The Time Development of the Microstructural Properties of Plastic Concrete: Material Insights and Experimental Boundaries
Abstract
:1. Introduction
1.1. Background
1.2. Focus and Research Questions
2. Materials and Methods
2.1. Materials
2.1.1. Cement and Bentonite
2.1.2. Aggregates and Water
2.2. Methods
2.2.1. Experimental Setup and Mix Design
2.2.2. Concrete Batching and Fresh Concrete Testing
2.2.3. Mercury Intrusion Porosimetry (MIP)
2.2.4. X-Ray Powder Diffractometery (XRD)
2.2.5. Compressive Strength Testing
3. Results
3.1. Fresh Concrete Results
3.2. Compressive Strength Results
3.3. Porosity Using Mercury Intrusion Porosimetry (MIP)
3.3.1. Influence of Porosimeter Settings
3.3.2. Influence of Multiple Measurements
3.3.3. Influence of Drying Temperature
3.4. X-Ray Powder Diffractometery (XRD)
4. Discussion
4.1. Analysis of Bi-Modal Porosity Distribution
4.2. Microstructural Change over Time
4.3. Porosity and Compressive Strength Correlation
5. Conclusions
5.1. Summary
5.2. Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alós Shepherd, D.; Kotan, E.; Dehn, F. Plastic concrete for cut-off walls: A review. Constr. Build. Mater. 2020, 255, 119248. [Google Scholar] [CrossRef]
- Bruce, D.A. (Ed.) Specialty Construction Techniques for Dam and Levee Remediation; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Xanthakos, P.P. Slurry Walls; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- U.S. Bureau of Reclamation. Design Standards No. 13: Embankment Dam, Chapter 16: Cutoff Walls, Revision 14; U.S. Bureau of Reclamation: Washington, DC, USA, 2014. [Google Scholar]
- Ghazavi, M.; Safarzadeh, Z.; Hashemolhoseini, H. Response of Plastic Concrete Cut-Off Walls in Earth Dams to Seismic Loading Using Finite Element Methods. In Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, USA, 1–6 August 2004; Canadian Association for Earthquake Engineering: Vancouver, BC, USA, 2004. [Google Scholar]
- Grim, R.E.; Güven, N. Bentonites: Geology, Mineralogy, Properties and Uses; Developments in sedimentology; Elsevier: Amsterdam, The Netherlands, 1978; Volume 24. [Google Scholar]
- von Soos, P.; Engel, J. Eigenschaften von Boden und Fels—Ihre Ermittlung im Labor. In Grundbau-Taschenbuch, Teil 1: Geotechnische Grundlagen; Witt, K.J., Ed.; Ernst & Sohn: Berlin, Germany, 2008; pp. 123–218. [Google Scholar]
- Praetorius, S.; Schößer, B. Bentonithandbuch: Ringspaltschmierung für den Rohrvortrieb; Bauingenieur-Praxis, Ernst & Sohn: Berlin, Germany, 2016. [Google Scholar]
- Koch, D. Eigenschaften und Einsatzmöglichkeiten von Bentonit/Zement-Mischungen im Speziealtiefbau. In Spezialtiefbau; Eichler, K., Ed.; Kontakt & Studium, Expert Verlag: Renningen, Germany, 2015; pp. 170–189. [Google Scholar]
- Jasmund, K.; Lagaly, G. (Eds.) Tonminerale und Tone: Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt; Steinkopff: Darmstadt, Germany, 1993. [Google Scholar] [CrossRef]
- Bergaya, F.; Lagaly, G. (Eds.) Handbook of Clay Science, Part A: Fundamentals, 2nd ed.; Developments in clay science; Elsevier: Burlington, NJ, USA, 2013. [Google Scholar]
- Beckhaus, K.; Kayser, J.; Kleist, F.; Quarg-Vonscheidt, J.; Alós Shepherd, D. Design concept for sustainable cut-off walls made of highly deformable filling materials. In Proceedings of the 12th ICOLD European Club Symposium 2023 (ECS 2023), Interlaken, Switzerland, 5–8 September 2023; Boes, R., Droz, P., Leroy, R., Eds.; CRC Press: Milton, ON, Canada, 2023; pp. 641–650. [Google Scholar] [CrossRef]
