Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (90)

Search Parameters:
Keywords = WAC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4643 KB  
Article
Paleoproterozoic Mafic and Ultramafic Rocks from the Mako Belt, Senegal: Implications for Back-Arc Basin Origin
by Ibrahima Dia, Tanya Furman, Kaan Sayit, Shelby Bowden, Mamadou Gueye, Cheikh Ibrahima Faye and Olivier Vanderhaeghe
Minerals 2025, 15(10), 1057; https://doi.org/10.3390/min15101057 - 5 Oct 2025
Viewed by 242
Abstract
The Mako Belt in the Kédougou-Kéniéba Inlier (eastern Senegal) preserves Paleoproterozoic (2.3–1.9 Ga) mafic and ultramafic rocks that record early crustal growth processes within the southern West African Craton (WAC). Basalt bulk rock compositions preserve primary melt signatures, whereas the associated ultramafic cumulates [...] Read more.
The Mako Belt in the Kédougou-Kéniéba Inlier (eastern Senegal) preserves Paleoproterozoic (2.3–1.9 Ga) mafic and ultramafic rocks that record early crustal growth processes within the southern West African Craton (WAC). Basalt bulk rock compositions preserve primary melt signatures, whereas the associated ultramafic cumulates are variably serpentinized and are better assessed through mineral chemistry. Basalts occur as massive and pillow lavas, with MgO contents of 5.9–9.1 wt.% and flat to slightly LREE-depleted patterns (La/Smₙ = 0.73–0.88). Primitive mantle-normalized diagrams show subduction-related signatures, including enrichment in Ba, Pb, and Rb and depletion in Nb and Ta. Most basalts and all ultramafic rocks display (Nb/La)PM > 1, consistent with enriched mantle melting in a back-arc setting. Harzburgites and lherzolites have cumulate textures, high Cr and Ni contents, and spinel with chromian cores (Cr# > 0.6) zoned sharply to Cr-rich magnetite rims that overlap basalt spinel compositions. Integration of the petrographic, mineralogical, and whole-rock geochemical data indicates the presence of mafic melts derived from a subduction-modified mantle wedge and likely formed in a back-arc basin above a subducting slab, rather than from a plume or mid-ocean ridge setting. Regional comparisons with other greenstone belts across the WAC suggest that the Mako Belt was part of a broader arc–back-arc system accreted during the Eburnean orogeny (~2.20–2.00 Ga). This study supports the view that modern-style plate tectonics—including subduction and back-arc magmatism—was already active by the Paleoproterozoic, and highlights the Mako Belt as a key archive of early lithospheric evolution in the WAC. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

43 pages, 20293 KB  
Article
Volcanic Stratigraphy, Petrology, Geochemistry and Precise U-Pb Zircon Geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental Felsic Super-Eruptions in Association with Continental Flood Basalt Magmatism on the West African Craton (Saghro Massif, Anti-Atlas)
by Rachid Oukhro, Nasrrddine Youbi, Boriana Kalderon-Asael, David A. D. Evans, James Pierce, Jörn-Frederik Wotzlaw, Maria Ovtcharova, João Mata, Mohamed Achraf Mediany, Jihane Ounar, Warda El Moume, Ismail Hadimi, Oussama Moutbir, Moulay Ahmed Boumehdi, Abdelmalek Ouadjou and Andrey Bekker
Minerals 2025, 15(8), 776; https://doi.org/10.3390/min15080776 - 24 Jul 2025
Viewed by 1176
Abstract
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. [...] Read more.
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. Zircon U-Pb dating and geochemical analyses of the Oued Dar’a Caldera (ODC) volcanic succession in the Saghro Massif reveal two major eruptive cycles corresponding to the lower and upper Ouarzazate Group. The 1st cycle (588–563 Ma) includes pre- and syn-caldera volcanic succession characterized by basaltic andesite to rhyolitic rocks, formed in a volcanic arc setting through lithospheric mantle-derived mafic magmatism and crustal melting. A major caldera-forming eruption occurred approximately 571–562 Ma, with associated rhyolitic dyke swarms indicating a larger caldera extent than previously known. The 2nd cycle (561–543 Ma) features post-caldera bimodal volcanism, with tholeiitic basalts and intraplate felsic magmas, signaling a shift to continental flood basalts and silicic volcanic systems. The entire volcanic activity spans approximately 23–40 million years. This succession is linked to late Ediacaran intracontinental super-eruptions tied to orogenic collapse and continental extension, likely in association with the Central Iapetus Magmatic Province (CIMP), marking a significant transition in the geodynamic evolution of the WAC. Full article
Show Figures

