Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,895)

Search Parameters:
Keywords = X-ray structure determination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 875 KB  
Article
Advanced Spectroscopic Studies of the AIE-Enhanced ESIPT Effect in a Selected 1,3,4-Thiadiazole Derivative in Liposomal Systems with DPPC
by Alicja Skrzypek, Iwona Budziak-Wieczorek, Lidia Ślusarczyk, Andrzej Górecki, Daniel Kamiński, Anita Kwaśniewska, Sylwia Okoń, Igor Różyło and Arkadiusz Matwijczuk
Int. J. Mol. Sci. 2025, 26(21), 10643; https://doi.org/10.3390/ijms262110643 (registering DOI) - 31 Oct 2025
Abstract
Liposomal systems are advanced carriers of active substances which, thanks to their ability to encapsulate these substances, significantly improve their pharmacokinetics, bioavailability, and selectivity. This article presents the results of spectroscopic studies for a selected compound from the 1,3,4-thiadiazole group, namely 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD, [...] Read more.
Liposomal systems are advanced carriers of active substances which, thanks to their ability to encapsulate these substances, significantly improve their pharmacokinetics, bioavailability, and selectivity. This article presents the results of spectroscopic studies for a selected compound from the 1,3,4-thiadiazole group, namely 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD, see below in the text), in selected liposomal systems formed from the phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Detailed spectroscopic analyses were carried out using electronic absorption and fluorescence spectroscopy; resonance light scattering (RLS) spectra measurements; dynamic light scattering (DLS); as well as time-resolved methods—fluorescence lifetime measurements using the TCSPC technique. Subsequently, based on the interpretation of spectra obtained by FTIR infrared spectroscopy, the preliminary molecular organization of the above-mentioned compounds within lipid multilayers was determined. It was found that NTBD preferentially occupies the region of polar lipid headgroups in the lipid multilayer, although it also noticeably interacts with the hydrocarbon chains of the lipids. Furthermore, X-ray diffraction (XRD) techniques were used to study the effect of NTBD on the molecular organization of DPPC lipid multilayers. Monomeric structures and aggregated forms of the above-mentioned 1,3,4-thiadiazole analogue were characterized using X-ray crystallography. Interesting dual fluorescence effects observed in steady-state fluorescence measurements were linked to the excited-state intramolecular proton transfer (ESIPT) effect (based on our earlier studies), which, in the obtained biophysical systems—liposomal systems with strong hydrophobicity—is greatly enhanced by aggregation-induced emission (AIE) effects. In summary, the research presented in this study, concerning the novel 1,3,4-thiadiazole derivative NTBD, is highly relevant to drug delivery systems, such as various model liposomal systems, as it demonstrates that depending on the concentration of the selected fluorophore, different forms may be present, allowing for appropriate modulation of its biological activity. Full article
(This article belongs to the Special Issue AIEgens in Action: Design, Mechanisms, and Emerging Applications)
Show Figures

Graphical abstract

21 pages, 5722 KB  
Article
Calcium Phosphates for Bone Tissue Regeneration—Influence of Synthesis Method on Physicochemical and Biological Properties
by Julia Sadlik, Edyta Kosińska, Karina Niziołek, Mateusz M. Urbaniak, Agnieszka Sobczak-Kupiec and Dagmara Słota
Materials 2025, 18(21), 4945; https://doi.org/10.3390/ma18214945 - 29 Oct 2025
Viewed by 223
Abstract
Calcium phosphates, including hydroxyapatite, are widely used biomaterials in bone tissue regeneration due to their bioactivity, osteoconductivity, and similarity to the mineral phase of bone. In this study, various apatite calcium phosphate powders were synthesized using three precipitation methods, with controlled pH conditions [...] Read more.
Calcium phosphates, including hydroxyapatite, are widely used biomaterials in bone tissue regeneration due to their bioactivity, osteoconductivity, and similarity to the mineral phase of bone. In this study, various apatite calcium phosphate powders were synthesized using three precipitation methods, with controlled pH conditions and reagent ratios, to assess the effect of the synthesis method on their physicochemical and biological properties. Elemental composition (Ca/P ratio), FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with EDS, and particle size measurements were used to determine the structure, morphology, and stoichiometry of the obtained powders. The results indicated that the synthesis method and pH significantly affect the phase composition of the material, particle size, and Ca/P ratio, which directly influence their solubility and bioactivity. Microbiological tests, NF-κB transcription factor activation, metabolic activity, and cell compatibility of mouse L929 fibroblasts and human hFOB 1.19 osteoblasts showed good biological tolerance of the obtained powders and no cytotoxic effects. The results confirm that a properly selected synthesis method allows for the control of material properties, which is crucial for applications in bone tissue engineering. The materials show potential for use as bioactive components in bone-related biomaterials. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

