Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (552)

Search Parameters:
Keywords = X-ray fluorescence analyzer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 4622 KiB  
Article
Durability Analysis of Brick-Faced Clay-Core Walls in Traditional Residential Architecture in Quanzhou, China
by Yuhong Ding, Ruiming Guan, Li Chen, Jinxuan Wang, Yangming Zhang, Yili Fu and Canjin Zhang
Coatings 2025, 15(8), 909; https://doi.org/10.3390/coatings15080909 (registering DOI) - 3 Aug 2025
Abstract
This study analyzes the durability of brick-faced clay-core walls (BCWs) in the traditional residential architecture of Quanzhou—a UNESCO World Heritage City. Taking the northern gable of Ding Gongchen’s former residence as an example, the mechanical properties, microscopic structure, and changes in chemical symbol, [...] Read more.
This study analyzes the durability of brick-faced clay-core walls (BCWs) in the traditional residential architecture of Quanzhou—a UNESCO World Heritage City. Taking the northern gable of Ding Gongchen’s former residence as an example, the mechanical properties, microscopic structure, and changes in chemical symbol, oxides and minerals of the red bricks and clay-cores were analyzed using finite element mechanics analysis (FEM), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and X-ray diffraction (XRD). The results indicate a triple mechanism: (1) The collaborative protection and reinforcement mechanism of “brick-wrapped-clay”. (2) The infiltration and destruction mechanism of external pollutants. (3) The material stability mechanism of silicate minerals. Therefore, the key to maintaining the durability of BCWs lies in the synergistic effect of brick and clay materials and the stability of silicate mineral materials, providing theoretical and methodological support for sustainable research into brick and clay constructions. Full article
26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 (registering DOI) - 31 Jul 2025
Viewed by 146
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

15 pages, 1226 KiB  
Article
Functional Textile Socks in Rheumatoid Arthritis or Psoriatic Arthritis: A Randomized Controlled Study
by Kirkke Reisberg, Kristiine Hõrrak, Aile Tamm, Margarita Kõrver, Liina Animägi and Jonete Visnapuu
Textiles 2025, 5(3), 30; https://doi.org/10.3390/textiles5030030 (registering DOI) - 31 Jul 2025
Viewed by 83
Abstract
There is limited knowledge about the benefits of functional textile in arthritis management. This study aimed to evaluate the effect of wearing functional socks in patients with rheumatoid or psoriatic arthritis. Patients were randomized into an experimental group (n = 23) and [...] Read more.
There is limited knowledge about the benefits of functional textile in arthritis management. This study aimed to evaluate the effect of wearing functional socks in patients with rheumatoid or psoriatic arthritis. Patients were randomized into an experimental group (n = 23) and control group (n = 18). The intervention involved wearing functional textile socks for 12 weeks. Sock composition was analyzed using X-ray fluorescence spectrometry and scanning electron microscopy. Outcome measures included the Numeric Rating Scale, Health Assessment Questionnaire–Disability Index (HAQ-DI), and RAND-36 (Estonian version). At week 12, the experimental group showed significantly lower metatarsophalangeal and toe joint pain (p = 0.001), stiffness (p = 0.005), and ankle stiffness (p = 0.017) scores than the control group. Improvements were also observed in HAQ-DI reaching (p = 0.035) and activity (p = 0.028) scores. RAND-36 scores were higher in physical functioning (p = 0.013), social functioning (p = 0.024), and bodily pain (p = 0.006). Role limitations due to physical problems improved in the experimental group but worsened in the control group (p = 0.029). In conclusion, wearing functional socks led to some statistically significant improvements in foot and ankle pain and stiffness, physical function, and health-related quality of life. However, the effect sizes were small, and the clinical relevance of these findings should be interpreted with caution. Full article
(This article belongs to the Special Issue Advances of Medical Textiles: 2nd Edition)
Show Figures

