Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = X-ray dating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 15992 KiB  
Article
Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery
by Inés Pereira, Eduardo García-Meléndez, Montserrat Ferrer-Julià, Harald van der Werff, Pablo Valenzuela and Juncal A. Cruz
Remote Sens. 2025, 17(15), 2582; https://doi.org/10.3390/rs17152582 - 24 Jul 2025
Viewed by 306
Abstract
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral [...] Read more.
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral imagery for multi-temporal mapping of AMD-related minerals in two mining-affected drainage basins: Beal and Gorguel. Key minerals indicative of AMD—iron oxides and hydroxides (hematite, jarosite, goethite), gypsum, and aluminium-bearing clays—were identified and mapped using band ratios applied to PRISMA data acquired over five dates between 2020 and 2024. Additionally, Sentinel-2 data were incorporated in the analysis due to their higher temporal resolution to complement iron oxide and hydroxide evolution from PRISMA. Results reveal distinct temporal and spatial patterns in mineral distribution, influenced by seasonal precipitation and climatic factors. Jarosite was predominant after torrential precipitation events, reflecting recent AMD deposition, while gypsum exhibited seasonal variability linked to evaporation cycles. Goethite and hematite increased in drier conditions, indicating transitions in oxidation states. Validation using X-ray diffraction (XRD), laboratory spectral curves, and a larger time-series of Sentinel-2 imagery demonstrated strong correlations, confirming PRISMA’s effectiveness for iron oxides and hydroxides and gypsum identification and monitoring. However, challenges such as noise, striping effects, and limited image availability affected the accuracy of aluminium-bearing clay mapping and limited long-term trend analysis. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

9 pages, 2671 KiB  
Article
Wood Species Identification and Property Evaluation of Archaeological Wood Excavated from J1 at Shenduntou Site, Fanchang, Anhui, China
by Liang Xu, Weiwei Yang, Mihaela Liu, Zhigao Wang and Xinyou Liu
Forests 2025, 16(7), 1173; https://doi.org/10.3390/f16071173 - 16 Jul 2025
Viewed by 337
Abstract
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as [...] Read more.
The Shenduntou Site, a significant Zhou Dynasty settlement in Anhui Province, provides rare insights into early Chinese woodcraft. This study examines exceptionally preserved wooden structures from Well J1, dating to the Western Zhou period (9th–8th c. BCE). Anatomical analysis identified the timber as Firmiana simplex (L.), indicating ancient selection of this locally available species for its water resistance and mechanical suitability in well construction. Comprehensive degradation assessment revealed severe structural deterioration: maximum water content (1100% ± 85% vs. modern 120% ± 8%) demonstrated extreme porosity from hydrolysis; X-ray diffraction (XRD) showed a 69.5% reduction in cellulose crystallinity (16.1% vs. modern 52.8%); Fourier Transform Infrared Spectroscopy (FTIR) spectroscopy confirmed near-total hemicellulose degradation, partial cellulose loss, and lignin enrichment due to chemical recalcitrance; Scanning Electron Microscopy (SEM) imaging documented multiscale damage including vessel thinning, pit membrane loss, and cell wall delamination from hydrolytic, microbial, and mineral degradation. These findings reflect Western Zhou inhabitants’ pragmatic resource utilisation while highlighting advanced material deterioration that poses significant conservation challenges, providing critical insights into Zhou-era woodcraft and human–environment interactions in the lower Yangtze region. Full article
(This article belongs to the Special Issue Wood Processing, Modification and Performance)
Show Figures