18 pages, 23959 KB  
Article
Cocrystallization of Ezetimibe with Organic Acids: Stoichiometric Optimization for Improved Solubility and Bioavailability
by Ravi Maharjan, Ha Eun Park, Ki Hyun Kim, Mansingh Chaudhary, Ki-Taek Kim, Minji Kim, Hea-Young Cho and Seong Hoon Jeong
Pharmaceutics 2025, 17(11), 1399; https://doi.org/10.3390/pharmaceutics17111399 - 29 Oct 2025
Viewed by 214
Abstract
Background/Objectives: Pharmaceutical cocrystallization offers a promising strategy to enhance drug properties while preserving molecular integrity. Ezetimibe, a BCS Class II hypolipidemic agent, faces therapeutic limitations due to poor aqueous solubility. This study aimed to systematically evaluate cocrystallization of ezetimibe with organic acid (benzoic, [...] Read more.
Background/Objectives: Pharmaceutical cocrystallization offers a promising strategy to enhance drug properties while preserving molecular integrity. Ezetimibe, a BCS Class II hypolipidemic agent, faces therapeutic limitations due to poor aqueous solubility. This study aimed to systematically evaluate cocrystallization of ezetimibe with organic acid (benzoic, tartaric, or succinic acid) at varying stoichiometric ratios (1:0.5–1:2) to optimize physicochemical properties and oral bioavailability. Methods: Cocrystals were prepared via solvent evaporation (SEV) and solvent/anti-solvent (SAS) methods. Structural characterization included Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder/single-crystal X-ray diffraction (PXRD/SCXRD). Physicochemical performance was assessed through saturation solubility, in vitro dissolution, and in vivo pharmacokinetics in male Sprague Dawley rats (n = 4/group). Results: Benzoic acid cocrystals (1:2 ratio, SEV) showed O−H⋯N hydrogen bonding (FTIR band shifts: 2928 → 3264 cm−1) and novel crystalline phases (12.4°, 16.7°, and 24.9°). SCXRD confirmed monoclinic P21/n symmetry (a = 5.42 Å, b = 5.05 Å) for benzoic acid cocrystals. Ezetimibe/benzoic acid cocrystals (1:2) achieved 64-fold solubility enhancement and 2× faster dissolution vs. pure ezetimibe. Pharmacokinetics revealed 3× higher Cmax (18.38 ng/mL) and 4× greater AUC (40.36 h·ng/mL) for optimized cocrystals. Tartaric and succinic acid cocrystals showed moderate improvements, with melting points intermediate between parent compounds. Conclusions: Both stoichiometry and preparation method strongly determined cocrystal performance. Benzoic acid at a 1:2 ratio via SEV demonstrated superior solubility, dissolution, and bioavailability, addressing ezetimibe’s formulation challenges. These findings underscore the potential of rational cocrystal design to overcome solubility barriers in oral dosage development, particularly for hydrophobic therapeutics. Full article
Show Figures

