Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (218)

Search Parameters:
Keywords = Wind power curtailments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1317 KiB  
Article
A Stackelberg Game for Co-Optimization of Distribution System Operator Revenue and Virtual Power Plant Costs with Integrated Data Center Flexibility
by Qi Li, Shihao Liu, Bokang Zou, Yulong Jin, Yi Ge, Yan Li, Qirui Chen, Xinye Du, Feng Li and Chenyi Zheng
Energies 2025, 18(15), 4123; https://doi.org/10.3390/en18154123 - 3 Aug 2025
Viewed by 45
Abstract
The increasing penetration of distributed renewable energy and the emergence of large-scale, flexible loads such as data centers pose significant challenges to the economic and secure operation of distribution systems. Traditional static pricing mechanisms are often inadequate, leading to inefficient resource dispatch and [...] Read more.
The increasing penetration of distributed renewable energy and the emergence of large-scale, flexible loads such as data centers pose significant challenges to the economic and secure operation of distribution systems. Traditional static pricing mechanisms are often inadequate, leading to inefficient resource dispatch and curtailment of renewable generation. To address these issues, this paper proposes a hierarchical pricing and dispatch framework modeled as a tri-level Stackelberg game that coordinates interactions among an upstream grid, a distribution system operator (DSO), and multiple virtual power plants (VPPs). At the upper level, the DSO acts as the leader, formulating dynamic time-varying purchase and sale prices to maximize its revenue based on upstream grid conditions. In response, at the lower level, each VPP acts as a follower, optimally scheduling its portfolio of distributed energy resources—including microturbines, energy storage, and interruptible loads—to minimize its operating costs under the announced tariffs. A key innovation is the integration of a schedulable data center within one VPP, which responds to a specially designed wind-linked incentive tariff by shifting computational workloads to periods of high renewable availability. The resulting high-dimensional bilevel optimization problem is solved using a Kriging-based surrogate methodology to ensure computational tractability. Simulation results verify that, compared to a static-pricing baseline, the proposed strategy increases DSO revenue by 18.9% and reduces total VPP operating costs by over 28%, demonstrating a robust framework for enhancing system-wide economic and operational efficiency. Full article
Show Figures

Figure 1

19 pages, 2137 KiB  
Article
Optimal Configuration and Empirical Analysis of a Wind–Solar–Hydro–Storage Multi-Energy Complementary System: A Case Study of a Typical Region in Yunnan
by Yugong Jia, Mengfei Xie, Ying Peng, Dianning Wu, Lanxin Li and Shuibin Zheng
Water 2025, 17(15), 2262; https://doi.org/10.3390/w17152262 - 29 Jul 2025
Viewed by 237
Abstract
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different [...] Read more.
The increasing integration of wind and photovoltaic energy into power systems brings about large fluctuations and significant challenges for power absorption. Wind–solar–hydro–storage multi-energy complementary systems, especially joint dispatching strategies, have attracted wide attention due to their ability to coordinate the advantages of different resources and enhance both flexibility and economic efficiency. This paper develops a capacity optimization model for a wind–solar–hydro–storage multi-energy complementary system. The objectives are to improve net system income, reduce wind and solar curtailment, and mitigate intraday fluctuations. We adopt the quantum particle swarm algorithm (QPSO) for outer-layer global optimization, combined with an inner-layer stepwise simulation to maximize life cycle benefits under multi-dimensional constraints. The simulation is based on the output and load data of typical wind, solar, water, and storage in Yunnan Province, and verifies the effectiveness of the proposed model. The results show that after the wind–solar–hydro–storage multi-energy complementary system is optimized, the utilization rate of new energy and the system economy are significantly improved, which has a wide range of engineering promotion value. The research results of this paper have important reference significance for the construction of new power systems and the engineering design of multi-energy complementary projects. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