Figure 1

12 pages, 521 KB  
Article
Price Analysis of Systemic Therapies and Transarterial Radioembolization for Treatment of Unresectable Hepatocellular Carcinoma
by Abimbola O. Williams, Nicholas Anderson, Young-Gwan Gwon and Wendy Wifler
J. Mark. Access Health Policy 2025, 13(2), 25; https://doi.org/10.3390/jmahp13020025 - 27 May 2025
Viewed by 810
Abstract
Systemic therapy (ST) and transarterial radioembolization (TARE) are widely used treatments for advanced-stage hepatocellular carcinoma (HCC). This study quantified the significant variability in treatment costs for unresectable HCC from payer and provider perspectives. An Excel-based price analysis model was developed to estimate the [...] Read more.
Systemic therapy (ST) and transarterial radioembolization (TARE) are widely used treatments for advanced-stage hepatocellular carcinoma (HCC). This study quantified the significant variability in treatment costs for unresectable HCC from payer and provider perspectives. An Excel-based price analysis model was developed to estimate the prices of ST and TARE over a 21-month time horizon using 2015–2021 data. Median prices were calculated from Medicare Average Sales Price (ASP), provider Wholesale Acquisition Cost (WAC), and Average Wholesale Price (AWP). Sensitivity analyses evaluated price fluctuations associated with a ±10% variation in treatment duration. ST prices demonstrated marked variability across perspectives, with the median ASP at $175,625, WAC at $198,719, and AWP at $262,892. However, TARE prices were stable, ranging from $21,594 to $24,052. Sensitivity analyses revealed that treatment duration variation resulted in price changes of $35,000–$50,000 for ST, compared with ~$5000 for TARE. The variability in ST pricing was driven by treatment duration and drug-specific pricing mechanisms, particularly immunotherapy-based regimens, which accounted for the higher cost range. Conversely, TARE’s consistent pricing is attributed to standardized procedural costs. Substantial variability exists in ST prices compared with the consistent costs of TARE, underscoring the economic advantage of TARE in appropriate clinical contexts. Full article
Show Figures

Figure 1

26 pages, 3068 KB  
Review
Impact of Climate Change on Schistosomiasis Transmission and Distribution—Scoping Review
by Kwame Kumi Asare, Muhi-Deen Wonwana Mohammed, Yussif Owusu Aboagye, Kathrin Arndts and Manuel Ritter
Int. J. Environ. Res. Public Health 2025, 22(5), 812; https://doi.org/10.3390/ijerph22050812 - 21 May 2025
Viewed by 2701
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic worms of the genus Schistosoma and transmitted through freshwater snails, affects over 200 million people worldwide. Climate change, through rising temperatures, altered rainfall patterns, and extreme weather events, is influencing the distribution and transmission dynamics [...] Read more.
Schistosomiasis, a neglected tropical disease caused by parasitic worms of the genus Schistosoma and transmitted through freshwater snails, affects over 200 million people worldwide. Climate change, through rising temperatures, altered rainfall patterns, and extreme weather events, is influencing the distribution and transmission dynamics of schistosomiasis. This scoping review examines the impact of climate change on schistosomiasis transmission and its implications for disease control. This review aims to synthesize current knowledge on the influence of climate variables (temperature, rainfall, water bodies) on snail populations, transmission dynamics, and the shifting geographic range of schistosomiasis. It also explores the potential effects of climate adaptation policies on disease control. The review follows the Arksey and O’Malley framework and PRISMA-ScR guidelines, including studies published from 2000 to 2024. Eligible studies were selected based on empirical data on climate change, schistosomiasis transmission, and snail dynamics. A two-stage study selection process was followed: title/abstract screening and full-text review. Data were extracted on environmental factors, snail population dynamics, transmission patterns, and climate adaptation strategies. Climate change is expected to increase schistosomiasis transmission in endemic regions like Sub-Saharan Africa, Southeast Asia, and South America, while some areas, such as parts of West Africa, may see reduced risk. Emerging hotspots were identified in regions not currently endemic. Climate adaptation policies, such as improved water management and early warning systems, were found effective in reducing transmission. Integrating climate adaptation strategies into schistosomiasis control programs is critical to mitigating the disease’s spread, particularly in emerging hotspots and shifting endemic areas. Full article
Show Figures