Figure 1

22 pages, 7605 KB  
Article
Design of Novel Non-Cytotoxic Ti-15Nb-xTa Alloys for Orthopedic Implants
by Yasmin Monteiro Schumacher, Carlos Roberto Grandini, Gerson Santos de Almeida, Willian Fernando Zambuzzi and Pedro Akira Bazaglia Kuroda
Metals 2025, 15(11), 1201; https://doi.org/10.3390/met15111201 - 28 Oct 2025
Viewed by 139
Abstract
The objective of this study was to develop novel alloys of the Ti-15Nb-xTa system (x = 0, 10, 20, and 30 wt.%) and to evaluate the effect of tantalum addition on the structure, microstructure, hardness, and elastic modulus for biomedical applications. The ingots [...] Read more.
The objective of this study was to develop novel alloys of the Ti-15Nb-xTa system (x = 0, 10, 20, and 30 wt.%) and to evaluate the effect of tantalum addition on the structure, microstructure, hardness, and elastic modulus for biomedical applications. The ingots were produced using an arc melting furnace under a controlled argon atmosphere. Chemical composition analyses were performed using energy-dispersive spectroscopy (EDS) to determine the alloying element fractions and to conduct chemical mapping. The Thermo-Calc software (https://thermocalc.com/, 4 September 2024) was employed to predict the influence of Ta on the phase transformation temperatures. Structural and microstructural characterizations were performed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD patterns enabled the identification of the phases, the relative volume fractions, and the lattice parameters of the unit cells. As mechanical properties, Vickers microhardness and elastic modulus were measured. The results revealed that increasing Ta content decreased the β-transus temperature but increased the melting temperature of the alloys. Structural and microstructural characterizations indicated that the Ti-15Nb alloy consisted of α′ + α″ phases, Ti-15Nb-10Ta of α″ + β phases, Ti-15Nb-20Ta of α″ + β + ω phases, and Ti-15Nb-30Ta of metastable β phase. Hardness and elastic modulus results exhibited similar behavior: the alloy with the highest fraction of the α″ phase (Ti-15Nb-10Ta) displayed the lowest hardness and elastic modulus, whereas the alloy containing the ω phase (Ti-15Nb-20Ta) presented significantly higher values. Among the studied alloys, Ti-15Nb-10Ta stands out due to its low elastic modulus (57 GPa). In vitro cellular assays demonstrated that Ti-15Nb-Ta alloys promote osteoblast proliferation while exhibiting no cytotoxicity. Full article
(This article belongs to the Special Issue Advances in Metallic Materials for Biomedical Applications)
Show Figures

Graphical abstract

21 pages, 19533 KB  
Article
Comprehensive Experimental Analysis of Tear Fluid Composition and Structure by Using Novel Physical Methods with Diagnostic Potential for Inflammatory Diseases
by Daria Kondrakhova, Vladimíra Tomečková, Oleksandr Dobrozhan, Ondrej Milkovič, Hoydoo You, Tatiana Kimáková and Vladimír Komanický
Biophysica 2025, 5(4), 48; https://doi.org/10.3390/biophysica5040048 - 25 Oct 2025
Viewed by 158
Abstract
This study explored the use of physical methods, namely X-ray diffraction, atomic force microscopy, and energy-dispersive X-ray spectroscopy, to analyze the structure and composition of tear fluid desiccates. Tear samples were collected from patients with dry eye syndrome, glaucoma, and multiple sclerosis. Our [...] Read more.
This study explored the use of physical methods, namely X-ray diffraction, atomic force microscopy, and energy-dispersive X-ray spectroscopy, to analyze the structure and composition of tear fluid desiccates. Tear samples were collected from patients with dry eye syndrome, glaucoma, and multiple sclerosis. Our results revealed significant differences in the crystallization patterns, chemical composition, and morphology of tear fluid among the disease groups compared to healthy individuals. XRD analysis identified variations in salt crystallization within tear fluid desiccates. AFM provided nanoscale morphological visualization. EDX determined the presence of key chemical elements. Our findings showed that changes in crystallization and unbalance of ionic composition in tear fluid may serve as potential markers for diagnosing ocular diseases. This study highlights the potential of these techniques for non-invasive diagnostics and contributes to the development of innovative strategies for monitoring structural properties in tear fluid desiccates of analyzed inflammatory, and neurodegenerative diseases. Full article
(This article belongs to the Collection Feature Papers in Biophysics)
Show Figures

