Price Analysis of Systemic Therapies and Transarterial Radioembolization for Treatment of Unresectable Hepatocellular Carcinoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
Length of Treatment (in Months), Based on Median Overall Survival | Cost Parameters (in USD) | ||||||
---|---|---|---|---|---|---|---|
Minimum Scenario * | Base Case | Maximum Scenario * | References | ASP [25] | WAC [26] | AWP [26] | |
ST | |||||||
Atezolizumab | 17.3 | 19.2 | 21.1 | Chiang et al., 2021 [23] | $78.15 | $9469.85 | $11,363.82 |
Bevacizumab | 17.3 | 19.2 | 21.1 | Chiang et al., 2021 [23] | $72.51 | $796.94 | $956.33 |
Sorafenib | 11.5 | 12.8 | 14.1 | Kudo et al., 2018 [22] | $174.00 | $20,760.00 | $24,912.00 |
Lenvatinib | 12.2 | 13.6 | 15.0 | Kudo et al., 2018 [22] | $17,099.32 | $19,687.00 | $23,624.40 |
Nivolumab | 14.8 | 16.4 | 18.0 | Yau et al., 2020 [21] | $28.49 | $6679.16 | $8014.99 |
Cabozantinib | 9.2 | 10.2 | 11.2 | Soto-Perez-de-Celis et al., 2019 [20] | $17,218.10 | $21,662.80 | $25,995.36 |
Regorafenib | 9.5 | 10.6 | 11.7 | Bruix et al., 2017 [19] | $17,234.43 | $18,747.12 | $22,496.54 |
Ramucirumab | 7.7 | 8.5 | 9.4 | Zhu et al., 2015 [18] | $5699.01 | $6158.25 | $7389.90 |
FOLFOX | 5.8 | 6.4 | 7.0 | Goyal, 2019 [17] | $5.33 | $296.32 | $1058.02 |
Ipilimumab | 4.6 | 5.1 | 5.6 | Yau et al., 2020 [21] | $7359.18 | $7613.93 | $9136.72 |
Pembrolizumab | 12.5 | 13.9 | 15.3 | Finn et al., 2020 [16] | $51.62 | $5033.68 | $6040.42 |
Mean number of procedures used | References | Ljuboja et al., 2021 [27] | Medicare (OPPS/ASC) [28,29] | DRG ASP [30] | |||
TARE | |||||||
TheraSphere | 1.2 | 1.28 | 1.4 | Walton et al., 2020 [24] | $18,790.57 | $17,397.64 | $17,088.00 |
SIR-Spheres | 1.2 | 1.28 | 1.4 | Walton et al., 2020 [24] | $18,790.57 | $17,397.64 | $16,653.00 |
2.2. Study Outcomes
2.3. Sensitivity Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5-FU | 5-Fluorouracil |
ASP | Average Sales Price |
AWP | Average Wholesale Price |
BCLC | Barcelona Clinic Liver Cancer |
BMS | Bare-Metal Stent |
CDC | Centers for Disease Control and Prevention |
DCB | Drug-Coated Balloon |
DDD | Defined Daily Dosage |
DES | Drug-Eluting Stent |
DRG ASP | Decision Resources Group Average Sales Price |
FDA | Food and Drug Administration |
FOLFOX | Leucovorin, Fluorouracil (5-FU), and Oxaliplatin |
HCC | Hepatocellular Carcinoma |
HCPCS | Healthcare Common Procedure Coding System |
IQR | Interquartile Range |
MeSH | Medical Subject Headings |
NCCN | National Comprehensive Cancer Network |
OPPS | Hospital Outpatient Prospective Payment System |
OS | Overall Survival |
PTA | Percutaneous Transluminal Angioplasty |
RCT | Randomized Controlled Trial |
ST | Systemic Therapy |
TARE | Transarterial Radioembolization |
US | United States |
WAC | Wholesale Acquisition Cost |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts and Figures 2021; American Cancer Society: Atlanta, GA, USA, 2021. [Google Scholar]
- European Association for the Study of the Liver; European Organisation for Research and Treatment of Cancer. EASL-EORTC clinical practice guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2012, 56, 908–943. [Google Scholar] [CrossRef]
- Petrick, J.L.; Kelly, S.P.; Altekruse, S.F.; McGlynn, K.A.; Rosenberg, P.S. Future of Hepatocellular Carcinoma Incidence in the United States Forecast Through 2030. J. Clin. Oncol. 2016, 34, 1787–1794. [Google Scholar] [CrossRef]
- Kohn, C.G.; Singh, P.; Korytowsky, B.; Caranfa, J.T.; Miller, J.D.; Sill, B.E.; Marshall, A.C.; Parikh, N.D. Humanistic and economic burden of hepatocellular carcinoma: Systematic literature review. Am. J. Manag. Care 2019, 25, SP61–SP73. [Google Scholar]