Figure 1

15 pages, 4108 KiB  
Article
A Multidisciplinary Non-Invasive Approach for the Examination of a Wooden Panel Painting
by Georgia T. Varfi, Spyridoula Farmaki, Georgios P. Mastrotheodoros, Dimitrios A. Exarchos, Anastasios Asvestas, Dimitrios F. Anagnostopoulos and Theodore E. Matikas
Heritage 2025, 8(7), 271; https://doi.org/10.3390/heritage8070271 - 9 Jul 2025
Viewed by 291
Abstract
In this article, a multidisciplinary methodological approach for studying a wooden panel painting is applied. The theoretical framework, within which this research has arisen, is the application of state-of-the-art non-destructive techniques for addressing issues concerning the constituting parts and composing materials of the [...] Read more.
In this article, a multidisciplinary methodological approach for studying a wooden panel painting is applied. The theoretical framework, within which this research has arisen, is the application of state-of-the-art non-destructive techniques for addressing issues concerning the constituting parts and composing materials of the artwork. Hereby, a post-Byzantine icon was studied, which was dated back to 1836. It is a painting executed on a wooden panel, with a decorated wooden frame attached. The artifact was thoroughly investigated through the application of infrared thermography (IRT), multispectral imaging (MSI), and macroscopic X-ray fluorescence spectrometry (MA-XRF). These analyses provided crucial information about the verso of the painting (i.e., the wooden panel and the frame) and allowed for the revelation of important details of the recto of the painting, which were not visible due to the presence of an old, decayed varnish. Additionally, through the detailed mapping of the distribution of various chemical elements on the recto of the painting and the frame, it was possible to identify the materials used and techniques employed. It is therefore shown that, when combined, the non-destructive methodologies in consideration can provide adequate information referring to the materiality and state of preservation of panel paintings, permitting the conservator to proceed to a tailored conservation treatment. Full article
(This article belongs to the Special Issue Recent Progress in Cultural Heritage Diagnostics)
Show Figures

Figure 1

13 pages, 936 KiB  
Systematic Review
Provocation CT-Based Analysis for Diagnosis of Hip and Knee Arthroplasty Aseptic Loosening: Where Are We at? A Systematic Review of Clinical Trials
by Lorenzo Impieri, Riccardo Uras, Marco Pilone, Andrea Pezzi, Giacomo Folli, Luigi Impieri and Nicolò Rossi
J. Clin. Med. 2025, 14(14), 4865; https://doi.org/10.3390/jcm14144865 - 9 Jul 2025
Viewed by 322
Abstract
Background/Objectives: Aseptic loosening is a major challenge in hip and knee arthroplasty. While radiostereometric analysis (RSA) is the gold standard for detecting early migration, it is static, costly, and requires metal beads. Provocation CT-based analysis studies implants under physiological stresses and offers a [...] Read more.
Background/Objectives: Aseptic loosening is a major challenge in hip and knee arthroplasty. While radiostereometric analysis (RSA) is the gold standard for detecting early migration, it is static, costly, and requires metal beads. Provocation CT-based analysis studies implants under physiological stresses and offers a marker-free alternative with comparable accuracy. This systematic review evaluates its effectiveness, cost, and role in orthopedic imaging. Methods: A systematic review was conducted following the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) guidelines. Three databases were searched, with no date restrictions, using keywords related to the research area. The risk of bias was assessed using the RoB-1 tool. Results: The initial search identified 42 studies, with 6 ultimately included in the review. These studies involved 198 patients with an average age of 65.0 years. Provocation CT demonstrated higher sensitivity and specificity than standard radiographs, particularly in cases with inconclusive X-rays. Additionally, the radiation dose for CT scans varied across studies, with effective doses ranging from 0.2 mSv to 4.5 mSv per scan. Compared to X-ray, CT-based methods showed comparable or superior performance in motion detection, though direct clinical comparisons with RSA remain lacking. Conclusions: Provocation CT-based analysis is a valuable diagnostic tool for early detection of implant loosening, offering a potentially feasible, accurate, and cost-effective alternative to traditional methods. However, standardized protocols, broader economic evaluations, and prospective multicenter trials are needed to confirm its routine clinical applicability. Full article
(This article belongs to the Special Issue General Orthopedic Surgery: Trends and Prospects)
Show Figures