Figure 1

19 pages, 3107 KB  
Article
Potential of Aframomum melegueta and Xylopia aethiopica Against Taenia spp.: Plant-Based Remedies as Novel Anthelmintics
by Fekandine V. Douti, Gnatoulma Katawa, Kathrin Arndts, Fagdéba D. Bara, Essimanam R. Awesso, Simplice D. Karou, Achim Hoerauf and Manuel Ritter
Pharmaceuticals 2025, 18(5), 749; https://doi.org/10.3390/ph18050749 - 19 May 2025
Viewed by 1577
Abstract
Background/Objectives: Taeniasis, a zoonotic infection, is a common foodborne disease. Niclosamide and praziquantel have proven to be effective in treating it, but the use of the same drugs can lead to resistance, so alternative drugs need to be explored. This study investigated the [...] Read more.
Background/Objectives: Taeniasis, a zoonotic infection, is a common foodborne disease. Niclosamide and praziquantel have proven to be effective in treating it, but the use of the same drugs can lead to resistance, so alternative drugs need to be explored. This study investigated the anthelmintic potential of derived fractions from hydroethanolic extracts (HEs) of Aframomum melegueta (AM) and Xylopia aethiopica (XA), two medicinal plants known for their diverse bioactive properties. Methods: AM-HE fractions (dichloromethane fraction (DCMF), ether fraction (EF), aqueous fraction (AF)) and XA-HE fractions (chloroform fraction (CF), ether fraction (EF), and aqueous fraction (AF)) were used, and in vitro anthelmintic activity was assessed against Taenia spp. by using an adult motility assay for the worm’s paralysis time determination. The parasiticidal and parasitostatic activity was also tested on Taenia spp. adult worms. Cell viability was further evaluated using propidium iodide (PI) staining, with albendazole (20 mg/mL) as the reference drug. Results: The three fractions of each plant exhibited significant, dose-dependent anthelmintic activity, with AM-HE and XA-CF showing the greatest effects at 20 mg/mL. AM-EF demonstrated significant activity at 0.4% and 0.8%. Irreversibility tests revealed that most of the treated worms remained paralysis, except those exposed to the AF of both plants. PI staining confirmed the dose-dependent mortality of Taenia cells treated with HE, DCMF, and AF of AM. Conclusions: These results underscore the potential of AM and XA extracts and fractions as alternative treatments for helminth infections. Further, in vivo studies are warranted to confirm their safety and therapeutic efficacy. Full article
(This article belongs to the Special Issue Bioactive Compounds Derived from Plants and Their Medicinal Potential)
Show Figures