Figure 1

25 pages, 15689 KiB  
Article
Mineralogical and Chemical Properties and REE Content of Bauxites in the Seydişehir (Konya, Türkiye) Region
by Muazzez Çelik Karakaya and Necati Karakaya
Minerals 2025, 15(8), 798; https://doi.org/10.3390/min15080798 (registering DOI) - 29 Jul 2025
Viewed by 284
Abstract
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since [...] Read more.
The most important bauxite deposits in Türkiye are located in the Seydişehir (Konya) and Akseki (Antalya) regions, situated along the western Taurus Mountain, with a total reserve of approximately 44 million tons. Some of the bauxite deposits have been exploited for alumina since the 1970s. In this study, bauxite samples, collected from six different deposits were examined to determine their mineralogical and chemical composition, as well as their REE content, with the aim of identifying which bauxite types are enriched in REEs and assessing their economic potential. The samples included massive, oolitic, and brecciated bauxite types, which were analyzed using optical microscopy, X-ray diffraction (XRD), X-ray fluorescence (XRF) and inductive coupled plasma-mass spectrometry (ICP-MS), field emission scanning electron microscopy (FESEM-EDX), and electron probe micro-analysis (EPMA). Massive bauxites were found to be more homogeneous in both mineralogical and chemical composition, predominantly composed of diaspore, boehmite, and rare gibbsite. Hematite is the most abundant iron oxide mineral in all bauxites, while goethite, rutile, and anatase occur in smaller quantities. Quartz, feldspar, kaolinite, dolomite, and pyrite were specifically determined in brecciated bauxites. Average oxide contents were determined as 52.94% Al2O3, 18.21% Fe2O3, 7.04% TiO2, and 2.69% SiO2. Na2O, K2O, and MgO values are typically below 0.5%, while CaO averages 3.54%. The total REE content of the bauxites ranged from 161 to 4072 ppm, with an average of 723 ppm. Oolitic-massive bauxites exhibit the highest REE enrichment. Cerium (Ce) was the most abundant REE, ranging from 87 to 453 ppm (avg. 218 ppm), followed by lanthanum (La), which reached up to 2561 ppm in some of the massive bauxite samples. LREEs such as La, Ce, Pr, and Nd were notably enriched compared to HREEs. The lack of a positive correlation between REEs and major element oxides, as well as with their occurrences in distinct association with Al- and Fe-oxides-hydroxides based on FESEM-EDS and EPMA analyses, suggests that the REEs are present as discrete mineral phases. Furthermore, these findings indicate that the REEs are not incorporated into the crystal structures of other minerals through isomorphic substitution or adsorption. Full article
(This article belongs to the Special Issue Critical Metal Minerals, 2nd Edition)
Show Figures