- Benson, A.B.; D’Angelica, M.I.; Abbott, D.E.; Anaya, D.A.; Anders, R.; Are, C.; Bachini, M.; Borad, M.; Brown, D.; Burgoyne, A.; et al. Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2021, 19, 541–565. [Google Scholar] [CrossRef]
- Boland, P.; Wu, J. Systemic therapy for hepatocellular carcinoma: Beyond sorafenib. Chin. Clin. Oncol. 2018, 7, 50. [Google Scholar] [CrossRef]
- Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301–1314. [Google Scholar] [CrossRef]
- Ahn, J.C.; Lauzon, M.; Luu, M.; Friedman, M.L.; Kosari, K.; Nissen, N.; Lu, S.C.; Roberts, L.R.; Singal, A.G.; Yang, J.D. Transarterial radioembolization versus systemic treatment for hepatocellular carcinoma with macrovascular invasion: Analysis of the US National Cancer Database. J. Nucl. Med. 2021, 62, 1692–1701. [Google Scholar] [CrossRef]
- Chen, R.; Monaco, G.; Stefanini, B.; Marseglia, M.; De Lorenzo, S.; Tovoli, F. Combinatoin makes strength: A narrative review of transarterial radioembolization plus immune checkpoint inhibitors for hepatocellular carcinoma. Chin. Clin. Oncol. 2024, 13, 71. [Google Scholar] [CrossRef]
- Tamai, Y.; Fujiwara, N.; Tanaka, T.; Mizuno, S.; Nakagawa, H. Combination therapy of immune checkpoint inhibitors with locoregional therapy for hepatocellular carcinoma. Cancers 2023, 15, 5072. [Google Scholar] [CrossRef] [PubMed]
- The World Health Organization (WHO). Defined Daily Dose (DDD); WHO: Geneva, Switzerland, 2021. [Google Scholar]
- US Food & Drug Administration. Orange Book: Approved Drug Products with Therapeutic Equivalence Evaluations; US Food & Drug Administration: Rockville, MD, USA, 2021.
- US Food & Drug Administration. Purple Book Database of Licensed Biological Products; US Food & Drug Administration: Rockville, MD, USA, 2021.
- Finn, R.S.; Ryoo, B.Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab As Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Goyal, L.; Zheng, H.; Abrams, T.A.; Miksad, R.; Bullock, A.J.; Allen, J.N.; Yurgelun, M.B.; Clark, J.W.; Kambadakone, A.; Muzikansky, A.; et al. A Phase II and Biomarker Study of Sorafenib Combined with Modified FOLFOX in Patients with Advanced Hepatocellular Carcinoma. Clin. Cancer Res. 2019, 25, 80–89. [Google Scholar] [CrossRef]
- Zhu, A.X.; Park, J.O.; Ryoo, B.Y.; Yen, C.-J.; Poon, R.; Pastorelli, D.; Blanc, J.-F.; Chung, H.C.; Baron, A.D.; Pfiffer, T.E.F.; et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015, 16, 859–870. [Google Scholar] [CrossRef]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Soto-Perez-de-Celis, E.; Aguiar, P.N.; Cordón, M.L.; Chavarri-Guerra, Y.; Lopes, G.d.L. Cost-Effectiveness of Cabozantinib in the Second-Line Treatment of Advanced Hepatocellular Carcinoma. J. Natl. Compr. Cancer Netw. 2019, 17, 669–675. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.K.; Kim, T.Y.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; Tovoli, F.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Chiang, C.L.; Chan, S.K.; Lee, S.F.; Choi, H.C.-W. First-Line Atezolizumab Plus Bevacizumab versus Sorafenib in Hepatocellular Carcinoma: A Cost-Effectiveness Analysis. Cancers 2021, 13, 931. [Google Scholar] [CrossRef]
- Walton, M.; Wade, R.; Claxton, L.; Sharif-Hurst, S.; Harden, M.; Patel, J.; Rowe, I.; Hodgson, R.; Eastwood, A. Selective internal radiation therapies for unresectable early-, intermediate- or advanced-stage hepatocellular carcinoma: Systematic review, network meta-analysis and economic evaluation. Health Technol. Assess 2020, 24, 1–264. [Google Scholar] [CrossRef]
- Centers for Medicare and Medicaid Services (CMS). 2021 ASP Drug Pricing Files; Centers for Medicare and Medicaid Services (CMS): Washington, DC, USA, 2021.