Graphical abstract

17 pages, 2925 KB  
Article
Potentiometric Studies of the Complexation Properties of Selected Lanthanide Ions with Schiff Base Ligand
by Julia Barańska, Katarzyna Koroniak-Szejn, Michał Zabiszak, Anita Grześkiewicz, Monika Skrobanska, Martyna Nowak, Renata Jastrzab and Małgorzata T. Kaczmarek
Int. J. Mol. Sci. 2025, 26(21), 10379; https://doi.org/10.3390/ijms262110379 - 25 Oct 2025
Viewed by 415
Abstract
The synthesis, characterization, and equilibrium studies of complexes of selected lanthanide ions Eu(III), Gd(III), and Tb(III) with the ligand 1,3-bis(3-bromo-5-chlorosalicylideneamino)-2-propanol (H3L) are reported. It was found that in the solid state, the complexes with the formulas [Eu(H3L)2(NO [...] Read more.
The synthesis, characterization, and equilibrium studies of complexes of selected lanthanide ions Eu(III), Gd(III), and Tb(III) with the ligand 1,3-bis(3-bromo-5-chlorosalicylideneamino)-2-propanol (H3L) are reported. It was found that in the solid state, the complexes with the formulas [Eu(H3L)2(NO3)3], [Gd(H3L)2(NO3)3], and [Tb(H3L)2(NO3)3] are formed. In solution, complexes with stoichiometries of Ln(III):H3L 1:1 and 1:2 were obtained. The ligand H3L was isolated in crystalline form, and its molecular structure and conformation were determined by single-crystal X-ray diffraction analysis. The compounds were further characterized by elemental analysis, infrared spectroscopy, 1H NMR, 13C NMR techniques, and mass spectrometry (ESI), confirming the formation of the Schiff base group. Stability constants of the complexes in solution were determined using potentiometric titration, providing insights into the metal-ligand binding equilibria. In addition, the spectroscopic properties of the ligand and its lanthanide(III) ion complexes were investigated by UV-Vis spectroscopy, which confirmed ligand-to-metal charge transfer interactions, as well as by luminescence measurements. The luminescence studies revealed inefficient energy transfer in [Eu(H3L)2(NO3)3] complexes, while no transfer was observed in [Tb(H3L)2(NO3)3] systems at any pH value. This behavior is attributed to the large energy gap between the ligand triplet state and the lowest resonant levels of the studied lanthanide ions. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

22 pages, 7889 KB  
Article
Structure and Properties of Hard, Wear-Resistant Cr-Al-Si-B-(N) Coatings Obtained by Magnetron Sputtering of Ceramic Composite Targets
by Philipp Kiryukhantsev-Korneev, Alina Chertova, Yury Pogozhev and Evgeny Levashov
Coatings 2025, 15(11), 1243; https://doi.org/10.3390/coatings15111243 - 25 Oct 2025
Viewed by 330
Abstract
Hard Cr-Al-Si-B-(N) coatings were deposited in Ar and Ar–15%N2 medium by d.c. magnetron sputtering of composite targets manufactured using self-propagating high-temperature synthesis. The structure of the coatings was studied by X-ray diffraction, scanning and transmission electron microscopy, energy dispersion spectroscopy, and glow [...] Read more.
Hard Cr-Al-Si-B-(N) coatings were deposited in Ar and Ar–15%N2 medium by d.c. magnetron sputtering of composite targets manufactured using self-propagating high-temperature synthesis. The structure of the coatings was studied by X-ray diffraction, scanning and transmission electron microscopy, energy dispersion spectroscopy, and glow discharge optical emission spectroscopy. The coating properties were determined by nanoindentation, scratch testing, and tribological pin-on-disc testing at room and elevated temperatures. The oxidation resistance and diffusion barrier properties of the coatings were also evaluated. The results obtained showed that non-reactive coatings had a coarse crystalline structure and contained Cr5Si3, CrBx, and Cr2Al phases. The introduction of nitrogen into the coating composition promoted crystallite refinement and structural amorphization. Non-reactive CrAl4Si11B21 coatings had a maximum hardness up to 29 GPa and an elastic modulus up to 365 GPa. The introduction of nitrogen into the coating composition resulted in a 16–32% reduction in mechanical properties. The CrAl6Si12B5N25 coating, which exhibited maximal plasticity index H/E = 0.100 and resistance to plastic deformation H3/E2 = 0.247 GPa, was characterized by a minimum wear rate Vw = 5.7 × 10−6 mm3N−1m−1 and a friction coefficient of 0.47. While the CrAl18Si11B5N26 coating demonstrated a record level of oxidation resistance and successfully resisted oxidation up to a temperature of 1300 °C. Full article
Show Figures