Figure 1

14 pages, 3131 KiB  
Article
New Complex of Salinomycin with Hg(II)—Synthesis and Characterization
by Juliana Ivanova, Irena Pashkunova-Martic, Johannes Theiner, Nikola Burdzhiev, Peter Dorkov and Ivo Grabchev
Inorganics 2025, 13(7), 220; https://doi.org/10.3390/inorganics13070220 - 1 Jul 2025
Viewed by 995
Abstract
Salinomycin is a polyether ionophorous antibiotic with promising antineoplastic properties. Published studies have revealed that the compound also exerts pronounced antidotal activity against cadmium (Cd) and lead (Pb) intoxications. It has been proven that salinomycin with Cd(II) forms a coordination compound of a [...] Read more.
Salinomycin is a polyether ionophorous antibiotic with promising antineoplastic properties. Published studies have revealed that the compound also exerts pronounced antidotal activity against cadmium (Cd) and lead (Pb) intoxications. It has been proven that salinomycin with Cd(II) forms a coordination compound of a composition [Cd(C42H69O11)2(H2O)2] and an octahedral molecular geometry, while the coordination compound of the antibiotic with Pb(II) has a square pyramidal structure and composition [Pb(C42H69O11)(NO3)]. To date, there is no published information about the ability of salinomycin to form complexes with the mercury ion (Hg(II)). Herein, we report, for the first time, a synthetic procedure for a complex compound of salinomycin with Hg(II). The coordination compound was characterized by a variety of methods, such as elemental analysis, attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR), electrospray ionization–mass spectrometry (ESI-MS), powder X-ray diffraction, nuclear magnetic resonance spectroscopy (NMR), thermogravimetry with differential thermal analysis (TG-DTA), and thermogravimetry with mass spectrometry (TG-MS). The elemental analysis data revealed that the new compound is of the chemical composition [Hg(C42H69O11)(H2O)(OH)]. Based on the results from the spectral analyses, the most probable structure of the complex was proposed. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

39 pages, 8474 KiB  
Article
Between Heritage Conservation and Forensic Science: An Analytical Study of Personal Items Found in Mass Graves of the Francoism (1939–1956) (Spain)
by María Teresa Doménech-Carbó, Trinidad Pasíes Oviedo, Ramón Canal Roca and Janire Múgica Mestanza
Molecules 2025, 30(13), 2783; https://doi.org/10.3390/molecules30132783 - 27 Jun 2025
Viewed by 322
Abstract
This article describes the case of the personal items found in common graves dated between 1939 and 1956 after the Spanish Civil War (1936–1939), located in Paterna’s cemetery (Spain). It was important in this study to know the state of the conservation of [...] Read more.
This article describes the case of the personal items found in common graves dated between 1939 and 1956 after the Spanish Civil War (1936–1939), located in Paterna’s cemetery (Spain). It was important in this study to know the state of the conservation of the objects and to obtain clues about their origin and use just as in a forensic study. This would allow the moral restitution of the historical memory of the victims of the war conflict. The multi-technique strategy has included light and electron microscopy, infrared spectroscopy and X-ray diffraction. Materials of the early 20th century used in pencil sharpeners, glasses, cutlery, lighters, rings, and buttons or medications contained in small bottles and boxes have been identified and have enabled the lives of their owners to be reconstructed during their imprisonment and execution. All these objects exhibited a thin layer of adipocere, a well-known compound in forensic science formed during the decomposition of human and animal corpses. Interestingly, rare corrosion processes have been identified in two of the objects analyzed, which are linked to their proximity to the decomposing corpses of the deceased. Copper sulfides and/or sulfates have been identified in the lighter, and scholzite, a zinc and calcium phosphate, has been identified in the glasses. Full article
Show Figures