20 pages, 1979 KiB  
Article
Energy Storage Configuration Optimization of a Wind–Solar–Thermal Complementary Energy System, Considering Source-Load Uncertainty
by Guangxiu Yu, Ping Zhou, Zhenzhong Zhao, Yiheng Liang and Weijun Wang
Energies 2025, 18(15), 4011; https://doi.org/10.3390/en18154011 - 28 Jul 2025
Viewed by 356
Abstract
The large-scale integration of new energy is an inevitable trend to achieve the low-carbon transformation of power systems. However, the strong randomness of wind power, photovoltaic power, and loads poses severe challenges to the safe and stable operation of systems. Existing studies demonstrate [...] Read more.
The large-scale integration of new energy is an inevitable trend to achieve the low-carbon transformation of power systems. However, the strong randomness of wind power, photovoltaic power, and loads poses severe challenges to the safe and stable operation of systems. Existing studies demonstrate insufficient integration and handling of source-load bilateral uncertainties in wind–solar–fossil fuel storage complementary systems, resulting in difficulties in balancing economy and low-carbon performance in their energy storage configuration. To address this insufficiency, this study proposes an optimal energy storage configuration method considering source-load uncertainties. Firstly, a deterministic bi-level model is constructed: the upper level aims to minimize the comprehensive cost of the system to determine the energy storage capacity and power, and the lower level aims to minimize the system operation cost to solve the optimal scheduling scheme. Then, wind and solar output, as well as loads, are treated as fuzzy variables based on fuzzy chance constraints, and uncertainty constraints are transformed using clear equivalence class processing to establish a bi-level optimization model that considers uncertainties. A differential evolution algorithm and CPLEX are used for solving the upper and lower levels, respectively. Simulation verification in a certain region shows that the proposed method reduces comprehensive cost by 8.9%, operation cost by 10.3%, the curtailment rate of wind and solar energy by 8.92%, and carbon emissions by 3.51%, which significantly improves the economy and low-carbon performance of the system and provides a reference for the future planning and operation of energy systems. Full article
Show Figures

Figure 1

15 pages, 1597 KiB  
Article
Customer Directrix Load Method for High Penetration of Winds Considering Contribution Factors of Generators to Load Bus
by Tianxiang Zhang, Yifei Wang, Qing Zhu, Bin Han, Xiaoming Wang and Ming Fang
Electronics 2025, 14(15), 2931; https://doi.org/10.3390/electronics14152931 - 23 Jul 2025
Viewed by 153
Abstract
As part of the carbon peak and neutrality drive, an influx of renewable energy into the grid is imminent. However, the unpredictability of renewables like wind and solar can lead to significant curtailment if the power system relies solely on traditional generators. This [...] Read more.
As part of the carbon peak and neutrality drive, an influx of renewable energy into the grid is imminent. However, the unpredictability of renewables like wind and solar can lead to significant curtailment if the power system relies solely on traditional generators. This paper presents a demand response mechanism to enhance renewable energy uptake by defining an optimal load curve for each node, considering the generator’s dynamic impact, system operations, and renewable energy projections. Once the ideal load curve is published, consumers, influenced by incentives, voluntarily align their consumption, steering the actual load to resemble the proposed curve. This strategy not only guides flexible generation resources to better utilize renewables but also minimizes the communication and control expenses associated with large-scale customer demand response. Additionally, a new evaluation metric for user response is proposed to ensure equitable incentive distribution. The model has been shown to lower both consumer power costs and system generation expenses, achieving a 22% reduction in renewable energy wastage. Full article
Show Figures

Figure 1

16 pages, 1216 KiB  
Article
Power Assessment and Performance Comparison of Wind Turbines Driven by Multivariate Environmental Factors
by Bubin Wang, Bin Zhou, Denghao Zhu, Mingheng Zou, Zhao Rao, Haoxuan Luo and Weihao Ji
J. Mar. Sci. Eng. 2025, 13(7), 1377; https://doi.org/10.3390/jmse13071377 - 20 Jul 2025
Viewed by 279
Abstract
The increasing deployment of turbines installed offshore is critical for sustainable energy development, yet accurate performance assessment remains challenging due to complex environmental influences, diverse turbine control strategies, and issues with data quality. Traditional performance metrics and power curve models often fail to [...] Read more.
The increasing deployment of turbines installed offshore is critical for sustainable energy development, yet accurate performance assessment remains challenging due to complex environmental influences, diverse turbine control strategies, and issues with data quality. Traditional performance metrics and power curve models often fail to provide reliable cross-turbine comparisons because they neglect multivariate environmental factors and turbine-specific biases. To address these limitations, this study develops a novel multivariate environmental factor-driven power assessment framework employing segmented long short-term memory (LSTM) models. A hybrid data cleaning method, combining bidirectional quartile analysis with the power curtailment detection, is proposed to effectively identify outliers, including subtle anomalies within typical data ranges. Samples are segmented based on rated wind speed to reflect differences in control strategies, and turbine-specific operational parameters are excluded to ensure unbiased comparisons among turbines. The proposed method achieves substantial improvements in predictive accuracy, with decreases of 9.39% in mean absolute error (MAE) and 11.75% in root mean square error (RMSE), compared to conventional binning approaches. When applied to three 5.5 MW offshore wind turbines, the proposed method reveals significant differences among the units. Turbine A demonstrates the highest performance, while turbines B and C exhibit reductions of 14.35% and 8.29%, respectively. Operational state analysis shows that turbine B experiences substantially longer maintenance durations, indicating severe faults that adversely affect its operational reliability and power output. These findings provide valuable insights for maintenance prioritization and performance benchmarking among wind turbines. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