Figure 1

9 pages, 1271 KB  
Communication
Missing Crystal Structure and DFT Study of Calcium Complex Based on 4-(3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) Acetic Acid
by Roman V. Rumyantcev, Marina A. Katkova, Galina S. Zabrodina, Georgy K. Fukin and Sergey Yu. Ketkov
Molbank 2025, 2025(4), M2080; https://doi.org/10.3390/M2080 - 24 Oct 2025
Viewed by 149
Abstract
Recently, 3-hydroxy-4-pyridinones have been extensively studied as chelating bidentate agents of metal ions for various biomedical applications. This study reports the structural characterization and density functional theory (DFT) analysis of centrosymmetric calcium complex based on 4-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) acetic acid (1). [...] Read more.
Recently, 3-hydroxy-4-pyridinones have been extensively studied as chelating bidentate agents of metal ions for various biomedical applications. This study reports the structural characterization and density functional theory (DFT) analysis of centrosymmetric calcium complex based on 4-(3-hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) acetic acid (1). The structure of complex 1 was determined by X-ray crystallography. The 3-hydroxy-4-pyridinone ligand in the studied complex is bound to the calcium ion in the desired monodentate, non-bridging manner. The calcium ion has a coordination number of six and adopts a distorted octahedral geometry. Analyzed geometric characteristics corresponding to hydrogen bonds in the crystal. The theoretical study of intra- and intermolecular interactions utilized DFT with the PBE0-D3/def2-TZVP (Gaussian Inc., Wallingford, CT, USA) level of theory. The charge redistribution in the ligand was studied in comparison with the free acid molecule. Full article
Show Figures

Figure 1

16 pages, 4217 KB  
Article
Multiscale Prediction for Mechanical and Thermal Properties of Needled Composites Considering Pore and Their Application
by Shiyong Sun, Junlong Wang, Hailin Li, Rui Yang and Liming Zhou
Materials 2025, 18(21), 4855; https://doi.org/10.3390/ma18214855 - 23 Oct 2025
Viewed by 251
Abstract
Needled ceramic composites have great application prospects for high-temperature structural components. However, due to the manufacturing defects, the properties of the composite show significant dispersion, which poses great challenges for predicting the service life. Firstly, X-ray computed tomography was used to determine the [...] Read more.
Needled ceramic composites have great application prospects for high-temperature structural components. However, due to the manufacturing defects, the properties of the composite show significant dispersion, which poses great challenges for predicting the service life. Firstly, X-ray computed tomography was used to determine the pores in the composites, and multiscale models considering the pores were established. Combined with the multiscale method, the elastic modulus was predicted, and the relationship between porosity and elastic modulus was established. Secondly, the thermal diffusion coefficient was predicted. The relationship between porosity and thermal diffusion coefficient was determined. The accuracy of the multiscale method was verified by comparative analysis with the tensile experiment and the thermal diffusion experiment, respectively. Finally, based on the results of the model analysis, the correlation equations between thermal diffusion coefficient, porosity and elastic modulus were established. Thereby, new ideas are provided for the assessment of porosity and elastic properties of the composites. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