Graphical abstract

22 pages, 4393 KB  
Article
Dynamic Simulation Modeling for Resilience Assessment of Coupled Water–Agriculture–Community Systems in a Semi-Arid Region
by Hamid Balali, Gholamreza Eslamifar, Connie M. Maxwell and Alexander Fernald
Sustainability 2025, 17(9), 4006; https://doi.org/10.3390/su17094006 - 29 Apr 2025
Cited by 1 | Viewed by 762
Abstract
Climate change presents serious threats to the sustainability of coupled Water–Agriculture–Community Systems (WACSs) in New Mexico’s Lower Rio Grande (LRG) region. Enhancing the resilience of WACSs is essential for ensuring the system’s long-term adaptability and sustainability. Although the importance of system feedback and [...] Read more.
Climate change presents serious threats to the sustainability of coupled Water–Agriculture–Community Systems (WACSs) in New Mexico’s Lower Rio Grande (LRG) region. Enhancing the resilience of WACSs is essential for ensuring the system’s long-term adaptability and sustainability. Although the importance of system feedback and dynamic behavior is increasingly acknowledged in resilience studies, many existing assessments fail to account for the complex interconnections and self-organizing nature of these systems. This study utilizes a System Dynamics (SD) simulation modeling and a function-based resilience framework to assess WACSs’ responses to climate change, specifically investigating whether improvements in Water Conveyance Efficiency (WCE) can enhance system resilience in the LRG. The analysis centers on the interaction of socioeconomic and hydrological dynamics, incorporating future climate projections derived from three models: UKMO, GFDL, and NCAR. Findings reveal that under the UKMO scenario, enhanced WCE leads to improved resilience in the groundwater system; however, agricultural-community resilience declines under both the UKMO and GFDL scenarios. While hydrological resilience shows improvement—particularly with increased WCE—the agriculture–community system consistently exhibits limited capacity to adapt or reorganize. The differing outcomes across climate models underscore the sensitivity of WACS resilience to varying climatic conditions. Full article
Show Figures

Figure 1

34 pages, 9543 KB  
Systematic Review
Helminth Coinfections Modulate Disease Dynamics and Vaccination Success in the Era of Emerging Infectious Diseases
by Brice Armel Nembot Fogang, Linda Batsa Debrah, Michael Owusu, George Agyei, Julia Meyer, Jonathan Mawutor Gmanyami, Manuel Ritter, Kathrin Arndts, Derrick Adu Mensah, Tomabu Adjobimey, Achim Hörauf and Alexander Yaw Debrah
Vaccines 2025, 13(5), 436; https://doi.org/10.3390/vaccines13050436 - 22 Apr 2025
Cited by 1 | Viewed by 2520
Abstract
Background/Objectives: Helminth infections, particularly prevalent in low- and middle-income countries, have been extensively studied for their effects on human health. With the emergence of new infectious diseases like SARS-CoV-2 and Ebola, their impact on disease outcomes become more apparent. While individual studies [...] Read more.
Background/Objectives: Helminth infections, particularly prevalent in low- and middle-income countries, have been extensively studied for their effects on human health. With the emergence of new infectious diseases like SARS-CoV-2 and Ebola, their impact on disease outcomes become more apparent. While individual studies have explored the impact of helminth co-infections on disease severity and vaccine efficacy, the findings are often inconsistent and context-dependent. Furthermore, the long-term effects of helminth-mediated immunosuppression on vaccine efficacy and its broader implications for co-infections in endemic regions remain not fully understood. Methods: This systematic review conducted in line with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) 2020 guidelines synthesizes the current evidence, identifies patterns, and highlights areas needing further research, offering a cohesive understanding of the topic. PubMed, Scopus, Google Scholar, and Cochrane Library were searched to include studies published from 2003 to February 2025. Results: Co-infection reveals a dual role of helminths in modulating immune responses, with both beneficial and detrimental interactions reported across studies. It may confer benefits against respiratory viral infections by muting hyper-inflammation associated with the severity of conditions like COVID-19, Influenza, and RSV. However, they can exacerbate disease outcomes in most bacteria and blood-borne viral conditions by impairing immune functions, such as neutrophil recruitment and antibody response, leading to more severe infections and higher viral loads. The stage of helminth infection also appears critical, with early-stage infections sometimes offering protection, while late-stage infections may worsen disease outcomes. Helminth infection can also negatively impact vaccine efficacy by suppressing B cell activity, reducing antibody levels, and decreasing vaccine effectiveness against infectious diseases. This immunosuppressive effect may persist after deworming, complicating efforts to restore vaccine efficacy. Maternal helminth infections also significantly influence neonatal immunity, affecting newborn vaccine responses. Conclusions: There is a need for targeted interventions and further research in helminth-endemic regions to mitigate the adverse effects on vaccine efficacy and improve public health outcomes. Full article
Show Figures