39 pages, 5325 KiB  
Article
Optimal Sizing and Techno-Economic Evaluation of a Utility-Scale Wind–Solar–Battery Hybrid Plant Considering Weather Uncertainties, as Well as Policy and Economic Incentives, Using Multi-Objective Optimization
by Shree Om Bade, Olusegun Stanley Tomomewo, Michael Maan, Johannes Van der Watt and Hossein Salehfar
Energies 2025, 18(13), 3528; https://doi.org/10.3390/en18133528 - 3 Jul 2025
Viewed by 436
Abstract
This study presents an optimization framework for a utility-scale hybrid power plant (HPP) that integrates wind power plants (WPPs), solar power plants (SPPs), and battery energy storage systems (BESS) using historical and probabilistic weather modeling, regulatory incentives, and multi-objective trade-offs. By employing multi-objective [...] Read more.
This study presents an optimization framework for a utility-scale hybrid power plant (HPP) that integrates wind power plants (WPPs), solar power plants (SPPs), and battery energy storage systems (BESS) using historical and probabilistic weather modeling, regulatory incentives, and multi-objective trade-offs. By employing multi-objective particle swarm optimization (MOPSO), the study simultaneously optimizes three key objectives: economic performance (maximizing net present value, NPV), system reliability (minimizing loss of power supply probability, LPSP), and operational efficiency (reducing curtailment). The optimized HPP (283 MW wind, 20 MW solar, and 500 MWh BESS) yields an NPV of $165.2 million, a levelized cost of energy (LCOE) of $0.065/kWh, an internal rate of return (IRR) of 10.24%, and a 9.24-year payback, demonstrating financial viability. Operational efficiency is maintained with <4% curtailment and 8.26% LPSP. Key findings show that grid imports improve reliability (LPSP drops to 1.89%) but reduce economic returns; higher wind speeds (11.6 m/s) allow 27% smaller designs with 54.6% capacity factors; and tax credits (30%) are crucial for viability at low PPA rates (≤$0.07/kWh). Validation via Multi-Objective Genetic Algorithm (MOGA) confirms robustness. The study improves hybrid power plant design by combining weather predictions, policy changes, and optimizing three goals, providing a flexible renewable energy option for reducing carbon emissions. Full article
Show Figures

Graphical abstract

17 pages, 4822 KiB  
Article
Black-Start Strategy for Offshore Wind Power Delivery System Based on Series-Connected DRU-MMC Hybrid Converter
by Feng Li, Danqing Chen, Honglin Chen, Shuxin Luo, Hao Yu, Tian Hou, Guoteng Wang and Ying Huang
Electronics 2025, 14(13), 2543; https://doi.org/10.3390/electronics14132543 - 23 Jun 2025
Viewed by 261
Abstract
The series-connected DRU-MMC hybrid converter, with its compact size and cost-effectiveness, presents an attractive solution for long-distance offshore wind power transmission. However, its application is limited by the DRU’s unidirectional power flow and the voltage mismatch between the auxiliary MMC and the onshore [...] Read more.
The series-connected DRU-MMC hybrid converter, with its compact size and cost-effectiveness, presents an attractive solution for long-distance offshore wind power transmission. However, its application is limited by the DRU’s unidirectional power flow and the voltage mismatch between the auxiliary MMC and the onshore MMC during black-start operations. To overcome these challenges, a four-stage black-start strategy utilizing an auxiliary step-down transformer connected to the onshore MMC is proposed. The proposed strategy operates as follows: The onshore MMC first lowers its valve-side voltage via an auxiliary transformer, enabling reduced DC-side voltage. With the DRU bypassed, the offshore MMC draws startup power through the DC link, then switches to V/f mode with wind turbine curtailment to reduce DC current below the DRU bypass threshold. After stable, low-power operation, the DRU is integrated. The onshore MMC then restores rated DC voltage and disconnects the transformer, allowing gradual wind turbine reconnection to complete black-start. The simulation results confirm the approach’s feasibility under conditions where all wind turbines operate in grid-following mode. Full article
Show Figures

