Missing Crystal Structure and DFT Study of Calcium Complex Based on 4-(3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) Acetic Acid
Abstract
1. Introduction
2. Results
3. Materials and Methods
3.1. X-Ray Crystallography
3.2. Theoretical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, M.A.; Irto, A.; Buglyo, P.; Chaves, S. Hydroxypyridinone-based metal chelators towards ecotoxicity: Remediation and biological mechanisms. Molecules 2022, 27, 1966. [Google Scholar] [CrossRef]
- Santos, M.A.; Marques, S.M.; Chaves, S. Hydroxypyridinones as “privileged” chelating structures for the design of medicinal drugs. Coord. Chem. Rev. 2012, 256, 240–259. [Google Scholar] [CrossRef]
- Irto, A.; Cardiano, P.; Chand, K.; Cigala, R.M.; Crea, F.; De Stefano, C.; Gattuso, G.; Sammartano, S.; Santos, M.A. Complexation of environmentally and biologically relevant metals with bifunctional 3-hydroxy-4-pyridinones. J. Mol. Liq. 2020, 319, 114349. [Google Scholar] [CrossRef]
- Katkova, M.A.; Zabrodina, G.S.; Rumyantcev, R.V.; Zhigulin, G.Y.; Skabitsky, I.V.; Fomina, I.G.; Bekker, O.B.; Ketkov, S.Y.; Eremenko, I.L. Insight into design of 3-hydroxy-4-pyridinone functionalized with isoniazid fragment: Structural characterization and antimycobacterial evaluation. Mendeleev Commun. 2024, 34, 850–853. [Google Scholar] [CrossRef]
- Katkova, M.A.; Zhigulin, G.Y.; Baranov, E.V.; Zabrodina, G.S.; Muravyeva, M.S.; Ketkov, S.Y.; Fomina, I.G.; Eremenko, I.L. Specific Features of Binding Bioactive Organic Molecules with the Metallic Matrix of Heteronuclear 3d-4f Structures Containing Soft and Hard Metallocenters Using the Nd(III)–Cu(II) Complex as an Example. Rus. J. Coord. Chem. 2023, 49, 601–611. [Google Scholar] [CrossRef]
- Garcia-Raso, A.; Terron, A.; Fiol, J.J.; Lopez-Zafra, A.; Herreros, M.; Capilla, I.; Dominguez, M.A.; Barcelo-Oliver, M.; Spingler, B.; Frontera, A. Synthesis, X-ray characterization, and DFT study of six deferiprone analogues. J. Mol. Struct. 2025, 1326, 141123. [Google Scholar] [CrossRef]
- Cilibrizzi, A.; Abbate, V.; Chen, Y.L.; Ma, Y.; Zhou, T.; Hider, R.C. Hydroxypyridinone Journey into Metal Chelation. Chem. Rev. 2018, 118, 7657–7701. [Google Scholar] [CrossRef] [PubMed]
- Queiros, C.; Amorim, M.J.; Leite, A.; Ferreira, M.; Gameiro, P.; de Castro, B.; Biernacki, K.; Magalhaes, A.; Burgess, J.; Rangel, M. Nickel(II) and Cobalt(II) 3-Hydroxy-4-pyridinone complexes: Synthesis, characterization and speciation studies in aqueous solution. Eur. J. Inorg. Chem. 2011, 2011, 131–140. [Google Scholar] [CrossRef]
- Rangel, M.; Leite, A.; Silva, A.M.N.; Moniz, T.; Nunes, A.; Amorim, M.J.; Queirós, C.; Cunha-Silva, L.; Gameiro, P.; Burgess, J. Distinctive EPR signals provide an understanding of the affinity of bis-(3-hydroxy-4-pyridinonato) copper(II) complexes for hydrophobic environments. Dalton Trans. 2014, 43, 9722–9731. [Google Scholar] [CrossRef]
- Katkova, M.A.; Rumyantcev, R.V.; Zabrodina, G.S.; Fomina, I.G.; Bekker, O.B.; Ketkov, S.Y.; Fukin, G.K.; Eremenko, I.L. Coordination Polymer Based on Pentacopper Metallamacrocyclic Units Featured by 3-Hydroxy-4-pyridinone Ligands: Synthesis, Structure and Biological Activity. Rus. J. Coord. Chem. 2025, 51, 438–446. [Google Scholar] [CrossRef]