34 pages, 100622 KB  
Article
Fire Resistance and Colorimetric Analysis of Lightweight Fiber-Reinforced Foamed Alkali-Activated Hybrid Binders
by Magdalena Rudziewicz, Katarzyna Mróz, Marcin Maroszek, Paweł Wołkanowski and Marek Hebda
Materials 2025, 18(21), 4829; https://doi.org/10.3390/ma18214829 - 22 Oct 2025
Viewed by 216
Abstract
In response to escalating environmental concerns, the construction industry is under growing pressure to adopt sustainable practices. As a major consumer of natural resources and a significant emitter of greenhouse gases, it paradoxically holds the potential to become a leader in green transformation. [...] Read more.
In response to escalating environmental concerns, the construction industry is under growing pressure to adopt sustainable practices. As a major consumer of natural resources and a significant emitter of greenhouse gases, it paradoxically holds the potential to become a leader in green transformation. This study investigates the development of innovative, fire-resistant, and alkali-activated hybrid binder foams incorporating recycled materials: fly ash, coal slag, and ground brick waste, as sustainable alternatives to traditional building materials. The fire resistance performance at a technical scale and the thermal behavior of fiber-reinforced, alkali-activated hybrid binder foams synthesized from recycled aluminosilicate precursors were determined. The properties of unreinforced composite were compared with the composites reinforced with merino wool, basalt fibers, polypropylene fibers, and coconut fiber. Small-scale fire-resistance tests revealed that merino wool-reinforced composites exhibited the best thermal insulation performance, maintaining structural integrity, that is, retaining shape and continuity without delamination or collapse for 83 min under fire exposure. Analyses combining chemical characterization (X-ray fluorescence) with microstructural methods (computed tomography and colorimetry) confirmed that fire performance is strongly influenced not only by fiber type but also by pore distribution, phase composition, and oxide migration under thermal loading. These findings demonstrate the potential of fiber-reinforced foamed, alkali-activated hybrid binder as eco-efficient, printable materials for fire-safe and thermally demanding construction applications. Full article
Show Figures

Figure 1

23 pages, 2482 KB  
Article
Facile Synthesis of N-vinylindoles via Knoevenagel Condensation: Molecular Features and Biological Activities
by Anita Kornicka, Justyna Stefanowicz-Hajduk, Katarzyna Turecka, Christophe Furman, Maria Gdaniec and Łukasz Balewski
Int. J. Mol. Sci. 2025, 26(20), 10149; https://doi.org/10.3390/ijms262010149 - 18 Oct 2025
Viewed by 323
Abstract
N-vinylindoles have attracted attention for their promising role in medicinal chemistry. Therefore, developing new synthetic methods that enable access to diverse functionalized N-vinylindoles with potential pharmacological properties is highly valuable. 1-[2-aryl-1-(4,5-dihydro-1H-imidazol-2-yl)vinyl]-1H-indoles 2a-i were prepared via [...] Read more.
N-vinylindoles have attracted attention for their promising role in medicinal chemistry. Therefore, developing new synthetic methods that enable access to diverse functionalized N-vinylindoles with potential pharmacological properties is highly valuable. 1-[2-aryl-1-(4,5-dihydro-1H-imidazol-2-yl)vinyl]-1H-indoles 2a-i were prepared via Knoevenagel condensation promoted by 1H-benzotriazole, and characterized by IR, NMR, and MS spectroscopic data as well as a single-crystal X-ray diffraction-based study of the representative derivative 2g. The obtained compounds 2a-i were screened for their cytotoxic potency against human cancer cell lines (HeLa, SKOV-3, AGS) and non-cancerous cell line (HaCaT) using the MTT assay. Additional apoptosis analysis and cell cycle assay on SKOV-3 cells were conducted. Their antimicrobial activity was determined using reference strains of S. aureus, E. coli, C. albicans, and C. glabrata. The potent inhibitory activity against AGE2-BSA/sRAGE interaction of selected N-vinylindoles 2b, 2d-f, and 2h-i was evaluated by ELISA assay. A facile approach has been developed for the synthesis of a novel class of N-vinylindoles. The preliminary structure–activity considerations indicated that the presence of substituents R, such as 4-bromophenyl (compound 2f) or 2-naphthyl (compound 2i) is optimal for anticancer activity and the AGE2-BSA/sRAGE interaction inhibition. The most prominent (Z)-1-[1-(4,5-dihydro-1H-imidazol-2-yl)-2-(naphthalen-2-yl)vinyl]-1H-indole (2i) was found to strongly arrest cell cycle in the SKOV-3 cell line in the subG0 phase, inducing apoptosis. Notably, derivative 2i also exhibited the highest activity against S. aureus and C. albicans strains within the tested series. These findings highlight the substantial potential of N-vinylindole derivative 2i as a lead compound for the development of anticancer drugs with additional inhibitory activity on the AGE/RAGE interaction. Full article
(This article belongs to the Special Issue Advances in the Synthesis and Study of Novel Bioactive Molecules)
Show Figures