Figure 1

21 pages, 1107 KiB  
Article
Coordinated Scheduling Strategy for Campus Power Grid and Aggregated Electric Vehicles Within the Framework of a Virtual Power Plant
by Xiao Zhou, Cunkai Li, Zhongqi Pan, Tao Liang, Jun Yan, Zhengwei Xu, Xin Wang and Hongbo Zou
Processes 2025, 13(7), 1973; https://doi.org/10.3390/pr13071973 - 23 Jun 2025
Viewed by 438
Abstract
The inherent intermittency and uncertainty of renewable energy generation pose significant challenges to the safe and stable operation of power grids, particularly when power demand does not match renewable energy supply, leading to issues such as wind and solar power curtailment. To effectively [...] Read more.
The inherent intermittency and uncertainty of renewable energy generation pose significant challenges to the safe and stable operation of power grids, particularly when power demand does not match renewable energy supply, leading to issues such as wind and solar power curtailment. To effectively promote the consumption of renewable energy while leveraging electric vehicles (EVs) in virtual power plants (VPPs) as distributed energy storage resources, this paper proposes an ordered scheduling strategy for EVs in campus areas oriented towards renewable energy consumption. Firstly, to address the uncertainty of renewable energy output, this paper uses Conditional Generative Adversarial Network (CGAN) technology to generate a series of typical scenarios. Subsequently, a mathematical model for EV aggregation is established, treating the numerous dispersed EVs within the campus as a collectively controllable resource, laying the foundation for their ordered scheduling. Then, to maximize renewable energy consumption and optimize EV charging scheduling, an improved Particle Swarm Optimization (PSO) algorithm is adopted to solve the problem. Finally, case studies using a real-world testing system demonstrate the feasibility and effectiveness of the proposed method. By introducing a dynamic inertia weight adjustment mechanism and a multi-population cooperative search strategy, the algorithm’s convergence speed and global search capability in solving high-dimensional non-convex optimization problems are significantly improved. Compared with conventional algorithms, the computational efficiency can be increased by up to 54.7%, and economic benefits can be enhanced by 8.6%. Full article
(This article belongs to the Special Issue Applications of Smart Microgrids in Renewable Energy Development)
Show Figures

Figure 1

35 pages, 9419 KiB  
Article
Multi-Objective Scheduling Method for Integrated Energy System Containing CCS+P2G System Using Q-Learning Adaptive Mutation Black-Winged Kite Algorithm
by Ruijuan Shi, Xin Yan, Zuhao Fan and Naiwei Tu
Sustainability 2025, 17(13), 5709; https://doi.org/10.3390/su17135709 - 20 Jun 2025
Viewed by 436
Abstract
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal [...] Read more.
This study proposes an improved multi-objective black-winged kite algorithm (MOBKA-QL) integrating Q-learning with adaptive mutation strategies for optimizing multi-objective scheduling in integrated energy systems (IES). The algorithm dynamically selects mutation strategies through Q-learning to enhance solution diversity and accelerate convergence. First, an optimal scheduling model is established, incorporating a carbon capture system (CCS), power-to-gas (P2G), solar thermal, wind power, and energy storage to minimize economic costs and carbon emissions while maximizing energy efficiency. Second, the heat-to-power ratio of the cogeneration system is dynamically adjusted according to load demand, enabling flexible control of combined heat and power (CHP) output. The integration of CCS+P2G further reduces carbon emissions and wind curtailment, with the produced methane utilized in boilers and cogeneration systems. Hydrogen fuel cells (HFCs) are employed to mitigate cascading energy losses. Using forecasted load and renewable energy data from a specific region, dispatch experiments demonstrate that the proposed system reduces economic costs and CO2 emissions by 14.63% and 13.9%, respectively, while improving energy efficiency by 28.84%. Additionally, the adjustable heat-to-power ratio of CHP yields synergistic economic, energy, and environmental benefits. Full article
Show Figures