Figure 1

14 pages, 1428 KiB  
Article
Extraction of Chitin, Chitosan, and Calcium Acetate from Mussel Shells for Sustainable Waste Management
by Chaowared Seangarun, Somkiat Seesanong, Banjong Boonchom, Nongnuch Laohavisuti, Pesak Rungrojchaipon, Wimonmat Boonmee, Sirichet Punthipayanon and Montree Thongkam
Int. J. Mol. Sci. 2025, 26(15), 7107; https://doi.org/10.3390/ijms26157107 - 23 Jul 2025
Viewed by 460
Abstract
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions [...] Read more.
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions and calcium solution. The solid was further purified to produce chitin by deproteinization and decolorization processes, and then the deacetylation process was used to obtain chitosan. The calcium solution was evaporated to produce calcium acetate powder. The yields of extracted chitin, chitosan, and calcium acetate from 100 g of mussel shells were 2.98, 2.70, and 165.23 g, respectively. The prepared chitin, chitosan, and calcium acetate were analyzed by Fourier transform infrared (FTIR) spectrophotometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) to confirm the chemical and physical properties. The analysis results of chitin and chitosan revealed the similarity to chitosan derived from crustaceans and insects in terms of functional group, structure and morphologies. The prepared calcium acetate shows FTIR and XRD data corresponding to calcium acetate monohydrate (Ca(CH3COO)2·H2O) similar to synthesized calcium acetate in previous research. In addition, the mineral contents of calcium acetate identified by X-ray fluorescence (XRF) analysis exhibit 97.8% CaO with non-toxic impurities. This work demonstrated the potential of the production process of chitin, chitosan, and calcium acetate for the development of a sustainable industrial process with competitive functional performance against the commercial chitin and chitosan production process using crustacean shells and supported the implementation of a circular economy. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador
by Daniel Garcés, Samantha Jiménez-Oyola, Yolanda Sánchez-Palencia, Fredy Guzmán-Martínez, Raúl Villavicencio-Espinoza, Sebastián Jaramillo-Zambrano, Victoria Rosado, Bryan Salgado-Almeida and Josué Marcillo-Guillén
Minerals 2025, 15(8), 767; https://doi.org/10.3390/min15080767 - 22 Jul 2025
Viewed by 341
Abstract
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization [...] Read more.
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization and X-ray Fluorescence Spectrometry (XRF) were used to analyze the content of potentially toxic elements (PTEs) of interest (As, Cd, Cr, Cu, Ni, Pb, and Zn), and X-ray Diffraction (XRD) for mineralogical characterization. The contamination index (IC) was calculated to assess the potential hazard associated with the content of PTEs in the mining wastes. To assess environmental risks, leaching tests were carried out to evaluate the potential release of PTEs, and Acid-Base Accounting (ABA) tests were conducted to determine the likelihood of acid mine drainage formation. The results revealed that the PETs concentration exceeded the maximum permissible limits in all samples, according to Ecuadorian regulations: As, Pb, and Cd were identified as critical contaminants. Mineralogically, quartz was the dominant phase, followed by carbonates (calcite, dolomite and magnesite), phyllosilicates (chlorite and illite), and minor amounts of pyrite and talc. The IC indicated high to very high contamination risk levels, with As being the predominant contributor. Although leaching tests met the established limits for non-hazardous mining waste, the ABA test showed that all samples had a high potential for long-term acid generation. These results underscore the need for implementing management strategies to mitigate the environmental impacts and the development of plans to protect local ecosystems and communities from the adverse effects of mining activities. Full article
Show Figures

Figure 1

17 pages, 635 KiB  
Article
Environmental Arsenic Exposure, Biomarkers and Lung Function in Children from Yaqui Communities in Sonora, Mexico
by Ana G. Dévora-Figueroa, Anaid Estrada-Vargas, Jefferey L. Burgess, Paloma I. Beamer, José M. Guillen-Rodríguez, Leticia García-Rico, Diana Evelyn Villa-Guillen, Iram Mondaca-Fernández and Maria M. Meza-Montenegro
J. Xenobiot. 2025, 15(4), 115; https://doi.org/10.3390/jox15040115 - 8 Jul 2025
Viewed by 501
Abstract
Arsenic exposure in children and adults has been associated with respiratory symptoms, respiratory infections, and decreased lung function. The goal of this study was to evaluate the relationship between environmental arsenic exposure and serum pneumoproteins and lung function. A cross-sectional study was conducted [...] Read more.
Arsenic exposure in children and adults has been associated with respiratory symptoms, respiratory infections, and decreased lung function. The goal of this study was to evaluate the relationship between environmental arsenic exposure and serum pneumoproteins and lung function. A cross-sectional study was conducted including 175 children exposed to arsenic by drinking water (range: 7.4 to 91 µg/L) and soil (range: 4.76 to 35.93 mg/kg), from some Yaqui villages. Arsenic was analyzed in dust and urine using field-portable X-ray fluorescence spectrometry and ICP/OES, respectively. Serum was analyzed for Clara Cell protein (CC16) and Matrix Metalloproteinase-9 (MMP-9) using immunoassays, and lung function was evaluated by spirometry. The results showed that increased arsenic in drinking water was associated with reduced forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) ratio (β = −0.027, p = 0.0000) whereas, contrary to expectations, arsenic in dust was associated with increased FEV1/FVC (β = 0.004, p = 0.0076). Increased urinary arsenic was associated with reduced % predicted FEV1 (β = −0.723, p = 0.0152) and reduced FEV1/FVC ratio (β = −0.022, p = 0.0222). Increased serum MMP-9 was associated with reduced FEV1/FVC ratio (β = −0.017, p = 0.0167). Children with % predicted FEV1 values less than 80 had the lowest levels of CC16 (Median 29.0 ng/mL, IQR 21.3, 37.4, p = 0.0148). As a conclusion, our study evidenced an impairment in lung function in children exposed to low arsenic levels. Full article
Show Figures