Figure 1

17 pages, 2035 KB  
Article
Physical and Functional Properties of Sweet Potato Flour: Influence of Variety and Drying Method
by Nelson Pereira, Ana Cristina Ramos, Marco Alves, Vítor D. Alves, Margarida Moldão and Marta Abreu
Molecules 2025, 30(8), 1846; https://doi.org/10.3390/molecules30081846 - 20 Apr 2025
Cited by 2 | Viewed by 2191
Abstract
Sweet potato (Ipomoea batatas (L.) Lam.; SP) flour enhances food nutrition and bioactivity while functioning as a thickening/gelling agent. This study investigated the impact of two drying methods [hot-air (75 °C/20 h) and freeze-drying (−41–30 °C/70 h)] on the physical–functional properties of [...] Read more.
Sweet potato (Ipomoea batatas (L.) Lam.; SP) flour enhances food nutrition and bioactivity while functioning as a thickening/gelling agent. This study investigated the impact of two drying methods [hot-air (75 °C/20 h) and freeze-drying (−41–30 °C/70 h)] on the physical–functional properties of flours from three SP varieties: Bonita (white-fleshed), Bellevue (orange-fleshed), and NP1648 (purple-fleshed). Particle size, morphology, water/oil absorption capacities (WAC/OAC), bulk density, swelling power (SwP), water solubility (WS), foaming/emulsifying properties, least gelation concentration (LGC), and gelatinisation temperature (GT) were analysed. Both the drying method and variety significantly influenced these properties. Hot-air-dried flours exhibited bimodal particle distribution, compact microstructure, and aggregated starch granules, yielding higher WAC (≈3.2 g/g) and SwP (≈3.6 g/g). Freeze-dried flours displayed smaller particles, porous microstructure, and fragmented granules, enhancing OAC (≈3.0 g/g) and foaming capacity (≈17.6%). GT was mainly variety-dependent, increasing as Bellevue (74.3 °C) < NP1648 (78.5 °C) < Bonita (82.8 °C), all exceeding commercial potato starch (68.7 °C). NP1648 required lower LGC (10% vs. 16% for others). All flours exhibited high WS (24–39.5%) and emulsifying capacity (≈44%). These results underscore the importance of selecting the appropriate drying method and variety to optimise SP flour functionality for targeted food applications. Freeze-dried flours might suit aerated/oil-retentive products, while hot-air-dried flours could be ideal for moisture-sensitive formulations. Full article
Show Figures

Figure 1

23 pages, 7410 KB  
Article
Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers
by Bachirou Djibo Boubé, Ramchandra Bhandari, Moussa Mounkaila Saley, Abdou Latif Bonkaney and Rabani Adamou
Energies 2025, 18(7), 1872; https://doi.org/10.3390/en18071872 - 7 Apr 2025
Cited by 1 | Viewed by 946
Abstract
This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second, we evaluate the [...] Read more.
This study evaluates the techno-economic feasibility of solar-based green hydrogen potential for off-grid and utility-scale systems in Niger. The geospatial approach is first employed to identify the area available for green hydrogen production based on environmental and socio-technical constraints. Second, we evaluate the potential of green hydrogen production using a geographic information system (GIS) tool, followed by an economic analysis of the levelized cost of hydrogen (LCOH) for alkaline and proton exchange membrane (PEM) water electrolyzers using fresh and desalinated water. The results show that the electricity generation potential is 311,617 TWh/year and 353,166 TWh/year for off-grid and utility-scale systems. The hydrogen potential using PEM (alkaline) water electrolyzers is calculated to be 5932 Mt/year and 6723 Mt/year (5694 Mt/year and 6454 Mt/year) for off-grid and utility-scale systems, respectively. The LCOH production potential decreases for PEM and alkaline water electrolyzers by 2030, ranging between 4.72–5.99 EUR/kgH2 and 5.05–6.37 EUR/kgH2 for off-grid and 4.09–5.21 EUR/kgH2 and 4.22–5.4 EUR/kgH2 for utility-scale systems. Full article
(This article belongs to the Topic Advances in Green Energy and Energy Derivatives)
Show Figures