Figure 1

25 pages, 6573 KiB  
Article
Remote Real-Time Monitoring and Control of Small Wind Turbines Using Open-Source Hardware and Software
by Jesus Clavijo-Camacho, Gabriel Gomez-Ruiz, Reyes Sanchez-Herrera and Nicolas Magro
Appl. Sci. 2025, 15(12), 6887; https://doi.org/10.3390/app15126887 - 18 Jun 2025
Viewed by 435
Abstract
This paper presents a real-time remote-control platform for small wind turbines (SWTs) equipped with a permanent magnet synchronous generator (PMSG). The proposed system integrates a DC–DC boost converter controlled by an Arduino® microcontroller, a Raspberry Pi® hosting a WebSocket server, and [...] Read more.
This paper presents a real-time remote-control platform for small wind turbines (SWTs) equipped with a permanent magnet synchronous generator (PMSG). The proposed system integrates a DC–DC boost converter controlled by an Arduino® microcontroller, a Raspberry Pi® hosting a WebSocket server, and a desktop application developed using MATLAB® App Designer (version R2024b). The platform enables seamless remote monitoring and control by allowing upper layers to select the turbine’s operating mode—either Maximum Power Point Tracking (MPPT) or Power Curtailment—based on real-time wind speed data transmitted via the WebSocket protocol. The communication architecture follows the IEC 61400-25 standard for wind power system communication, ensuring reliable and standardized data exchange. Experimental results demonstrate high accuracy in controlling the turbine’s operating points. The platform offers a user-friendly interface for real-time decision-making while ensuring robust and efficient system performance. This study highlights the potential of combining open-source hardware and software technologies to optimize SWT operations and improve their integration into distributed renewable energy systems. The proposed solution addresses the growing demand for cost-effective, flexible, and remote-control technologies in small-scale renewable energy applications. Full article
Show Figures

Figure 1

17 pages, 983 KiB  
Article
Operational Risk Assessment of Power Imbalance for Power Systems Considering Wind Power Ramping Events
by Weikun Wang, Xiaofu Xiong, Di Yang, Song Wang and Xinyi Dong
Processes 2025, 13(6), 1779; https://doi.org/10.3390/pr13061779 - 4 Jun 2025
Viewed by 364
Abstract
Wind power ramping events refer to sustained unidirectional and large-magnitude fluctuations in wind power output over short durations, exhibiting distinct temporal characteristics and imposing significant impacts on power balance. To address the strong temporal dependency of wind power ramping events, a time-sequential outage [...] Read more.
Wind power ramping events refer to sustained unidirectional and large-magnitude fluctuations in wind power output over short durations, exhibiting distinct temporal characteristics and imposing significant impacts on power balance. To address the strong temporal dependency of wind power ramping events, a time-sequential outage model for conventional generators was derived and system operational states were sampled using non-sequential Monte Carlo simulation. Considering the frequency dynamics caused by active power imbalances, dynamic frequency security constraints were formulated. An optimal power flow model was developed to minimize wind curtailment and load shedding comprehensive losses, incorporating these dynamic frequency constraints. The optimal power flow model was employed to solve line power flows for sampled system states and compute comprehensive loss risk indices. Case studies on the IEEE RTS-79 system evaluated and compared operational risks across multiple scenarios, validating the effectiveness of the proposed methodology. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 1669 KiB  
Article
Two-Stage Collaborative Power Optimization for Off-Grid Wind–Solar Hydrogen Production Systems Considering Reserved Energy of Storage
by Yiwen Geng, Qi Liu, Hao Zheng and Shitong Yan
Energies 2025, 18(11), 2970; https://doi.org/10.3390/en18112970 - 4 Jun 2025
Viewed by 574
Abstract
Off-grid renewable energy hydrogen production is a crucial approach to enhancing renewable energy utilization and improving power system stability. However, the strong stochastic fluctuations of wind and solar power pose significant challenges to electrolyzer reliability. While hybrid energy storage systems (HESS) can mitigate [...] Read more.
Off-grid renewable energy hydrogen production is a crucial approach to enhancing renewable energy utilization and improving power system stability. However, the strong stochastic fluctuations of wind and solar power pose significant challenges to electrolyzer reliability. While hybrid energy storage systems (HESS) can mitigate power fluctuations, traditional power allocation rules based solely on electrolyzer power limits and HESS state of charge (SOC) boundaries result in insufficient energy supply capacity and unstable electrolyzer operation. To address this, this paper proposes a two-stage power optimization method integrating rule-based allocation with algorithmic optimization for wind–solar hydrogen production systems, considering reserved energy storage. In Stage I, hydrogen production power and HESS initial allocation are determined through the deep coupling of real-time electrolyzer operating conditions with reserved energy. Stage II employs an improved multi-objective particle swarm optimization (IMOPSO) algorithm to optimize HESS power allocation, minimizing unit hydrogen production cost and reducing average battery charge–discharge depth. The proposed method enhances hydrogen production stability and HESS supply capacity while reducing renewable curtailment rates and average production costs. Case studies demonstrate its superiority over three conventional rule-based power allocation methods. Full article
Show Figures