Graphical abstract

15 pages, 2832 KiB  
Article
Processing of Low-Grade Cu–Pb–Zn Sulfide Polymetallic Ore Stockpiles for Sustainable Raw Material Recovery by Froth Flotation
by Michal Marcin, Martin Sisol, Martina Laubertová, Dominika Marcin Behunová and Igor Ďuriška
Processes 2025, 13(7), 2158; https://doi.org/10.3390/pr13072158 - 7 Jul 2025
Viewed by 339
Abstract
This study demonstrated the successful recovery of zinc, lead, and copper collective concentrates from historical metal-bearing mine tailings (sulfide–polymetallic ore with a composition of 7.38% Zn, 1.45% Pb, and 0.49% Cu) using froth flotation techniques, which were originally developed during uranium ore mining. [...] Read more.
This study demonstrated the successful recovery of zinc, lead, and copper collective concentrates from historical metal-bearing mine tailings (sulfide–polymetallic ore with a composition of 7.38% Zn, 1.45% Pb, and 0.49% Cu) using froth flotation techniques, which were originally developed during uranium ore mining. Froth flotation techniques were used to justify suitability for recovering metals. The effects of a dosage of the foaming agent Polyethylene glycol (PEG 600) at 50 and 100 g t−1, collector types Aerophine 3418A (AERO), Danafloat 067 (DF), and potassium ethyl xanthate (KEX) at 50 and 80 g t−1, and a suspension density of 300 and 500 g L−1 on froth flotation collective concentrates were investigated. The final collective concentrate achieved recoveries exceeding 91% for lead (Pb), 88% for copper (Cu), and 87% for zinc (Zn). The obtained concentrates were analyzed using Atomic Absorption Spectroscopy (AAS) and X-ray Fluorescence Spectrometry (XRF), while selected samples were further examined via Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray Spectroscopy (EDS). The resulting sulfide concentrates can subsequently be treated using suitable hydrometallurgical techniques. The application of these concentrates in metal production would help reduce the environmental burden of mining activities. Full article
(This article belongs to the Special Issue Non-ferrous Metal Metallurgy and Its Cleaner Production)
Show Figures

Figure 1

31 pages, 6682 KiB  
Review
Research Progress on Non-Destructive Testing Technology and Equipment for Poultry Eggshell Quality
by Qiaohua Wang, Zheng Yang, Chengkang Liu, Rongqian Sun and Shuai Yue
Foods 2025, 14(13), 2223; https://doi.org/10.3390/foods14132223 - 24 Jun 2025
Viewed by 497
Abstract
Eggshell quality inspection plays a pivotal role in enhancing the commercial value of poultry eggs and ensuring their safety. It effectively enables the screening of high-quality eggs to meet consumer demand for premium egg products. This paper analyzes the surface characteristics, ultrastructure, and [...] Read more.
Eggshell quality inspection plays a pivotal role in enhancing the commercial value of poultry eggs and ensuring their safety. It effectively enables the screening of high-quality eggs to meet consumer demand for premium egg products. This paper analyzes the surface characteristics, ultrastructure, and mechanical properties of poultry eggshells. It systematically reviews current advances in eggshell quality inspection technologies and compares the suitability and performance of techniques for key indicators, including shell strength, thickness, spots, color, and cracks. Furthermore, the paper discusses challenges in non-destructive testing, including individual egg variations, species differences, hardware precision limitations, and inherent methodological constraints. It summarizes commercially available portable and online non-destructive testing equipment, analyzing core challenges: the cost–accessibility paradox, speed–accuracy trade-off, algorithm interference impacts, and the technology–practice gap. Additionally, the paper explores the potential application of several emerging technologies—such as tactile sensing, X-ray imaging, laser-induced breakdown spectroscopy, and fluorescence spectroscopy—in eggshell quality inspection. Finally, it provides a comprehensive outlook on future research directions, offering constructive guidance for subsequent studies and practical applications in production. Full article
Show Figures