Figure 1

20 pages, 12006 KiB  
Article
An Archaeometric Study of Twelve Porcelain Chinese Sherds Found at the Santana Convent in Lisbon—16th to 18th Centuries
by Luís F. Vieira Ferreira, Isabel Ferreira Machado, Rosa Varela Gomes, Mário Varela Gomes and Manuel F. C. Pereira
Heritage 2025, 8(7), 253; https://doi.org/10.3390/heritage8070253 - 26 Jun 2025
Viewed by 350
Abstract
Twelve sherds of blue-and-white Chinese porcelains recovered from archaeological excavations in the Santana Convent (Ming and Qing Dynasties) in Lisbon were studied using several non-invasive spectroscopies, namely micro-Raman, X-ray Fluorescence (XRF), Ground State Diffuse Reflectance (GSDR), and stereomicroscopy. The use of the X-ray [...] Read more.
Twelve sherds of blue-and-white Chinese porcelains recovered from archaeological excavations in the Santana Convent (Ming and Qing Dynasties) in Lisbon were studied using several non-invasive spectroscopies, namely micro-Raman, X-ray Fluorescence (XRF), Ground State Diffuse Reflectance (GSDR), and stereomicroscopy. The use of the X-ray diffraction technique (XRD) allowed us to complete the mineralogical characterization of the ceramic bodies and glazes of the porcelains. The sample selection ranges from the 16th to the 18th centuries. The micro-Raman spectra clearly showed two types of glazes, alkaline glaze and calcium-based glaze. The GSDR absorption spectra of the blue glazes point to the use of different cobalt pigments, but a strong dependence on the glaze type does not seem to exist. The kilns where the porcelains were produced also play an important role. Both the GSDR absorption and the micro-Raman spectroscopies allow us to differentiate the Iranian blue pigment from the Chinese pigment. A direct and simple correlation between the use of Iranian blue pigment, mixtures of Iranian and Chinese pigments, or simply Chinese pigments and the stylistic dating of each sample was established. Furthermore, several important spectroscopic characterizations could be achieved in this study. Full article
Show Figures

Figure 1

33 pages, 5602 KiB  
Article
CELM: An Ensemble Deep Learning Model for Early Cardiomegaly Diagnosis in Chest Radiography
by Erdem Yanar, Fırat Hardalaç and Kubilay Ayturan
Diagnostics 2025, 15(13), 1602; https://doi.org/10.3390/diagnostics15131602 - 25 Jun 2025
Viewed by 562
Abstract
Background/Objectives: Cardiomegaly—defined as the abnormal enlargement of the heart—is a key radiological indicator of various cardiovascular conditions. Early detection is vital for initiating timely clinical intervention and improving patient outcomes. This study investigates the application of deep learning techniques for the automated diagnosis [...] Read more.
Background/Objectives: Cardiomegaly—defined as the abnormal enlargement of the heart—is a key radiological indicator of various cardiovascular conditions. Early detection is vital for initiating timely clinical intervention and improving patient outcomes. This study investigates the application of deep learning techniques for the automated diagnosis of cardiomegaly from chest X-ray (CXR) images, utilizing both convolutional neural networks (CNNs) and Vision Transformers (ViTs). Methods: We assembled one of the largest and most diverse CXR datasets to date, combining posteroanterior (PA) images from PadChest, NIH CXR, VinDr-CXR, and CheXpert. Multiple pre-trained CNN architectures (VGG16, ResNet50, InceptionV3, DenseNet121, DenseNet201, and AlexNet), as well as Vision Transformer models, were trained and compared. In addition, we introduced a novel stacking-based ensemble model—Combined Ensemble Learning Model (CELM)—that integrates complementary CNN features via a meta-classifier. Results: The CELM achieved the highest diagnostic performance, with a test accuracy of 92%, precision of 99%, recall of 89%, F1-score of 0.94, specificity of 92.0%, and AUC of 0.90. These results highlight the model’s high agreement with expert annotations and its potential for reliable clinical use. Notably, Vision Transformers offered competitive performance, suggesting their value as complementary tools alongside CNNs. Conclusions: With further validation, the proposed CELM framework may serve as an efficient and scalable decision-support tool for cardiomegaly screening, particularly in resource-limited settings such as intensive care units (ICUs) and emergency departments (EDs), where rapid and accurate diagnosis is imperative. Full article
(This article belongs to the Special Issue Machine-Learning-Based Disease Diagnosis and Prediction)
Show Figures