Figure 1

22 pages, 2052 KiB  
Article
Optimization Scheduling of Carbon Capture Power Systems Considering Energy Storage Coordination and Dynamic Carbon Constraints
by Tingling Wang, Yuyi Jin and Yongqing Li
Processes 2025, 13(6), 1758; https://doi.org/10.3390/pr13061758 - 3 Jun 2025
Cited by 1 | Viewed by 564
Abstract
To achieve low-carbon economic dispatch and collaborative optimization of carbon capture efficiency in power systems, this paper proposes a flexible carbon capture power plant and generalized energy storage collaborative operation model under a dynamic carbon quota mechanism. First, adjustable carbon capture devices are [...] Read more.
To achieve low-carbon economic dispatch and collaborative optimization of carbon capture efficiency in power systems, this paper proposes a flexible carbon capture power plant and generalized energy storage collaborative operation model under a dynamic carbon quota mechanism. First, adjustable carbon capture devices are integrated into high-emission thermal power units to construct carbon–electricity coupled operation modules, enabling a dynamic reduction of carbon emission intensity and enhancing low-carbon performance. Second, a time-varying carbon quota allocation mechanism and a dynamic correction model for carbon emission factors are designed to improve the regulation capability of carbon capture units during peak demand periods. Furthermore, pumped storage systems and price-guided demand response are integrated to form a generalized energy storage system, establishing a “source–load–storage” coordinated peak-shaving framework that alleviates the regulation burden on carbon capture units. Finally, a multi-timescale optimization scheduling model is developed and solved using the GUROBI algorithm to ensure the economic efficiency and operational synergy of system resources. Simulation results demonstrate that, compared with the traditional static quota mode, the proposed dynamic carbon quota mechanism reduces wind curtailment cost by 9.6%, the loss of load cost by 48.8%, and carbon emission cost by 15%. Moreover, the inclusion of generalized energy storage—including pumped storage and demand response—further decreases coal consumption cost by 9% and carbon emission cost by 17%, validating the effectiveness of the proposed approach in achieving both economic and environmental benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