Figure 1

46 pages, 6097 KiB  
Review
Recent Advances and Applications of Imaging and Spectroscopy Technologies for Tea Quality Assessment: A Review
by Shujun Zhi, Ting An, Han Zhang, Yuhao Bai, Baohua Zhang and Guangzhao Tian
Agronomy 2025, 15(7), 1507; https://doi.org/10.3390/agronomy15071507 - 21 Jun 2025
Viewed by 604
Abstract
Significant research has been carried out on the applications of imaging and spectroscopy technologies for a variety of foods and agricultural products, and the technical fundamentals and their feasibilities have also been widely demonstrated in the past decade. Imaging technologies, including computer vision, [...] Read more.
Significant research has been carried out on the applications of imaging and spectroscopy technologies for a variety of foods and agricultural products, and the technical fundamentals and their feasibilities have also been widely demonstrated in the past decade. Imaging technologies, including computer vision, Raman, X-ray, magnetic resonance (MR), fluorescence imaging, spectroscopy technology, as well as spectral imaging technologies, including hyperspectral or multi-spectral imaging, have found their applications in non-destructive tea quality assessment. Tea quality can be assessed by considering their external qualities (color, texture, shape, and defect), internal qualities (contents of polyphenols, amino acids, caffeine, theaflavin, etc.), and safety. In recent years, numerous studies have been published to advance non-destructive methods for assessing tea quality using imaging and spectroscopy technologies. This review aims to give a thorough overview of imaging and spectroscopy technologies, data processing and analyzing methods, as well as their applications in tea quality non-destructive assessment. The challenges and directions of tea quality inspection by using imaging and spectroscopy technologies for future research and development will also be reported and formulated in this review. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

35 pages, 20738 KiB  
Article
Impact of Zinc(II) Chloride Contamination on Bentonites: Formation of Simonkolleite and Effects on Porosity and Chemical Composition
by Edyta Nartowska, Piotr Stępień and Maria Kanuchova
Materials 2025, 18(13), 2933; https://doi.org/10.3390/ma18132933 - 20 Jun 2025
Viewed by 761
Abstract
This study examines the formation of the clay mineral simonkolleite (Skl) in bentonites contaminated with zinc(II) chloride (ZnCl2), a process that has been little documented in heterogeneous systems such as contaminated bentonites. We explain the contamination mechanisms and provide new insights [...] Read more.
This study examines the formation of the clay mineral simonkolleite (Skl) in bentonites contaminated with zinc(II) chloride (ZnCl2), a process that has been little documented in heterogeneous systems such as contaminated bentonites. We explain the contamination mechanisms and provide new insights into the mineralogical, structural, and physicochemical transformations occurring within these materials. The objective, explored for the first time, was to assess how the ZnCl2-induced mineral phase formation influences the properties of bentonites used as sealing materials, particularly regarding changes in specific surface area and porosity. Three bentonites were analyzed: Ca-bentonite from Texas (STx-1b), Na-bentonite from Wyoming (SWy-3), and Ca-bentonite from Jelsovy Potok, Slovakia (BSvk). Treatment with ZnCl2 solution led to ion exchange and the formation of up to ~30% simonkolleite, accompanied by a concurrent decrease in montmorillonite content by 9–30%. A suite of analytical techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray fluorescence (XRF), and energy-dispersive X-ray spectroscopy (EDS), was employed to characterize these transformations. The contamination mechanism of ZnCl2 involves an ion exchange of Zn2+ within the montmorillonite structure, the partial degradation of specific montmorillonite phases, and the formation of a secondary phase, simonkolleite. These transformations caused a ~50% decrease in specific surface area and porosity as measured by the Brunauer–Emmett–Teller (BET) nitrogen adsorption and Barrett–Joyner–Halenda (BJH) methods. The findings raise concerns regarding the long-term performance of bentonite-based barriers. Further research should evaluate hydraulic conductivity, mechanical strength, and the design of modified bentonite materials with improved resistance to Zn-induced alterations. Full article
(This article belongs to the Special Issue Application and Modification of Clay Minerals)
Show Figures