Figure 1

16 pages, 8474 KiB  
Article
Multiproxy Petrological Analysis for Provenance Determination of Two Granitic Stone Anchors in the Western Mediterranean
by Javier Martínez-Martínez, Hugo Corbí, Nicoletta Fusi, Jaime Molina Vidal, José A. Moya-Montoya, Alberto J. Lorrio, Felio Lozano Quijada and José Manuel Pérez Burgos
Minerals 2025, 15(7), 675; https://doi.org/10.3390/min15070675 - 24 Jun 2025
Viewed by 462
Abstract
A multiproxy methodology has been employed to characterise two granite anchors discovered on the seabed near the island of Nueva Tabarca (Alicante, Southeast Spain). According to the significant archaeological context where they were found, the studied anchors can be dated from the Roman [...] Read more.
A multiproxy methodology has been employed to characterise two granite anchors discovered on the seabed near the island of Nueva Tabarca (Alicante, Southeast Spain). According to the significant archaeological context where they were found, the studied anchors can be dated from the Roman ages (late Republican period). One of the most interesting aspects is the absence of regional geological outcrops with rocks compatible with the granite used in the production of the anchor, which shows a foreign origin consistent with the connection of the anchor to maritime transport across the Mediterranean Sea. The lack of precise information about the artifact’s origin underscores the interest and need for the application of petrological techniques to determine its provenance. The methodology utilised encompasses five distinct techniques: (1) non-destructive textural analysis using X-ray microcomputed tomography; (2) K–Ar dating; (3) petrological characterisation through optical microscopy; (4) geochemical characterisation using X-ray fluorescence and atomic absorption spectrometry. The results allow for a comparison of the anchor rock’s characteristics with various granite outcrops along the Mediterranean coasts (Eastern, Central, and Western sectors), suggesting potential source areas based on petrological compatibility with the material under study. The findings point to the origin of the Nueva Tabarca granite anchor being granite outcrops in Southern Italy (Calabria), reinforcing the connection between the Spanish southeastern coasts and Southern Italy. These results highlight the utility and significance of multiproxy petrological methodologies in the geoarchaeological study of decontextualised artifacts. Full article
Show Figures

Graphical abstract

23 pages, 5924 KiB  
Article
Archaeological Stratification in the St. Leucio Basilica (2nd Century BCE–6th Century CE, Canosa di Puglia, Southern Italy): Archaeometric Analysis of Pebble Pavements
by Giovanna Fioretti, Alessandro D’Alessio and Giacomo Eramo
Heritage 2025, 8(6), 186; https://doi.org/10.3390/heritage8060186 - 24 May 2025
Viewed by 378
Abstract
This paper presents the results of an archaeometric investigation of the preparatory mortars of the pebble pavements of the Basilica of St. Leucio in Canosa di Puglia (Bari, Southern Italy). The main aim of the presented study is to contribute to the dating [...] Read more.
This paper presents the results of an archaeometric investigation of the preparatory mortars of the pebble pavements of the Basilica of St. Leucio in Canosa di Puglia (Bari, Southern Italy). The main aim of the presented study is to contribute to the dating of some portions of the pebble pavements by analyzing the preparatory layers and determining whether they pertain to the basilica (6th century CE) or to the pre-existing temple (2nd century BCE–4th century CE). Further purposes are to provide information about the production technologies of the mortars and to identify the nature of the pigments found on some pebbles. In order to contribute to the dating studies of the floors, complicated by previous reuse and restoration, 12 samples of mortars, sometimes including pebbles, were collected in different areas of the site. They were analyzed by polarized light microscopy (PLM), X-ray diffractometry (XRPD), X-ray fluorescence spectroscopy (XRF), and scanning electron microscopy coupled with an energy-dispersive spectrometer (SEM-EDS). The results allowed us to advance chronological data on different pavement areas, to deepen our knowledge on mortar production, in terms of both raw materials and technology, and to identify red ochre as the pigment with which the pavement surface was painted. Full article
Show Figures