27 pages, 1612 KiB  
Article
Employing Quantum Entanglement for Real-Time Coordination of Distributed Electric Vehicle Charging Stations: Advancing Grid Efficiency and Stability
by Dawei Wang, Hanqi Dai, Yuan Jin, Zhuoqun Li, Shanna Luo and Xuebin Li
Energies 2025, 18(11), 2917; https://doi.org/10.3390/en18112917 - 2 Jun 2025
Viewed by 501
Abstract
The widespread deployment of electric vehicles (EVs) has introduced substantial challenges to electricity pricing, grid stability, and renewable energy integration. This paper presents the first real-time quantum-enhanced electricity pricing framework for large-scale EV charging networks, marking a significant departure from existing approaches based [...] Read more.
The widespread deployment of electric vehicles (EVs) has introduced substantial challenges to electricity pricing, grid stability, and renewable energy integration. This paper presents the first real-time quantum-enhanced electricity pricing framework for large-scale EV charging networks, marking a significant departure from existing approaches based on mixed-integer programming (MILP) and deep reinforcement learning (DRL). The proposed framework incorporates renewable intermittency, demand elasticity, and infrastructure constraints within a high-dimensional optimization model. The objective is to dynamically determine spatiotemporal electricity prices that reduce system peak load, improve renewable utilization, and minimize user charging costs. A rigorous mathematical formulation is developed, integrating over 40 system-level constraints, including power balance, transmission limits, renewable curtailment, carbon targets, voltage regulation, demand-side flexibility, social participation, and cyber-resilience. Real-time electricity prices are treated as dynamic decision variables influenced by station utilization, elasticity response curves, and the marginal cost of renewable and grid electricity. The model is solved across 96 time intervals using a quantum-classical hybrid method, with benchmark comparisons against MILP and DRL baselines. A comprehensive case study is conducted on a 500-station EV network serving 10,000 vehicles, coupled with a modified IEEE 118-bus grid and 800 MW of variable renewable energy. Historical charging data with ±12% stochastic demand variation and real-world solar/wind profiles are used to simulate realistic conditions. Results show that the proposed framework achieves a 23.4% average peak load reduction per station, a 17.9% gain in renewable utilization, and up to 30% user cost savings compared to flat-rate pricing. Network congestion is mitigated at over 90% of high-traffic stations. Pricing trajectories align low-price windows with high-renewable periods and off-peak hours, enabling synchronized load shifting and enhanced flexibility. Visual analytics using 3D surface plots and disaggregated bar charts confirm structured demand-price interactions and smooth, stable price evolution. These findings validate the potential of quantum-enhanced optimization for scalable, clean, and adaptive EV charging coordination in renewable-rich grid environments. Full article
Show Figures

Figure 1

18 pages, 555 KiB  
Article
Strategic Bidding to Increase the Market Value of Variable Renewable Generators in New Electricity Market Designs
by Hugo Algarvio and Vivian Sousa
Energies 2025, 18(11), 2848; https://doi.org/10.3390/en18112848 - 29 May 2025
Viewed by 496
Abstract
Electricity markets with a high share of variable renewable energy require significant balancing reserves to ensure stability by preserving the balance of supply and demand. However, they were originally conceived for dispatchable technologies, which operate with predictable and controllable generation. As a result, [...] Read more.
Electricity markets with a high share of variable renewable energy require significant balancing reserves to ensure stability by preserving the balance of supply and demand. However, they were originally conceived for dispatchable technologies, which operate with predictable and controllable generation. As a result, adapting market mechanisms to accommodate the characteristics of variable renewables is essential for enhancing grid reliability and efficiency. This work studies the strategic behavior of a wind power producer (WPP) in the Iberian electricity market (MIBEL) and the Portuguese balancing markets (BMs), where wind farms are economically responsible for deviations and do not have support schemes. In addition to exploring current market dynamics, the study proposes new market designs for the balancing markets, with separate procurement of upward and downward secondary balancing capacity, aligning with European Electricity Regulation guidelines. The difference between market designs considers that the wind farm can hourly bid in both (New 1) or only one (New 2) balancing direction. The study considers seven strategies (S1–S7) for the participation of a wind farm in the past (S1), actual (S2 and S3), New 1 (S4) and New 2 (S5–S7) market designs. The results demonstrate that new market designs can increase the wind market value by 2% compared to the optimal scenario and by 31% compared to the operational scenario. Among the tested approaches, New 2 delivers the best operational and economic outcomes. In S7, the wind farm achieves the lowest imbalance and curtailment while maintaining the same remuneration of S4. Additionally, the difference between the optimal and operational remuneration of the WPP under the New 2 design is only 22%, indicating that this design enables the WPP to achieve remuneration levels close to the optimal case. Full article
(This article belongs to the Special Issue New Approaches and Valuation in Electricity Markets)
Show Figures

Figure 1

Back to TopTop