- Orvig, C.; Rettig, S.J.; Zhang, Z. 1-Carboxymethyl-3-hydroxy-2-methyl-4(1H)-pyridinone (monoclinic form 2). Acta Crystallogr. Sect. C Struct. Chem. 1994, 50, 1511–1514. [Google Scholar] [CrossRef]
- Salido, M.L.G.; Mascaros, P.A.; Garzon, R.L.; Valero, M.D.G.; Low, J.N.; Gallagher, J.F.; Glidewell, C. Hydrated metal(II) complexes of N-(6-amino-3,4-dihydro-3-methyl-5-nitroso-4-oxopyrimidin-2-yl) derivatives of glycine, glycylglycine, threonine, serine, valine and methionine: A monomeric complex and coordination polymers in one, two and three dimensions linked by hydrogen bonding. Acta Cryst. Sect. B Struct. Sci. 2004, 60, 46–64. [Google Scholar] [CrossRef]
- Perrin, C.L.; Lau, J.S.; Kim, Y.-J.; Karri, P.; Moore, C.; Rheingold, A.L. Asymmetry of the “Strongest” OHO Hydrogen Bond, in the Monoanion of (±)-α,α′-Di-tert-butylsuccinate. J. Am. Chem. Soc. 2009, 131, 13548–13554. [Google Scholar] [CrossRef]
- Hao, X.-M.; Zhao, S.; Wang, H.; Wu, Y.-B.; Yang, D.; Zhang, X.-F.; Xu, Z.-L. In vitro release of theophylline and cytotoxicity of two new metal–drug complexes. Polyhedron 2018, 142, 38–42. [Google Scholar] [CrossRef]
- Elgemeie, G.H.; Fathy, N.M.; Shaarawi, S.; Jones, P.G. trans-Tetraaquabis{(E)-2-cyano-1-[(ethoxycarbonyl)methylsulfanyl]-2-(1-naphthylaminocarbonyl)ethene-1-thiolato}calcium(II) diethyl ether disolvate. Acta Cryst. Sect. E Struct. Rep. Online 2010, 66, m554–m555. [Google Scholar] [CrossRef] [PubMed]
- Lu, G.-D.; Zhang, Z.-H.; Tong, Y.-Y.; Liu, X.-M.; Ma, X.-F.; Xuan, X.-P. Structural Transformation Pathways of Alkaline Earth Family Coordination Polymers Containing 3,3′,5,5′-Biphenyl Tetracarboxylic Acid. Chem. Asian J. 2019, 14, 1970–1976. [Google Scholar] [CrossRef]
- Arsenyev, M.; Baranov, E.; Chesnokov, S.; Abakumov, G. 4,6-Di-tert-butyl-2,3-dihydroxybenzaldehyde. Acta Cryst. Sect. E Struct. Rep. Online 2013, 69, o1565. [Google Scholar] [CrossRef] [PubMed]
- Groom, C.R.; Bruno, I.J.; Lightfoot, M.P.; Ward, S.C. The Cambridge Structural Database. Acta Cryst. Sect. B Struct. Sci. Cryst. Eng. Mat. 2016, 72, 171–179. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Gao, S.; Huo, L.-H.; Zhao, J.-G. Tetraaquabis[(4-oxo-4H-pyridin-1-yl)acetato]manganese(II). Acta Cryst. Sect. E Struct. Rep. Online 2007, 63, m1514. [Google Scholar] [CrossRef]
- Huang, Y.-Q.; Chen, H.-Y.; Li, Z.-G.; Wang, Q.; Wang, Y.; Cao, X.-Q.; Zhao, Y. Influence of N-donor ancillary ligands on the structures of three cadmium(II) complexes with L-shaped carboxylate ligand. Inorg. Chim. Acta 2017, 466, 71–77. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Gao, S.; Huo, L.-H.; Zhao, H.; Zhao, J.-G.; Ng, S.W. Hexaaquanickel(II) bis[(4-oxo-4H-pyridin-1-yl)acetate] dehydrate. Acta Cryst. Sect. E Struct. Rep. Online 2004, 60, m544. [Google Scholar] [CrossRef]
- Zhang, Z.-Y.; Gao, S.; Huo, L.-H.; Zhao, J.-G. 3-Hydroxypyridinium-1-acetate monohydrate. Acta Cryst. Sect. E Struct. Rep. Online 2005, 61, o3554–o3555. [Google Scholar] [CrossRef]