Figure 1

17 pages, 7667 KB  
Article
Analysis of the Physicochemical and Structural Properties of Chestnut Starch After Thermal Processing
by Huijie Fang, Liwen Wang, Yaxi Chen, Zechen Wang, Xianghong Wang and Shuo Wang
Foods 2025, 14(7), 1190; https://doi.org/10.3390/foods14071190 - 28 Mar 2025
Cited by 3 | Viewed by 737
Abstract
Chestnut is one of China’s traditional export commodities in the international market and enjoys a positive reputation. Its key quality attributes are closely linked to changes in the physicochemical properties of chestnut starch after thermal processing. This study investigated the effects of different [...] Read more.
Chestnut is one of China’s traditional export commodities in the international market and enjoys a positive reputation. Its key quality attributes are closely linked to changes in the physicochemical properties of chestnut starch after thermal processing. This study investigated the effects of different temperatures (100 °C, 160 °C, and 200 °C) and times (10, 20, and 30 min) of dry heat treatment (DHT) on the physicochemical and structural properties, as well as the functional properties of chestnut starch. The results demonstrated that DHT increased the solubility (S) and water absorption capacity (WAC), but reduced the swelling power (SP), transmittance, and gelatinization characteristics. DHT modified the starch’s functional properties, increasing its digestibility. This was reflected in the rise in rapidly digestible starch (RDS) and the decline in resistant starch (RS) content. Scanning electron microscopy (SEM) revealed that cracks, crevices, and pores appeared on the starch granule surfaces after DHT. X-ray diffraction (XRD) analyses revealed that the relative crystallinity (RC) of starch decreased with higher temperatures and longer treatment times. The ability of DHT to alter the physicochemical and functional properties of starch provides foundational data for the possible modification of chestnut starch and its application in starch-based food products. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

17 pages, 15459 KB  
Article
Integrated CFD and Experimental Analysis on Slinger Ring Condensate Discharge Mechanism for Energy-Efficient Window Air Conditioners
by Chin Hyuk Chang, Adarsh Rajasekharan Nair, Man Yeong Ha, Hyun Sik Yoon and Seok Beom Hong
Energies 2025, 18(7), 1622; https://doi.org/10.3390/en18071622 - 24 Mar 2025
Cited by 1 | Viewed by 713
Abstract
As global demand for energy-efficient cooling technologies grows, optimizing window air conditioners (WACs) is crucial. This study integrates computational fluid dynamics (CFD) and experimental fluid dynamics (EFD) to analyze condensate transport induced by the slinger ring in a WAC system. To investigate condensate [...] Read more.
As global demand for energy-efficient cooling technologies grows, optimizing window air conditioners (WACs) is crucial. This study integrates computational fluid dynamics (CFD) and experimental fluid dynamics (EFD) to analyze condensate transport induced by the slinger ring in a WAC system. To investigate condensate behavior, the WAC domain is divided into six regions based on the slinger ring’s rotational direction and impact. In the initial impact zone, large liquid structures adhere to the slinger ring before breaking into ligaments. In the upward transport region, condensate films rise along the wall due to centrifugal forces, forming short ligaments. In the rebound region, condensate impacts the top surface and transitions into droplets. In the accumulation zone, droplet coalescence occurs in a confined space, leading to localized mass buildup. In the dispersion region, condensate spreads widely due to increased rotational speed. In the splash zone, splashing and wave-like structures form near the reservoir surface. A newly identified mechanism of condensate mass discharge shows that mass ejection is concentrated in four key regions near the condenser coils. These findings offer insights into optimizing a slinger ring design for improved condensate dispersion. Future research should explore airflow variations and alternative slinger ring configurations to enhance WAC performance. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