- IBM. IBM Micromedex Red Book; IBM: New York, NY, USA, 2021. [Google Scholar]
- Ljuboja, D.; Ahmed, M.; Ali, A.; Perez, E.; Subrize, M.W.; Kaplan, R.S.; Sarwar, A. Time-Driven Activity-Based Costing in Interventional Oncology: Cost Measurement and Cost Variability for Hepatocellular Carcinoma Therapies. J. Am. Coll. Radiol. 2021, 18, 1095–1105. [Google Scholar] [CrossRef] [PubMed]
- Centers for Medicare and Medicaid Services (CMS). Hospital Outpatient Prospective Payment-Notice of Final Rulemaking with Comment Period (NFRM); CMS.gov; Centers for Medicare and Medicaid Services (CMS): Washington, DC, USA, 2021.
- Centers for Medicare and Medicaid Services (CMS). Ambulatory Surgical Center Payment-Notice of Final Rulemaking with Comment Period (NFRM); CMS.gov; Centers for Medicare and Medicaid Services (CMS): Washington, DC, USA, 2021.
- Clarivate|DRG. Market Insights: Transcatheter Embolizatoin and Occlusion Devices; US Report; MarketResearch.com: Rockville, MD, USA, 2021. [Google Scholar]
- Miller, A.A.; Murry, D.J.; Owzar, K.; Hollis, D.R.; Kennedy, E.B.; Abou-Alfa, G.; Desai, A.; Hwang, J.; Villalona-Calero, M.A.; Dees, E.C.; et al. Phase I and Pharmacokinetic Study of Sorafenib in Patients With Hepatic or Renal Dysfunction: CALGB 60301. J. Clin. Oncol. 2009, 27, 1800–1805. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Bai, Y.; Lim, H.Y.; Thongprasert, S.; Chao, Y.; Fan, J.; Yang, T.-S.; Bhudhisawasdi, V.; Kang, W.K.; Zhou, Y.; et al. Randomized, Multicenter, Open-Label Study of Oxaliplatin Plus Fluorouracil/Leucovorin Versus Doxorubicin As Palliative Chemotherapy in Patients With Advanced Hepatocellular Carcinoma From Asia. J. Clin. Oncol. 2013, 31, 3501–3508. [Google Scholar] [CrossRef]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; Dubois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Fryar, C.D.; Carroll, M.D.; Gu, Q.; Afful, J.; Ogden, C.L. Anthropometric reference data for children and adults: United States, 2015–2018. National Center for Health Statistics. Vital. Health Stat. 2021, 36, 1–44. [Google Scholar]
- Kim, J.J.; McFarlane, T.; Tully, S.; Wong, W.W. Lenvatinib Versus Sorafenib as First-Line Treatment of Unresectable Hepatocellular Carcinoma: A Cost-Utility Analysis. Oncologist 2020, 25, e512–e519. [Google Scholar] [CrossRef]
- Marqueen, K.E.; Kim, E.; Ang, C.; Mazumdar, M.; Buckstein, M.; Ferket, B.S. Cost-Effectiveness Analysis of Selective Internal Radiotherapy with Yttrium-90 Versus Sorafenib in Locally Advanced Hepatocellular Carcinoma. JCO Oncol. Pract. 2021, 17, e266–e277. [Google Scholar] [CrossRef]
- Manas, D.; Bell, J.K.; Mealing, S.; Davies, H.; Baker, H.; Holmes, H.; Hubner, R.A. The cost-effectiveness of TheraSphere in patients with hepatocellular carcinoma who are eligible for transarterial embolization. Eur. J. Surg. Oncol. 2021, 47, 401–408. [Google Scholar] [CrossRef]
- Lam, M.G.; Salem, R.; Garin, E. A global study of advanced dosimetry in the treatment of hepatocellular carcinoma with Yttrium-90 glass microspheres: Analyes from the TARGET study. J. Vasc. Interv. Radiol. 2021, 32, S42. [Google Scholar] [CrossRef]