- Zhao, H.; Huo, L.-H.; Gao, S.; Zhang, Z.-Y.; Zhao, J.-G.; Ng, S.W. 1-Carboxymethyl-3-hydroxypyridinium chloride-3-hydroxypyridinium-1-acetate (1/1). Acta Cryst. Sect. E Struct. Rep. Online 2004, 60, o1501–o1503. [Google Scholar] [CrossRef]
- Liu, J.-J.; Liu, N.; Lu, Y.-W.; Zhao, G.-Z. Three Photochromic Co-crystals Based on Viologen Moiety. Chin. J. Inorg. Chem. 2021, 37, 937–944. [Google Scholar] [CrossRef]
- Janiak, C. A critical account on π–π stacking in metal complexes with aromatic nitrogen-containing ligands. J. Chem. Soc. Dalton Trans. 2000, 3885–3896. [Google Scholar] [CrossRef]
- Zefirov, Y.V.; Zorkii, P.M. New applications of van der Waals radii in chemistry. Russ. Chem. Rev. 1995, 64, 415–428. [Google Scholar] [CrossRef]
- Jarzembska, K.N.; Kubsik, M.; Kamiński, R.; Woźniak, K.; Dominiak, P.M. From a single molecule to molecular crystal architectures: Structural and energetic studies of selected uracil derivatives. Cryst. Growth Des. 2012, 12, 2508–2524. [Google Scholar] [CrossRef]
- Rumyantsev, R.V.; Fukin, G.K. Intramolecular nonvalent interactions in the EuII2EuIII(μ-ORF)2(μ2-ORF)3(μ3-ORF)2(DME)2 complex. Russ. J. Coord. Chem. 2019, 45, 767–775. [Google Scholar] [CrossRef]
- Rumyantsev, R.V.; Fukin, G.K.; Baranov, E.V.; Cherkasov, A.V.; Kozlova, E.A. Application of the molecular invariom model for the study of interactions involving fluorine atoms in the {YbII2(μ2-OCH(CF3)2)3(μ3-OCH(CF3)2)2YbIII(OCH(CF3)2)2(THF)(Et2O)} Complex. Russ. J. Coord. Chem. 2021, 47, 235–243. [Google Scholar] [CrossRef]
- Rumyantsev, R.V.; Zabrodina, G.S.; Katkova, M.A.; Ketkov, S.Y.; Fukin, G.K. Study of Intramolecular Interactions in the Polyoxovanadate Cluster [(SO4) ⊂ V16O42]6–. J. Struct. Chem. 2023, 64, 1305–1313. [Google Scholar] [CrossRef]
- Espinosa, E.; Molins, E.; Lecomte, C. Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem. Phys. Lett. 1998, 285, 170–173. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules—A Quantum Theory; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Bader, R.F.W. A bond path: A universal indicator of bonded interactions. J. Phys. Chem. A 1998, 102, 7314–7323. [Google Scholar] [CrossRef]
- Rigaku Oxford Diffraction. CrysAlis Pro Software System, version 1.171.41.93a; Rigaku Corporation: Wroclaw, Poland, 2020.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef] [PubMed]
- Keith, T.A. AIMAll, Version 17.11.14; TK Gristmill Software: Overland Park, KS, USA, 2013.
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Spackman, P.R.; Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals. J. Appl. Cryst. 2021, 54, 1006–1011. [Google Scholar] [CrossRef]




| Bond | 1, Å | HL, Å [11] | Angle | 1, Deg | HL, Deg [11] |
|---|---|---|---|---|---|
| Ca(1)-O(1) | 2.2710(6) | N/A | O(1)-Ca(1)-O(5) | 85.85(2) | N/A |
| Ca(1)-O(5) | 2.3542(6) | N/A | O(1)-Ca(1)-O(6) | 97.39(2) | N/A |
| Ca(1)-O(6) | 2.3694(6) | N/A | O(1)-Ca(1)-O(5A) | 94.15(2) | N/A |
| O(1)-C(1) | 1.2745(9) | 1.321(2) | O(1)-Ca(1)-O(6A) | 82.61(2) | N/A |
| O(1)-H(1) | N/A | 1.05(3) | O(5)-Ca(1)-O(6) | 84.82(2) | N/A |
| O(2)-C(2) | 1.3594(9) | 1.352(2) | O(5)-Ca(1)-O(6A) | 95.18(2) | N/A |