- Bogner, A.; Schatz, J.; Dehn, F.; Müller, H.S. Influence of Drying on the Microstructure of Hardened Cement Paste: A Mercury Intrusion Porosimetry, Nitrogen Sorption and SAXS Study. J. Adv. Concr. Technol. 2020, 18, 83–94. [Google Scholar] [CrossRef]
- Washburn, E.W. Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. Proc. Natl. Acad. Sci. USA 1921, 7, 115–116. [Google Scholar] [CrossRef]
- Diamond, S. A discussion of the paper “Effect of drying on cement-based materials pore structure as identified by mercury porosimetry—A comparative study between oven-, vacuum-, and freeze-drying” by C. Gallé. Cem. Concr. Res. 2003, 33, 169–170. [Google Scholar] [CrossRef]
- Diamond, S. Mercury porosimetry: An inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 2000, 30, 1517–1525. [Google Scholar] [CrossRef]
- Gallé, C. Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry. Cem. Concr. Res. 2001, 31, 1467–1477. [Google Scholar] [CrossRef]
- Winnefeld, F.; Schöler, A.; Lothenbach, B. Sample preparation (Chapter 1). In A Practical Guide to Microstructural Analysis of Cementitious Materials; Scrivener, K., Snellings, R., Lothenbach, B., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Gallé, C. Reply to the discussion by S. Diamond of the paper “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry: A comparative study between oven-, vacuum- and freeze-drying”. Cem. Concr. Res. 2003, 33, 171–172. [Google Scholar] [CrossRef]
- Ma, H. Mercury intrusion porosimetry in concrete technology: Tips in measurement, pore structure parameter acquisition and application. J. Porous Mater. 2014, 21, 207–215. [Google Scholar] [CrossRef]
- Andrade, C.; Martínez-Serrano, A.; Sanjuán, M.Á.; Tenorio Ríos, J.A. Reduced Carbonation, Sulfate and Chloride Ingress Due to the Substitution of Cement by 10% Non-Precalcined Bentonite. Materials 2021, 14, 1300. [Google Scholar] [CrossRef]
- Nehdi, M.L. Clay in cement-based materials: Critical overview of state-of-the-art. Constr. Build. Mater. 2014, 51, 372–382. [Google Scholar] [CrossRef]
- Norvell, J.K.; Stewart, J.G.; Juenger, M.C.; Fowler, D.W. Influence of Clays and Clay-Sized Particles on Concrete Performance. J. Mater. Civ. Eng. 2007, 19, 1053–1059. [Google Scholar] [CrossRef]
- Solomon, F.; Ekolu, S.O. Strength behaviour of clay-cement concrete and quality implications for low-cost construction materials. In Proceedings of the Concrete Repair, Rehabilitation and Retrofitting III, Proceedings of the 3rd International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR), Cape Town, South Africa, 3–5 September 2012; Alexander, M.G., Beushausen, H.D., Dehn, F., Moyo, P., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 1420–1425. [Google Scholar]
- Ahmad, J.; Kontoleon, K.J.; Al-Mulali, M.Z.; Shaik, S.; Hechmi El Ouni, M.; El-Shorbagy, M.A. Partial Substitution of Binding Material by Bentonite Clay (BC) in Concrete: A Review. Buildings 2022, 12, 634. [Google Scholar] [CrossRef]
- Hu, Y.; Diao, L.; Lai, Z.; He, Y.; Yan, T.; He, X.; Wu, J.; Lu, Z.; Lv, S. Effects of bentonite on pore structure and permeability of cement mortar. Constr. Build. Mater. 2019, 224, 276–283. [Google Scholar] [CrossRef]
- Fam, M.A.; Santamarina, J.C. Study of Clay-Cement Slurries with Mechanical and Electromagnetic Waves. J. Geotech. Eng. 1996, 122, 365–373. [Google Scholar] [CrossRef]