- Lewandowski, R.J.; Gabr, A.; Abouchaleh, N.; Ali, R.; Al Asadi, A.; Mora, R.A.; Kulik, L.; Ganger, D.; Desai, K.; Thornburg, B.; et al. Radiation Segmentectomy: Potential Curative Therapy for Early Hepatocellular Carcinoma. Radiology 2018, 287, 1050–1058. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Gates, V.L.; Atassi, B.; Lewandowski, R.J.; Mulcahy, M.F.; Ryu, R.K.; Sato, K.T.; Baker, T.; Kulik, L.; Gupta, R.; et al. Radiation segmentectomy: A novel approach to increase safety and efficacy of radioembolization. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Salem, R.; Johnson, G.E.; Kim, E.; Riaz, A.; Bishay, V.; Boucher, E.; Fowers, K.; Lewandowski, R.; Padia, S.A. Yttrium-90 Radioembolization for the Treatment of Solitary, Unresectable HCC: The LEGACY Study. Hepatology 2021, 74, 2342–2352. [Google Scholar] [CrossRef]
- Inserro, A. Tremelimumab Added to Durvalumab Shows Positive Results in HCC; AJMC: Cranbury, NJ, USA, 2021. [Google Scholar]
- Prussia, C.; De Giorgio, M.; Vigano, M.; Muglia, R.; Marra, P.; Gerali, A.; Erba, P.; Poli, G.; Fagiuoli, S. Long term outcome of patients with hepatocellular carcinoma treated with transarterial radioembolization. Dig. Liver Dis. 2023, 55 (Suppl. S3), S219. [Google Scholar] [CrossRef]
- Binzaqr, S.; Debordeaux, F.; Blanc, J.-F.; Papadopoulos, P.; Hindie, E.; Lapouyade, B.; Pinaquy, J.-B. Efficacy of selective internal radiation therapy for hepatocellular carcinoma post-incomplete response to chemoembolization. Pharmaceuticals 2023, 16, 1676. [Google Scholar] [CrossRef]
- Violi, N.; Gnerre, J.M.; Law, A.; Hectors, S.; Bane, O.; Doucette, J.; Abboud, G.; Kim, E.; Schwartz, M.; Fiel, M.I.; et al. Assessment of HCC response to Yttrium-90 radioembolization with gadoxetate disodium MRI: Correlation with histopathology. Eur. Radiol. 2022, 32, 6493–6503. [Google Scholar] [CrossRef]
Treatment Option | Minimum Scenario * | Base Case | Maximum Scenario * | ||||||
Medicare ASP [25] | WAC [26] | AWP [26] | Medicare ASP [25] | WAC [26] | AWP [26] | Medicare ASP [25] | WAC [26] | AWP [26] | |
ST | |||||||||
Atezolizumab | $162,058 | $163,639 | $196,367 | $180,065 | $181,821 | $218,185 | $198,071 | $200,003 | $240,004 |
Bevacizumab | $96,484 | $308,840 | $370,609 | $107,205 | $343,156 | $411,788 | $117,925 | $377,472 | $452,967 |
Sorafenib | $160,045 | $238,688 | $286,426 | $177,828 | $265,209 | $318,251 | $195,611 | $291,730 | $350,076 |
Lenvatinib | $209,296 | $240,969 | $289,163 | $232,551 | $267,743 | $321,292 | $255,806 | $294,518 | $353,421 |
Nivolumab | $201,824 | $197,169 | $236,603 | $224,250 | $219,076 | $262,892 | $246,675 | $240,984 | $289,181 |
Cabozantinib | $158,062 | $198,865 | $238,637 | $175,625 | $220,961 | $265,153 | $193,187 | $243,057 | $291,668 |
Regorafenib | $164,416 | $178,848 | $214,617 | $182,685 | $198,719 | $238,463 | $200,953 | $218,591 | $262,310 |
Ramucirumab | $43,597 | $47,111 | $56,533 | $48,442 | $52,345 | $62,814 | $53,286 | $57,580 | $69,096 |
FOLFOX | $436 | $62,524 | $258,324 | $485 | $69,471 | $287,027 | $533 | $76,419 | $315,730 |
Ipilimumab | $135,115 | $139,791 | $167,750 | $150,127 | $155,324 | $186,389 | $165,140 | $170,856 | $205,027 |