| O(2)-H(2) | 0.844(15) | 0.96(2) | O(3)-C(8)-O(4) | 125.25(7) | 125.3(2) |
| O(1)…H(2) | 2.215(15) | 2.40(3) | O(1)-C(1)-C(2) | 119.37(7) | 118.0(2) |
| O(3)-C(8) | 1.2419(9) | 1.226(2) | O(1)-C(1)-C(5) | 124.65(7) | 124.1(2) |
| O(4)-C(8) | 1.2736(9) | 1.273(2) | C(2)-C(1)-C(5) | 115.98(6) | 117.9(2) |
| N(1)-C(3) | 1.3757(10) | 1.364(2) | O(2)-C(2)-C(1) | 117.84(6) | 121.5(1) |
| N(1)-C(4) | 1.3552(11) | 1.355(2) | O(2)-C(2)-C(3) | 120.09(7) | 117.8(2) |
| N(1)-C(7) | 1.4637(10) | 1.469(2) | C(1)-C(2)-C(3) | 122.07(7) | 120.6(2) |
| C(1)-C(2) | 1.4336(10) | 1.404(2) | C(2)-C(3)-N(1) | 118.59(7) | 118.9(2) |
| C(2)-C(3) | 1.3777(10) | 1.384(2) | C(3)-N(1)-C(4) | 120.96(6) | 120.9(1) |
| C(4)-C(5) | 1.3645(11) | 1.355(3) | N(1)-C(4)-C(5) | 121.92(7) | 121.3(2) |
| C(1)-C(5) | 1.4107(11) | 1.387(3) | C(4)-C(5)-C(1) | 120.46(7) | 120.4(2) |
| C(3)-C(6) | 1.4988(11) | 1.489(3) |
| D–H…A | D–H, Å | H…A, Å | D…A, Å | ∠DHA, Deg |
|---|---|---|---|---|
| Intramolecular contacts | ||||
| O(2)–H(2)…O(1) | 0.844(15) | 2.215(15) | 2.6951(8) | 116.1(12) |
| Intermolecular contacts | ||||
| O(2)–H(2)…O(3) i | 0.844(15) | 2.004(15) | 2.7957(8) | 155.9(14) |
| O(5)–H(5A)…O(4) ii | 0.868(17) | 2.078(17) | 2.8922(9) | 155.9(14) |
| O(5)–H(5B)…O(4) iii | 0.855(16) | 1.827(16) | 2.6808(9) | 177.9(16) |
| O(6)–H(6A)…O(4) iv | 0.841(18) | 1.937(18) | 2.7663(8) | 168.7(16) |
| O(6)–H(6B)…O(3) ii | 0.848(17) | 1.946(18) | 2.7685(9) | 163.1(15) |
| Bond | ρ(r), au | ∇2ρ(r), au | he(r), au | EEML, kcal/mol |
|---|---|---|---|---|
| O(3)…H(6B) | 0.056 | 0.124 | −0.014 | 18.6 |
| H(6B)…O(3) | 0.055 | 0.124 | −0.014 | 18.5 |
| O(4)…H(5AA) | 0.051 | 0.126 | −0.011 | 16.7 |
| H(5AA)…O(4) | 0.051 | 0.126 | −0.011 | 16.7 |
| H(2)…O(3) | 0.032 | 0.109 | −0.001 | 9.0 |
| O(3)…H(2) | 0.032 | 0.109 | −0.001 | 8.9 |
| O(1)…H(6F) | 0.008 | 0.031 | 0.002 | 1.5 |
| H(6F)…O(1) | 0.008 | 0.031 | 0.002 | 1.5 |
| C(2)…C(2) | 0.006 | 0.019 | 0.001 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rumyantcev, R.V.; Katkova, M.A.; Zabrodina, G.S.; Fukin, G.K.; Ketkov, S.Y. Missing Crystal Structure and DFT Study of Calcium Complex Based on 4-(3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) Acetic Acid. Molbank 2025, 2025, M2080. https://doi.org/10.3390/M2080
Rumyantcev RV, Katkova MA, Zabrodina GS, Fukin GK, Ketkov SY. Missing Crystal Structure and DFT Study of Calcium Complex Based on 4-(3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) Acetic Acid. Molbank. 2025; 2025(4):M2080. https://doi.org/10.3390/M2080
Chicago/Turabian StyleRumyantcev, Roman V., Marina A. Katkova, Galina S. Zabrodina, Georgy K. Fukin, and Sergey Yu. Ketkov. 2025. "Missing Crystal Structure and DFT Study of Calcium Complex Based on 4-(3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) Acetic Acid" Molbank 2025, no. 4: M2080. https://doi.org/10.3390/M2080
APA StyleRumyantcev, R. V., Katkova, M. A., Zabrodina, G. S., Fukin, G. K., & Ketkov, S. Y. (2025). Missing Crystal Structure and DFT Study of Calcium Complex Based on 4-(3-Hydroxy-2-methyl-4-oxopyridin-1(4H)-yl) Acetic Acid. Molbank, 2025(4), M2080. https://doi.org/10.3390/M2080