Figure 1

27 pages, 4959 KiB  
Article
Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence
by Pavel Belkin, Sergey Blinov, Elena Drobinina, Elena Menshikova, Sergey Vaganov, Roman Perevoshchikov and Elena Tomilina
Minerals 2025, 15(6), 662; https://doi.org/10.3390/min15060662 - 19 Jun 2025
Viewed by 243
Abstract
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, [...] Read more.
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, and contains alkaline saline industrial wastes. The origin of this waste was related to sludge from the Solvay soda production process, which had been deposited in this pond over a long period of time. However, along with the soda waste, the pond also received wastewater from other industries. As a result, the accumulated sediment is characterized by variation in morphological properties both in depth and laterally. Five undisturbed columns were taken to study the composition of the accumulated sediment. The obtained samples were analyzed by X-ray diffraction (XRD), synchronous thermal analysis (STA), and X-ray fluorescence (XRF) analysis. The results showed that the mineral composition of bottom sediments in each layer of all studied columns is characterized by the predominance of calcite precipitated from wastewater. Along with calcite, due to the presence of magnesium and sodium in the solution, other carbonates precipitated—dolomite and soda (natron), as well as complex transitional carbonate phases (northupite and trona). Together with carbonate minerals, the chloride salts halite and sylvin, sulfate minerals gypsum and bassanite, and pyrite and nugget sulfur were established. The group of terrigenous mineral components is represented by quartz, feldspars, and aluminosilicates. The chemical composition of sediments in the upper part of the section generally corresponds to the mineral composition. In the lower sediment layers, the role of amorphous phase and non-mineral compounds increased, which was determined by the results of thermal analysis. The content of heavy metals and metalloids also increases in the middle and lower sediment layers. When categorized according to the Igeo value, an excessive degree of contamination (class 6) was observed in all investigated columns for copper content (Igeo 5.2–6.1). Chromium content corresponds to class 5 (Igeo 4.1–4.6), antimony to class 4 (Igeo 3.0–4.0), and lead, arsenic, and vanadium to classes 2 and 3 (moderately polluted and highly polluted). The data obtained on variations in the mineral and chemical composition of sediments represent the initial information for the selection of methods of accumulated waste management. Full article
Show Figures

Figure 1

11 pages, 2677 KiB  
Article
Zirconium Nanostructures Obtained from Anodic Synthesis By-Products and Their Potential Use in PVA-Based Coatings
by Benjamín Valdez-Salas, Jorge Salvador-Carlos, Ernesto Alonso Beltrán-Partida, Jhonathan Castillo-Sáenz, Jimena Chairez-González and Mario Curiel-Álvarez
Ceramics 2025, 8(2), 74; https://doi.org/10.3390/ceramics8020074 - 18 Jun 2025
Viewed by 873
Abstract
Nanostructures obtained as a by-product of the electrochemical synthesis of ZrO2 nanotube membranes have scarcely received any attention despite their enormous potential. This is mainly due to their size properties, morphology, and composition. In the present work, these nanostructures are characterized, and [...] Read more.
Nanostructures obtained as a by-product of the electrochemical synthesis of ZrO2 nanotube membranes have scarcely received any attention despite their enormous potential. This is mainly due to their size properties, morphology, and composition. In the present work, these nanostructures are characterized, and their potential application as an additive in PVA-based coatings is analyzed. The characterization was performed by X-ray fluorescence, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and X-ray diffraction. The results showed that the nanostructures consist of tubular fragments generated during the formation of the ZrO2 membrane, with a dimension of 626.74 nm in width, a length of 1906.39 nm, and a clear cubic structure. The ZrO2-PVA coating, which is prepared by using the spin coating technique, presented a uniform and homogenous particle distribution, which was later confirmed by Fourier transform infrared spectroscopy, scanning electron microscopy, and atomic force microscopy. The optical transparency and thermal resistance were evaluated through UV-Vis spectroscopy and thermogravimetric analysis, showing that the incorporation of ZrO2 as an additive improved its UV absorption properties and thermal stability during the pyrolysis stage. The results suggest that the ZrO2 nanostructures enhance the thermal and protective properties of the PVA-based coatings by acting as physical barriers and stabilizers within the polymer matrix. Full article
Show Figures