- Shi, Y.; Chen, X.; Li, J.; Li, X.; Peng, Z. Micro–macro properties of plastic concrete anti-seepage wall materials mixed with low-liquid limit clay. Adv. Mech. Eng. 2019, 11, 168781401984973. [Google Scholar] [CrossRef]
- Chang, T.P.; Shih, J.Y.; Yang, K.M.; Hsiao, T.C. Material properties of portland cement paste with nano-montmorillonite. J. Mater. Sci. 2007, 42, 7478–7487. [Google Scholar] [CrossRef]
- Niu, X.J.; Li, Q.B.; Hu, Y.; Tan, Y.S.; Liu, C.F. Properties of cement-based materials incorporating nano-clay and calcined nano-clay: A review. Constr. Build. Mater. 2021, 284, 122820. [Google Scholar] [CrossRef]
- Tang, B.; Cui, W.; Zhang, B.Z.; Jiang, Z.A. The macroscopic mechanical characteristics and microscopic evolution mechanism of plastic concrete. Constr. Build. Mater. 2023, 391, 131898. [Google Scholar] [CrossRef]
- Flessati, L.; Della Vecchia, G.; Musso, G. Mechanical Behavior and Constitutive Modeling of Cement–Bentonite Mixtures for Cutoff Walls. J. Mater. Civ. Eng. 2021, 33, 04020483. [Google Scholar] [CrossRef]
- Cao, B.; Chen, J.; Al-Tabbaa, A. Crack-resistant cement–bentonite cut-off wall materials incorporating superabsorbent polymers. Can. Geotech. J. 2021, 58, 800–810. [Google Scholar] [CrossRef]
- Fernandes, V.A.; Purnell, P.; Still, G.T.; Thomas, T.H. The effect of clay content in sands used for cementitious materials in developing countries. Cem. Concr. Res. 2007, 37, 751–758. [Google Scholar] [CrossRef]
- Barbu, C.S.; Sabau, A.D.; Manoli, D.M.; Serbulea, M.S. Water/Cement/Bentonite Ratio Selection Method for Artificial Groundwater Barriers Made of Cutoff Walls. Water 2022, 14, 376. [Google Scholar] [CrossRef]
- EN 197-1:2011-11; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2011.
- Meier, L.P.; Kahr, G. Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of Copper (II) ion with Triethylenetetramine and Tretraethylenepentamine. Clays Clay Miner. 1999, 47, 386–388. [Google Scholar] [CrossRef]
- Steudel, A. Selection Strategy and Modification of Layer Silicates for Technical Applications. Master’s Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2009. [Google Scholar] [CrossRef]
- DIN 1045-2:2008-08; Tragwerke aus Beton, Stahlbeton und Spannbeton—Teil 2: Beton—Festlegung, Eigenschaften, Herstellung und Konformität—Anwendungsregeln zu DIN EN 206-1. Deutsches Institut für Normung: Berlin, Germany, 2008.
- EN 1008:2002-10; Mixing Water for Concrete—Specification for Sampling, Testing and Assessing the Suitability of Water, Including Water Recovered from Processes in the Concrete Industry, as Mixing Water for Concrete (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2002.
- Lei, L.; Palacios, M.; Plank, J.; Jeknavorian, A.A. Interaction between polycarboxylate superplasticizers and non-calcined clays and calcined clays: A review. Cem. Concr. Res. 2022, 154, 106717. [Google Scholar] [CrossRef]
- Fadaie, M.A.; Nekooei, M.; Javadi, P. Effect of Dry and Saturated Bentonite on Plastic Concrete. KSCE J. Civ. Eng. 2019, 23, 3431–3442. [Google Scholar] [CrossRef]
- Adjei, S.; Elkatatny, S.; Al-Majed, A. Effect of Bentonite Prehydration Time on the Stability of Lightweight Oil-Well Cement System. Geofluids 2021, 2021, 9957159. [Google Scholar] [CrossRef]
- EN 12350-2:2019-09; Testing Fresh Concrete—Part 2: Slump Test (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2019.
- EN 12350-5:2019-09; Testing Fresh Concrete—Part 5: Flow Table Test (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2019.