17 pages, 1732 KB  
Article
Impact of Ultrasound on a Gluten-Free Composite Flour Based on Rice Flour and Corn Starch for Breadmaking Applications
by Mahsa Farrokhi, Ines N. Ramos and Cristina L. M. Silva
Foods 2025, 14(7), 1094; https://doi.org/10.3390/foods14071094 - 21 Mar 2025
Cited by 1 | Viewed by 980
Abstract
Ultrasound (US) treatment is an eco-friendly physical modification technique increasingly used to enhance the functionality of gluten-free flours. In this study, the impact of sonication on the techno-functional, thermal, structural, and rheological properties of a composite gluten-free flour was investigated. The flour, comprising [...] Read more.
Ultrasound (US) treatment is an eco-friendly physical modification technique increasingly used to enhance the functionality of gluten-free flours. In this study, the impact of sonication on the techno-functional, thermal, structural, and rheological properties of a composite gluten-free flour was investigated. The flour, comprising corn starch, rice flour, and other ingredients, was treated at hydration levels of 15% and 25% (w/w) under controlled conditions (10 min of sonication at 20 °C) and compared to a non-sonicated control. Sonication reduced the water absorption capacity (WAC) and swelling power (SP) while increasing the oil absorption capacity (OAC) and water solubility (WSI). Thermal analysis revealed lower gelatinization enthalpy, indicating structural modifications induced by cavitation. Structural assessments (XRD and FTIR) confirmed minimal alterations in crystallinity and short-range order. Rheological studies demonstrated an enhanced elasticity in the gel structure, especially at 15% hydration, while a morphological analysis via SEM highlighted particle fragmentation and surface roughening. These findings demonstrate the potential of ultrasound to modify gluten-free flours for improved functionality and diverse applications in gluten-free product development. Full article
Show Figures

Figure 1

19 pages, 3629 KB  
Article
Efficient Hydrogen Production by Aqueous Phase Reforming of Ethylene Glycol over Ni-W Catalysts with Enhanced C-C Bond Cleavage Activity
by Ling Xie, Zilong Huang, Yapeng Zhan, Jiahao Huang, Chao Wang, Riyang Shu, Junyao Wang, Libin Lei, Jianping Liu, Zhipeng Tian and Ying Chen
Catalysts 2025, 15(3), 258; https://doi.org/10.3390/catal15030258 - 7 Mar 2025
Cited by 1 | Viewed by 1391
Abstract
Cleavage of C-C bonds is crucial for hydrogen production via aqueous phase reforming of biomass-derived oxygenates. In this study, the hydrogen production performance and C-C bond cleavage capacity of Ni-W/AC catalysts with varying W/Ni ratios are evaluated using ethylene glycol as a model [...] Read more.
Cleavage of C-C bonds is crucial for hydrogen production via aqueous phase reforming of biomass-derived oxygenates. In this study, the hydrogen production performance and C-C bond cleavage capacity of Ni-W/AC catalysts with varying W/Ni ratios are evaluated using ethylene glycol as a model compound. A series of APR experiments conducted suggests that Ni-0.2W/AC catalyst exhibits the highest C1/C2+ ratio of 15.87 and achieves a hydrogen yield of 47.76%. The enhanced Ni-W bimetallic interactions, which significantly improve the efficiency of C-C bond cleavage and increase catalyst activity by promoting active site dispersion, are confirmed by detailed characterization techniques. Further analysis of product distribution provides insights into the reaction pathways of ethylene glycol and the reaction mechanism for ethanol during aqueous phase reforming. All the results indicate that this catalytic reforming method effectively facilitates C-C bond cleavage and hydrogen production, contributing to a better understanding of APR mechanisms for biomass-derived oxygenates. Full article
(This article belongs to the Special Issue Catalytic Processes for Green Hydrogen Production)
Show Figures