Graphical abstract

18 pages, 4078 KiB  
Article
A Preliminary Study of the Gold Content of Byzantine Coins and a Possible Link to the Supernova of Year AD 1054
by Kasper Mayntz Paasch
Heritage 2025, 8(6), 230; https://doi.org/10.3390/heritage8060230 - 17 Jun 2025
Viewed by 351
Abstract
A series of 11 Byzantine gold coins were investigated, including two examples of an extremely rare type called histamenon “stellatus”, from around the reign of the Byzantine emperor Constantine IX Monomachos (AD 1042–1055). The methods applied were X-ray fluorescence spectroscopy (XRF), specific density [...] Read more.
A series of 11 Byzantine gold coins were investigated, including two examples of an extremely rare type called histamenon “stellatus”, from around the reign of the Byzantine emperor Constantine IX Monomachos (AD 1042–1055). The methods applied were X-ray fluorescence spectroscopy (XRF), specific density measurement (SD), and scanning electron microscopy (SEM). The debasement (decreasing gold content) of the Byzantine nomisma gold coinage during the 11th century was demonstrated. A method combining XRF and SD measurement combined with a graphical presentation/analysis called a ternary plot was also demonstrated. The measured gold content of the 11 coins was corrected for the possible “outwashing” effect and a potential cleaning of ancient gold. A model for the estimation of the gold content of Byzantine histamenon nomisma gold coins from the period AD 1020–1118, based on the specific density (SD), was derived. It was demonstrated that two analyzed histamenon “stellati” coins likely were minted around AD 1054–1055, possibly during the same period as the occurrence of the supernova SN1054, known as the Crab-nebula. It is further discussed if the gold content and size of the stars shown on those coins can be correlated to the visibility of the supernova from June AD 1054 to January AD 1055. Full article
Show Figures

Figure 1

25 pages, 4657 KiB  
Article
Sensor-Based Rock Hardness Characterization in a Gold Mine Using Hyperspectral Imaging and Portable X-Ray Fluorescence Technologies
by Saleh Ghadernejad, Kamran Esmaeili and Mariano P. Consens
Remote Sens. 2025, 17(12), 2062; https://doi.org/10.3390/rs17122062 - 15 Jun 2025
Viewed by 712
Abstract
Rock hardness significantly impacts comminution efficiency, one of mining’s most energy-intensive processes. Accurate, rapid, and non-invasive hardness characterization can enhance mine-to-mill optimization and energy management. This study investigates sensor-based technologies, hyperspectral imaging, and portable X-ray fluorescence (pXRF) integrated with machine learning (ML) algorithms [...] Read more.
Rock hardness significantly impacts comminution efficiency, one of mining’s most energy-intensive processes. Accurate, rapid, and non-invasive hardness characterization can enhance mine-to-mill optimization and energy management. This study investigates sensor-based technologies, hyperspectral imaging, and portable X-ray fluorescence (pXRF) integrated with machine learning (ML) algorithms for characterizing rock hardness in open-pit gold mining contexts. A total of 159 rock samples from two Canadian open-pit gold mines were analyzed through Leeb rebound hardness (LRH), short-wave infrared (SWIR) hyperspectral imaging, and a pXRF analyzer for chemical characterization. The most critical spectral features of SWIR images were extracted using a novel and automated feature extraction approach and further refined by applying a recursive feature elimination (RFE) algorithm to reduce the dimensionality of the spectral feature space. Three ML algorithms, including Random Forest Regressor (RFR), Adaptive Boosting (AdaBoost), and Multivariate Linear Regression (MLR), were applied to develop predictive hardness models considering three scenarios: using chemical features, using refined spectral features, and their combination. The findings underscore the potential of advanced sensor integration and analytics in remotely characterizing rock hardness, which could contribute to enhancing efficiency and sustainability in modern mining operations. Full article
Show Figures

Graphical abstract

Back to TopTop