- EN 12350-6:2019-09; Testing Fresh Concrete—Part 6: Density (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2019.
- EN 12350-7:2019:09; Testing Fresh Concrete—Part 7: Air Content—Pressure Methods (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2019.
- EN 196-1:2016-11; Methods of Testing Cement—Part 1: Determination of Strength (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2016.
- EN 12390-2:2019-10; Testing Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2019.
- EN 15901-1:2016; Evaluation of Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption—Part 1: Mercury Porosimetry (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2016.
- Berodier, E.; Bizzozero, J.; Muller, A.C.A. Mercury intrusion porosimetry (Chapter 9). In A Practical Guide to Microstructural Analysis of Cementitious Materials; Scrivener, K., Snellings, R., Lothenbach, B., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- EN 13925-2:2003-07; Non-Destructive Testing—X-Ray Diffraction from Polycristalline and Amorphous Material—Part 2: Procedures (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2003.
- EN 13925-1:2003-07; Non-Destructive Testing—X-Ray Diffraction from Polycristalline and Amorphous Material—Part 1: General Principles (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2003.
- EN 13925-3:2005-07; Non-Destructive Testing—X-Ray Diffraction from Polycristalline and Amorphous Material—Part 3: Instruments (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2005.
- EN 1015-11:2020-01; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar (German Version). Comité Européen de Normalisation: Brussels, Belgium, 2020.
- DIN 4093:2015-11; Bemessung von Verfestigten Bodenkörpern—Hergestellt mit Düsenstrahl-, Deep-Mixing- oder Injektions-Verfahren. Deutsches Institut für Normung: Berlin, Germany, 2015.
- Alós Shepherd, D.; Dehn, F. Experimental Study into the Mechanical Properties of Plastic Concrete: Compressive Strength Development over Time, Tensile Strength and Elastic Modulus. Case Stud. Constr. Mater. 2023, 19, e02521. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, Y.; Zhang, J.; Hu, Z.; Li, H.; Wang, Y.; Liu, J.; Wang, K. Effect of clay content on shrinkage of cementitious materials. Constr. Build. Mater. 2022, 322, 125959. [Google Scholar] [CrossRef]
- Warr, L.N. IMA–CNMNC approved mineral symbols. Mineral. Mag. 2021, 85, 291–320. [Google Scholar] [CrossRef]
- Snellings, R. X-ray powder diffraction applied to cement (Chapter 4). In A Practical Guide to Microstructural Analysis of Cementitious Materials; Scrivener, K., Snellings, R., Lothenbach, B., Eds.; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Chatterji, S. A discussion of the paper “Mercury porosimetry—An inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond. Cem. Concr. Res. 2001, 31, 1657–1658. [Google Scholar] [CrossRef]
- Bogner, A.; Link, J.; Baum, M.; Mahlbacher, M.; Gil-Diaz, T.; Lützenkirchen, J.; Sowoidnich, T.; Heberling, F.; Schäfer, T.; Ludwig, H.M.; et al. Early hydration and microstructure formation of Portland cement paste studied by oscillation rheology, isothermal calorimetry, 1H NMR relaxometry, conductance and SAXS. Cem. Concr. Res. 2020, 130, 105977. [Google Scholar] [CrossRef]