Figure 1

22 pages, 7505 KiB  
Article
Investigations on an Ancient Mortar from Ulpia Traiana Sarmizegetusa Archaeological Site, Romania
by Zeno Dorian Ghizdavet, Corina Anca Simion, Anton Ficai, Ovidiu-Cristian Oprea, Radu Claudiu Fierascu, Maria Loredana Marin, Doina-Roxana Trușcă, Vasile-Adrian Surdu, Ludmila Motelica, Iuliana Madalina Stanciu, Alexandru Razvan Petre and Ileana Radulescu
Appl. Sci. 2025, 15(10), 5780; https://doi.org/10.3390/app15105780 - 21 May 2025
Viewed by 509
Abstract
A fragment of mortar from the pedestal ruin belonging to the central statue in Forum Vetus, Ulpia Traiana archaeological site, Romania, was investigated. The ruin is well-documented and unrestored, and radiocarbon dating was deemed suitable to determine its moment of construction. Preliminary analyses [...] Read more.
A fragment of mortar from the pedestal ruin belonging to the central statue in Forum Vetus, Ulpia Traiana archaeological site, Romania, was investigated. The ruin is well-documented and unrestored, and radiocarbon dating was deemed suitable to determine its moment of construction. Preliminary analyses were used to establish the composition of the material and the sources of carbon-14, selecting the most reliable fraction for radiocarbon dating by the AMS method. Although sampling was carried out according to the recommendations, a younger apparent age was obtained than that expected. This is in fact a concrete-like mortar according to the analyses, and the phenomenon of delayed hardening of mortar in masonry was detected. The difference between the real and apparent ages quantifies this phenomenon. X-ray diffraction, scanning electron microscopy with energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry with thermogravimetric analysis, and gamma spectrometry were used. Pyrogenic calcium carbonate and carbonates from calcium silicate/calcium aluminate hydrates were the only forms present in mini-nodules/lumps. The reactivation of binder calcite or geogenic calcite, the other problems encountered when dating mortars, were not spotted. This case study highlights the limitations of the radiocarbon dating method, and we introduce gamma spectrometry as a technique for additional investigations into direct exposure to the environment or the origins of raw materials. Full article
(This article belongs to the Special Issue Innovative Building Materials: Design, Properties and Applications)
Show Figures

Figure 1

17 pages, 2846 KiB  
Article
Magnetic Bifunctional Ru-Enzyme Catalyst Allows for Sustainable Conversion of Cellulose Derivative to D-Sorbitol
by Boris B. Tikhonov, Daniil R. Lisichkin, Alexandrina M. Sulman, Alexander I. Sidorov, Alexey V. Bykov, Yury V. Lugovoy, Alexey Y. Karpenkov, Lyudmila M. Bronstein and Valentina G. Matveeva
Nanomaterials 2025, 15(10), 740; https://doi.org/10.3390/nano15100740 - 15 May 2025
Viewed by 388
Abstract
Here, we report the development of a novel bifunctional nanobiocatalyst for a one-pot cascade transformation of carboxymethyl cellulose (CMC) to D-sorbitol. The nanobiocatalyst is based on magnetic nanoparticle aggregates (MNAs) functionalized with chitosan (CS) cross-linked by tripolyphosphate (TPP). It contains two types of [...] Read more.
Here, we report the development of a novel bifunctional nanobiocatalyst for a one-pot cascade transformation of carboxymethyl cellulose (CMC) to D-sorbitol. The nanobiocatalyst is based on magnetic nanoparticle aggregates (MNAs) functionalized with chitosan (CS) cross-linked by tripolyphosphate (TPP). It contains two types of catalytic sites: cellulase (Cel, 5 wt.%) and Ru (3 wt.%) nanoparticles (NPs) of 0.7 nm in diameter. To optimize the nanobiocatalyst structure and composition, we first synthesized the biocatalyst, MNA-CSP-Cel (CSP stands for the CS layer cross-linked by TPP), as well as the nanocatalyst, MNA-CSP-Ru, and studied them in the one-step reactions of hydrolysis and hydrogenation, respectively. The data obtained allowed us to optimize the composition and properties of the bifunctional nanobiocatalyst, MNA-CSP-Ru-Cel, and to choose the best reaction conditions for the cascade process. MNA-CSP-Ru-Cel was characterized using transmission electron microscopy (TEM), high-resolution TEM, energy-dispersive spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and porosity measurements. The knowledge obtained enabled us to perform a cascade transformation of CMC to D-sorbitol with a yield of 83.2% for 10 h at 70 °C and a hydrogen pressure of 4 MPa. The yield demonstrated in this work is much higher than that reported to date for the same cascade process. Full article
Show Figures