Graphical abstract

18 pages, 3690 KB  
Article
Helminth Seropositivity Inversely Correlated with Th1 and Th17 Cytokines and Severe COVID-19
by Brice Armel Nembot Fogang, Julia Meyer, Linda B. Debrah, Michael Owusu, George Agyei, Derrick Adu Mensah, John Boateng, Jubin Osei Mensah, Ute Klarmann-Schulz, Sacha Horn, Inge Kroidl, Ezekiel Bonwin Ackah, Richard O. Phillips, Augustina Sylverken, Alexander Y. Debrah, Achim Hoerauf and Tomabu Adjobimey
Vaccines 2025, 13(3), 252; https://doi.org/10.3390/vaccines13030252 - 27 Feb 2025
Cited by 1 | Viewed by 1401
Abstract
Background/Objectives: The COVID-19 pandemic has significantly impacted global health. However, Africa has reported relatively low numbers of cases and fatalities. Although the pandemic has largely receded, the reasons for its milder course on the African continent have not yet been fully clarified. This [...] Read more.
Background/Objectives: The COVID-19 pandemic has significantly impacted global health. However, Africa has reported relatively low numbers of cases and fatalities. Although the pandemic has largely receded, the reasons for its milder course on the African continent have not yet been fully clarified. This study explored the hypothesis that helminth co-infections may have contributed to these observations. Methods: A retrospective cohort study was conducted using 104 plasma samples collected during the third wave of the pandemic in the Ashanti Region of Ghana. Luminex assays were used to measure SARS-CoV-2-specific IgA and IgG, neutralizing antibodies, systemic cytokines and helminth-specific IgG. Results: The results indicated that the highest cumulative seroprevalence of helminths (61.5%) was observed in asymptomatic COVID-19 patients. In comparison, mild and moderate patients had helminth seropositivity rates of 43.8% and 34.5%, respectively, which were 1.4 and 1.8 times lower than those of the asymptomatic group, respectively. Notably, the two severe COVID-19 cases investigated were seronegative for all three of the helminths tested. Strikingly, co-exposure resulted in lower SARS-CoV-2-specific IgA/IgG expression and reduced neutralization potential. However, co-seropositive individuals for helminths and SARS-CoV-2 exhibited a higher expression of Th2 cytokines and IL-10 over Th1 cytokines compared to SARS-CoV-2-positive individuals alone. Conclusion: These data suggest that co-exposure to helminths could mitigate the severity of COVID-19 outcomes by reducing the Th1 and Th17 responses; this highlights the potential protective role of helminthiasis against severe COVID-19. These findings provide valuable insights for the development of public health policies in helminth-endemic regions and underscore the importance of considering helminth co-infections in managing viral infections. It also offers a plausible explanation for the milder disease severity observed in helminth-endemic regions while raising critical considerations regarding vaccine efficacy, as helminth-induced immune modulation may influence the magnitude and quality of vaccine-induced immune responses. Full article
Show Figures

Figure 1

26 pages, 17849 KB  
Article
Perturbation Matters: A Novel Approach for Semi-Supervised Remote Sensing Imagery Change Detection
by Daifeng Peng, Min Liu and Haiyan Guan
Remote Sens. 2025, 17(4), 576; https://doi.org/10.3390/rs17040576 - 8 Feb 2025
Cited by 3 | Viewed by 1429
Abstract
Due to the challenge of acquiring abundant labeled samples, semi-supervised change detection (SSCD) approaches are becoming increasingly popular in tackling CD tasks with limited labeled data. Despite their success, these methods tend to come with complex network architectures or cumbersome training procedures, which [...] Read more.
Due to the challenge of acquiring abundant labeled samples, semi-supervised change detection (SSCD) approaches are becoming increasingly popular in tackling CD tasks with limited labeled data. Despite their success, these methods tend to come with complex network architectures or cumbersome training procedures, which also ignore the domain gap between the labeled data and unlabeled data. Differently, we hypothesize that diverse perturbations are more favorable to exploit the potential of unlabeled data. In light of this spirit, we propose a novel SSCD approach based on Weak–strong Augmentation and Class-balanced Sampling (WACS-SemiCD). Specifically, we adopt a simple mean-teacher architecture to deal with labeled branch and unlabeled branch separately, where supervised learning is conducted on the labeled branch, while weak–strong consistency learning (e.g., sample perturbations’ consistency and feature perturbations’ consistency) is imposed for the unlabeled. To improve domain generalization capacity, an adaptive CutMix augmentation is proposed to inject the knowledge from the labeled data into the unlabeled data. A class-balanced sampling strategy is further introduced to mitigate class imbalance issues in CD. Particularly, our proposed WACS-SemiCD achieves competitive SSCD performance on three publicly available CD datasets under different labeled settings. Comprehensive experimental results and systematic analysis underscore the advantages and effectiveness of our proposed WACS-SemiCD. Full article
(This article belongs to the Special Issue Advances in 3D Reconstruction with High-Resolution Satellite Data)
Show Figures

Graphical abstract

Back to TopTop