Figure 1

12 pages, 4432 KB  
Article
Preliminary Serial Femtosecond Crystallography Studies of Myoglobin from Equine Skeletal Muscle
by Jaehyun Park, Sehan Park and Ki Hyun Nam
Crystals 2025, 15(10), 905; https://doi.org/10.3390/cryst15100905 - 18 Oct 2025
Viewed by 293
Abstract
Myoglobin (Mb), a heme-containing protein, plays crucial roles in storing and transporting oxygen in muscle cells. Various Mb structures have been extensively determined using conventional cryogenic crystallography, providing valuable information for understanding the molecular mechanisms of the protein. However, this approach has limitations [...] Read more.
Myoglobin (Mb), a heme-containing protein, plays crucial roles in storing and transporting oxygen in muscle cells. Various Mb structures have been extensively determined using conventional cryogenic crystallography, providing valuable information for understanding the molecular mechanisms of the protein. However, this approach has limitations attributable to cryogenic temperatures and radiation damage. Serial femtosecond crystallography (SFX) using X-ray free-electron lasers is an emerging technique that enables the determination of biologically relevant room-temperature structures without causing radiation damage. In this study, we assessed the crystallization, collection, and processing of SFX diffraction data of Mb from equine skeletal muscle. Needle- and needle cluster-shaped Mb crystals were obtained using the microbatch method. Fixed-target SFX data collection was performed at the Pohang Accelerator Laboratory X-ray Free Electron Laser, yielding 1389 indexed diffraction patterns. The phase problem was solved by molecular replacement. The preliminary Mb structure determined at 2.3-Å resolution in this study exhibited subtle structural differences in the heme environment compared with previously reported Mb structures determined by SFX. These results both confirm the feasibility of myoglobin SFX experiments and establish a foundation for future time-resolved studies aiming to visualize ligand binding and oxygen transport. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

10 pages, 29765 KB  
Article
Micro-Tomographic Investigation of a North-Western Pacific Polymetallic Nodule
by Teddy Craciunescu, Octavian G. Duliu, Ion Tiseanu and Stefan A. Szobotka
Quaternary 2025, 8(4), 56; https://doi.org/10.3390/quat8040056 - 17 Oct 2025
Viewed by 279
Abstract
Micro-computed tomography (μCT) and X-ray Fluorescence (XRF) were used to investigate a Polymetallic Nodule (PN) from the North-Western Pacific abyssal plain to gather more information concerning the environmental changes that could be reflected by the PN’s internal structure. Despite its small [...] Read more.
Micro-computed tomography (μCT) and X-ray Fluorescence (XRF) were used to investigate a Polymetallic Nodule (PN) from the North-Western Pacific abyssal plain to gather more information concerning the environmental changes that could be reflected by the PN’s internal structure. Despite its small size, for example, an ovoid measured 48 × 38 mm, the μCT revealed the presence of four concentric layers with varying thicknesses and opacities to X-rays, all developed around a fragment of a tooth, most likely belonging to a Lamniformes shark. The same micro-tomograph, functioning as an XRF spectrometer, allowed for the determination of the mass fractions of Mn and Fe in the first two external layers. To estimate the PN age, a model that considers PN growth rate proportional to the ratio of Mn to the square of Fe mass fractions was used, and, by extrapolating it to the entire PN, its age was estimated at 1.56 ± 0.22 Ma, i.e., Early Pleistocene. Therefore, the correlated use of μCT and FRX, two noninvasive methods, allowed to highlight a shark tooth fragment as being the PN nucleus as well as determine its absolute age. Full article
Show Figures