Graphical abstract

10 pages, 10113 KiB  
Article
Simplified Preparation of N-Doped Carbon Nanosheets Using EDTA Route
by Denghu Wei, Zongfu Sun and Leilei Xu
Inorganics 2025, 13(5), 148; https://doi.org/10.3390/inorganics13050148 - 6 May 2025
Viewed by 487
Abstract
Amorphous carbon and its heteroatom-doped derivatives often exhibit wrinkled, defective, porous structures, and find wide applications in the fields of energy storage and catalysis. To date, although many methods for preparing doped carbon materials have been reported, the preparation process is relatively complex, [...] Read more.
Amorphous carbon and its heteroatom-doped derivatives often exhibit wrinkled, defective, porous structures, and find wide applications in the fields of energy storage and catalysis. To date, although many methods for preparing doped carbon materials have been reported, the preparation process is relatively complex, and there are still few simple methods available. Therefore, it is necessary to further develop simple and feasible preparation methods. In this study, we employed commercially available manganese disodium ethylenediaminetetraacetate (EDTA-Na2Mn, serving as both carbon and nitrogen sources) as the precursor. Through thermal decomposition under a nitrogen atmosphere, a nitrogen-doped carbon composite embedded with manganese monoxide (MnO) was initially obtained. Subsequently, hydrochloric acid etching was applied to remove the MnO phases, yielding the final product: nitrogen-doped carbon, denoted as C-N-Mn. Notably, the carbonization and nitrogen-doping processes were simultaneously accomplished during pyrolysis, thereby streamlining the synthesis route for nitrogen-doped carbons. To demonstrate the versatility of this approach, we extended the methodology to two additional metal–organic salts (EDTA-Na2Zn and EDTA-NaFe), successfully synthesizing nitrogen-doped carbon materials (C-N-Zn and C-M-Fe) in both cases. The phase composition, morphology, microstructure, specific surface area, and pore volume of the products were systematically characterized using X-ray diffraction (XRD), scanning/transmission electron microscopy (SEM/TEM), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption analysis. These nitrogen-doped carbons exhibit high specific surface areas and tunable pore volumes, suggesting their potential applicability in energy storage systems. Full article
Show Figures

