based Virtual Screening and Chemoinformatic Analysis. Metabolites. 2024; 14(10):519. https://doi.org/10.3390/metabo14100519
Chicago/Turabian StyleRodríguez-Ararat, Adrián Camilo, Yasser Hayek-Orduz, Andrés-Felipe Vásquez, Felipe Sierra-Hurtado, María-Francisca Villegas-Torres, Paola A. Caicedo-Burbano, Luke E. K. Achenie, and Andrés Fernando González Barrios. 2024. "Non-Nucleoside Lycorine-Based Analogs as Potential DENV/ZIKV NS5 Dual Inhibitors: Structure-Based Virtual Screening and Chemoinformatic Analysis" Metabolites 14, no. 10: 519. https://doi.org/10.3390/metabo14100519
APA StyleRodríguez-Ararat, A. C., Hayek-Orduz, Y., Vásquez, A. -F., Sierra-Hurtado, F., Villegas-Torres, M. -F., Caicedo-Burbano, P. A., Achenie, L. E. K., & Barrios, A. F. G. (2024). Non-Nucleoside Lycorine-Based Analogs as Potential DENV/ZIKV NS5 Dual Inhibitors: Structure-Based Virtual Screening and Chemoinformatic Analysis. Metabolites, 14(10), 519. https://doi.org/10.3390/metabo14100519