- de Matos, P.R.; Andrade Neto, J.S.; Jansen, D.; de La Torre, A.G.; Kirchheim, A.P.; Campos, C.E. In-situ laboratory X-ray diffraction applied to assess cement hydration. Cem. Concr. Res. 2022, 162, 106988. [Google Scholar] [CrossRef]
- Sabir, B.B.; Wild, S.; O’Farrell, M. A water sorptivity test for martar and concrete. Mater. Struct. 1998, 31, 568–574. [Google Scholar] [CrossRef]
- Kabir, H.; Wu, J.; Dahal, S.; Joo, T.; Garg, N. Automated estimation of cementitious sorptivity via computer vision. Nat. Commun. 2024, 15, 9935. [Google Scholar] [CrossRef] [PubMed]
CaO | SiO2 | Al2O3 | MgO | Fe2O3 | Others | LoI | ||
---|---|---|---|---|---|---|---|---|
CEM I | (wt.%) | 61.8 | 22.2 | 5.2 | 2.9 | 2.4 | 3.6 | 2.7 |
CV15 | (wt.%) | 2.3 | 59.8 | 12.0 | 1.9 | 2.2 | 3.4 | 15.7 |
WW4 | (wt.%) | 4.0 | 50.6 | 16.7 | 3.1 | 3.8 | 4.1 | 17.8 |
Tixoton | (wt.%) | 3.9 | 49.2 | 17.5 | 2.5 | 5.3 | 5.4 | 18.2 |
d10% | PSD * d50% (μm) | d90% | No-Dry | Density 60 °C (g/cm3) | 105 °C | Specific Surface Blaine (cm2/g) | |
---|---|---|---|---|---|---|---|
CEM I | 1.52 | 17.20 | 55.30 | 3.10 | - | - | 3477 |
CV15 | 1.20 | 7.13 | 38.34 | 2.40 | 2.72 | 2.79 | - |
WW4 | 0.93 | 4.75 | 39.90 | 2.54 | 2.72 | 2.86 | - |
Tixoton | 1.97 | 16.78 | 57.19 | 2.57 | 2.72 | 2.78 | - |
CV15 | WW4 | Tixoton | |
---|---|---|---|
Quartz | X | X | X |
Carbonate (mainly calcite) | X | X | X |
Illite/Mica (di) | X | ||
Montmorillonite | X | X | X |
Plagioclase | X | X | X |
K-feldspar | X | X | |
CEC (cmol+/kg) | 61 | 88 | 65 |
Sieve size | (mm) | 0.125 | 0.25 | 0.5 | 1 | 2 | 4 | 8 |
Sieve passing | (wt.%) | 0.1 | 6.6 | 22.5 | 31.9 | 38.0 | 64.6 | 98.9 |
b:c-Ratio | Swelling Time | Bentonite Type | ||
---|---|---|---|---|
Bentonil CV15 | Bentonil WW4 | Tixoton | ||
1:3 | 24 h | C1:3-Q24 | W1:3-Q24 | - |
0 h | C1:3-Q0 | W1:3-Q0 | - | |
1:2 | 24 h | C1:2-Q24 | W1:2-Q24 | T1:2-Q24 |
0 h | C1:2-Q0 | W1:2-Q0 | T1:2-Q0 |
Mix I (kg/m3) | Mix II (kg/m3) | |
---|---|---|
CEM I 32.5 R | 100.0 | 100.0 |
Water | 400.0 | 400.0 |
Bentonite | 33.3 | 50.0 |
Sand (0–2) mm | 542.3 | 536.3 |
Gravel (2–8) mm | 920.3 | 910.1 |
b:c-ratio | 1:3 | 1:2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alós Shepherd, D.; Bogner, A.; Bruder, J.; Dehn, F. The Time Development of the Microstructural Properties of Plastic Concrete: Material Insights and Experimental Boundaries. Constr. Mater. 2025, 5, 14. https://doi.org/10.3390/constrmater5010014
Alós Shepherd D, Bogner A, Bruder J, Dehn F. The Time Development of the Microstructural Properties of Plastic Concrete: Material Insights and Experimental Boundaries. Construction Materials. 2025; 5(1):14. https://doi.org/10.3390/constrmater5010014
Chicago/Turabian StyleAlós Shepherd, David, Andreas Bogner, Julia Bruder, and Frank Dehn. 2025. "The Time Development of the Microstructural Properties of Plastic Concrete: Material Insights and Experimental Boundaries" Construction Materials 5, no. 1: 14. https://doi.org/10.3390/constrmater5010014
APA StyleAlós Shepherd, D., Bogner, A., Bruder, J., & Dehn, F. (2025). The Time Development of the Microstructural Properties of Plastic Concrete: Material Insights and Experimental Boundaries. Construction Materials, 5(1), 14. https://doi.org/10.3390/constrmater5010014