Graphical abstract

23 pages, 2291 KiB  
Article
The Time Development of the Microstructural Properties of Plastic Concrete: Material Insights and Experimental Boundaries
by David Alós Shepherd, Andreas Bogner, Julia Bruder and Frank Dehn
Constr. Mater. 2025, 5(1), 14; https://doi.org/10.3390/constrmater5010014 - 10 Mar 2025
Viewed by 818
Abstract
Plastic Concrete is a low-strength (fcm,28d ≤ 1.0 MPa), low-stiffness impervious concrete used for cut-off walls in earthen dams worldwide. These properties are achieved through a very high w/c ratio (w/c [...] Read more.
Plastic Concrete is a low-strength (fcm,28d ≤ 1.0 MPa), low-stiffness impervious concrete used for cut-off walls in earthen dams worldwide. These properties are achieved through a very high w/c ratio (w/c ≥ 3.0) and water-binding additions (e.g., bentonite). To date, the effect of mix design, especially w/c ratio, as well as bentonite content and type, on the long-term time development of the microstructural properties and corresponding compressive strength of Plastic Concrete has yet to be systematically studied. Furthermore, in the literature, mercury intrusion porosimetry (MIP) and X-ray diffractometry (XRD) have yet to be applied systematically to Plastic Concrete for this purpose. The present study closes this gap. Ten Plastic Concrete mixes with two bentonite–cement ratios, three types of sodium bentonite and two swelling times were produced. MIP and XRD measurements and compressive strength tests were performed at sample ages of 7 d, 28 d, 56 d, 91 d and four years. The results show that both MIP and XRD can be successfully used; however, meticulous sample preparation and data analysis must be considered. The porosimetry results show a bi-modal pore size distribution, with two age-dependent peaks at approximately 10,000–20,000 nm and 100–700 nm. The results also exhibit a clear pore refinement over time, with coarse porosity dropping from 26% to 15% over four years. In addition, the fine porosity peak is significantly refined over time and positively correlates with the significant increase in compressive strength. The XRD results show no unexpected crystalline phases over the same period. Overall, this study links MIP and corresponding compressive strength data specifically for Plastic Concrete for the first time, confirming the key role that the mix design of Plastic Concrete plays in defining its long-term microstructural and mechanical properties and ensuring more realistic cut-off wall design in the future. In addition, the experimental boundaries for MIP testing on Plastic Concrete are set out for the first time, enabling future research in this field. Full article
Show Figures

Figure 1

13 pages, 2358 KiB  
Article
Early-Holocene Episodic Sedimentary Process on the East Hainan Coast: High-Resolution Chronological Refinement, Titanium Intensity and Flux Implications
by Mianjin Chen, Xiao Sun, Yang Li, Yulong Xue, Wenzhe Lyu, Xuemu Wang and Yan Li
J. Mar. Sci. Eng. 2025, 13(3), 527; https://doi.org/10.3390/jmse13030527 - 10 Mar 2025
Viewed by 705
Abstract
Episodic sedimentary processes with significant changes in sedimentation rate have occurred on the East Hainan Coast, the inner shelf of the South China Sea, since the Last Glacial Maximum. In particular, the early-Holocene (~11.5–8.7 ka) rapid sedimentation at a mean rate of ~4.90 [...] Read more.
Episodic sedimentary processes with significant changes in sedimentation rate have occurred on the East Hainan Coast, the inner shelf of the South China Sea, since the Last Glacial Maximum. In particular, the early-Holocene (~11.5–8.7 ka) rapid sedimentation at a mean rate of ~4.90 m/ka is crucial to understand the processes of terrigenous input to the ocean, carbon cycling and climate control in coastal-neritic sedimentary evolution. However, the chronological framework and the detailed environmental evolution remain uncertain. In this study, core sediments collected from the East Hainan Coast (code: NH01) were used to revisit the characteristics of luminescence signals by comparing the dating results using the blue-light stimulated luminescence (blue-OSL) ages and previously published post-infrared blue-light stimulated luminescence (pIR-blue OSL) ages. The results showed that both the ages agreed with each other for the fine-grained quartz fraction. The refined chronology of the early-Holocene deposits on the East Hainan Coast with higher resolution suggested that the sedimentation rate was ~0.60 m/ka before 10.97 ka, while it increased abruptly to ~5.89 m/ka during the period of 10.97–9.27 ka. According to the refined OSL chronology and the high-resolution (~2.5 cm) titanium intensity using X-ray fluorescence (XRF) scanning, the rapid sedimentation during the early Holocene was likely controlled by increased terrigenous input. The variation in Ti flux reflected the differential response between two meltwater pulse (MWP) events under the combined effects of enhanced early-Holocene monsoons and localized freshwater input. These findings highlight the compound controls of global ice-volume change, monsoon dynamics and coastal geomorphic evolution on sedimentary processes. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

Back to TopTop