Pembrolizumab | $129,143 | $125,943 | $151,131 | $143,492 | $139,936 | $167,924 | $157,842 | $153,930 | $184,716 |
TARE | Ljuboja et al., 2021 [27] | Medicare (OPPS/ASC) [28,29] | DRG ASP [30] | Ljuboja et al., 2021 [27] | Medicare (OPPS/ASC) [28,29] | DRG ASP [30] | Ljuboja et al., 2021 [27] | Medicare (OPPS/ASC) [28,29] | DRG ASP [30] |
TheraSphere | $21,647 | $20,042 | $22,269 | $24,052 | $22,269 | $21,873 | $26,457 | $24,496 | $24,060 |
SIR-Spheres | $21,647 | $20,042 | $22,269 | $24,052 | $22,269 | $21,316 | $26,457 | $24,496 | $23,447 |
Minimum Scenario * | Base Case | Maximum Scenario * | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Medicare ASP [25] | WAC [26] | AWP [26] | Medicare ASP [25] | WAC [26] | AWP [26] | Medicare ASP [25] | WAC [26] | AWP [26] | ||
Systemic Therapy | Mean Cost | $132,771 | $172,944 | $224,196 | $147,523 | $192,160 | $249,107 | $162,275 | $211,376 | $274,018 |
Median Cost | $158,062 | $178,848 | $236,603 | $175,625 | $198,719 | $262,892 | $193,187 | $218,591 | $289,181 | |
Ljuboja et al., 2021 [27] | Medicare (OPPS/ASC) [28,29] | DRG ASP [30] | Ljuboja et al., 2021 [27] | Medicare (OPPS/ASC) [28,29] | DRG ASP [30] | Ljuboja et al., 2021 [27] | Medicare (OPPS/ASC) [28,29] | DRG ASP [30] | ||
TARE | Mean Cost | $21,647 | $20,042 | $19,435 | $24,052 | $22,269 | $21,594 | $26,457 | $24,496 | $23,754 |
Median Cost | $21,647 | $20,042 | $19,435 | $24,052 | $22,269 | $21,594 | $26,457 | $24,496 | $23,754 | |
Medicare ASP [25] | WAC [26] | AWP [26] | Medicare ASP [25] | WAC [26] | AWP [26] | Medicare ASP [25] | WAC [26] | AWP [26] | ||
IQR | FOLFOX | $436 | $485 | $533 | ||||||
Lenvatinib | $209,296 | $232,551 | $255,806 | |||||||
Ramucirumab | $47,111 | $56,533 | $52,345 | $62,814 | $57,580 | $69,096 | ||||
Bevacizumab | $308,840 | $370,609 | $343,156 | $411,788 | $377,472 | $452,967 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Market Access Society. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, A.O.; Anderson, N.; Gwon, Y.-G.; Wifler, W. Price Analysis of Systemic Therapies and Transarterial Radioembolization for Treatment of Unresectable Hepatocellular Carcinoma. J. Mark. Access Health Policy 2025, 13, 25. https://doi.org/10.3390/jmahp13020025
Williams AO, Anderson N, Gwon Y-G, Wifler W. Price Analysis of Systemic Therapies and Transarterial Radioembolization for Treatment of Unresectable Hepatocellular Carcinoma. Journal of Market Access & Health Policy. 2025; 13(2):25. https://doi.org/10.3390/jmahp13020025
Chicago/Turabian StyleWilliams, Abimbola O., Nicholas Anderson, Young-Gwan Gwon, and Wendy Wifler. 2025. "Price Analysis of Systemic Therapies and Transarterial Radioembolization for Treatment of Unresectable Hepatocellular Carcinoma" Journal of Market Access & Health Policy 13, no. 2: 25. https://doi.org/10.3390/jmahp13020025
APA StyleWilliams, A. O., Anderson, N., Gwon, Y.-G., & Wifler, W. (2025). Price Analysis of Systemic Therapies and Transarterial Radioembolization for Treatment of Unresectable Hepatocellular Carcinoma. Journal of Market Access & Health Policy, 13(2), 25. https://doi.org/10.3390/jmahp13020025