Figure 1

21 pages, 3509 KB  
Article
Microwave-Assisted Preparation of Coffee-Based Activated Carbons: Characteristics, Properties, and Potential Application as Adsorbents for Water Purification
by Przemysław Pączkowski, Viktoriia Kyshkarova, Viktor Nikolenko, Oksana Arkhipenko, Inna Melnyk and Barbara Gawdzik
Molecules 2025, 30(20), 4123; https://doi.org/10.3390/molecules30204123 - 17 Oct 2025
Viewed by 331
Abstract
Activated carbons were synthesized from coffee grounds using phosphoric acid as a chemical activator and microwave-assisted carbonization as a rapid and energy-efficient method. Then the prepared carbons were surface-treated with cold plasma to improve their chemical properties and adsorption efficiency. The structural properties [...] Read more.
Activated carbons were synthesized from coffee grounds using phosphoric acid as a chemical activator and microwave-assisted carbonization as a rapid and energy-efficient method. Then the prepared carbons were surface-treated with cold plasma to improve their chemical properties and adsorption efficiency. The structural properties and chemical structure of the carbons were determined using nitrogen adsorption–desorption analysis, X-ray photoelectron spectroscopy, as well as X-ray microanalysis by means of scanning electron microscopy. The effect of cold plasma treatment on surface functionality and porosity was investigated. The resulting activated carbons were tested for their potential use as sorbents for the removal of ciprofloxacin, a commonly used antibiotic, from aqueous solutions. The effects of solution pH, sorption kinetics, and initial concentration were investigated. Adsorption kinetics followed a pseudo-second-order model, and the equilibrium data were well described by both the Langmuir and Freundlich isotherms, indicating a combination of monolayer adsorption on homogeneous sites and multilayer adsorption on heterogeneous surfaces. Plasma-treated carbon demonstrated significantly increased adsorption capacity (42.6–120.6 mg g−1) compared to the unactivated samples (20.2–92.4 mg g−1). Desorption experiments revealed that the plasma-treated carbon retained over 90% efficiency after seven cycles, confirming its excellent reusability and regeneration potential for practical water treatment applications. Full article
Show Figures

Figure 1

15 pages, 1977 KB  
Article
Single-Crystal X-Ray Diffraction Studies of Derivatives of Phenolphthalein (3,3-Bis(4-hydroxyphenyl)isobenzofuran-1(3H)-one)
by Brian A. Chalmers, David B. Cordes, Aidan P. McKay, Iain L. J. Patterson, Russell J. Pearson, Joscelyn H. Sequeira-Shuker, Iain A. Smellie and Nadiia Vladymyrova
Crystals 2025, 15(10), 901; https://doi.org/10.3390/cryst15100901 - 17 Oct 2025
Viewed by 294
Abstract
An investigation of the molecular structure of a series of phenolphthalein derivatives is presented. The X-ray structures of thymolphthalein, 2,5-dimethylphenolphthalein, and 2,6-dimethylphenolphthalein have been determined for the first time. Furthermore, a series of related 3-(4-hydroxy-dialkyl)-3-(4-hydroxyphenyl)isobenzofuran-1(3H)-ones have also been prepared, and X-ray [...] Read more.
An investigation of the molecular structure of a series of phenolphthalein derivatives is presented. The X-ray structures of thymolphthalein, 2,5-dimethylphenolphthalein, and 2,6-dimethylphenolphthalein have been determined for the first time. Furthermore, a series of related 3-(4-hydroxy-dialkyl)-3-(4-hydroxyphenyl)isobenzofuran-1(3H)-ones have also been prepared, and X-ray structures obtained. The present study allows for comparison of the structures of substituted phenolphthalein derivatives, with a particular focus on the effect of different alkyl groups on the structures. Full article
(This article belongs to the Section Organic Crystalline Materials)
Show Figures

Figure 1

Back to TopTop