Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,662)

Search Parameters:
Keywords = US FDA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1033 KiB  
Systematic Review
Resistance of Gram-Negative Bacteria to Cefepime-Enmetazobactam: A Systematic Review
by Matthew E. Falagas, Laura T. Romanos, Dimitrios S. Kontogiannis, Katerina Tsiara and Stylianos A. Kakoullis
Pathogens 2025, 14(8), 777; https://doi.org/10.3390/pathogens14080777 - 6 Aug 2025
Abstract
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four [...] Read more.
Cefepime-enmetazobactam is a novel β-lactam/β-lactamase inhibitor combination showing good activity against multidrug-resistant (MDR) Gram-negative bacteria producing a variety of β-lactamases. In this systematic review, we aimed to evaluate the available data on resistance to this drug. We performed a thorough search of four databases (Embase, PubMed, Scopus, and Web of Science), as well as backward citation searching, to identify studies containing data on resistance to cefepime-enmetazobactam. The data were extracted and analyzed according to the breakpoints established by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) and the Food and Drug Administration (FDA), or the specific breakpoints reported by the authors of the respective studies. Analysis based on the type of lactamases produced by the isolates was also performed. Ten studies reported in vitro susceptibility testing and mechanisms of antimicrobial resistance. The total number of isolates was 15,408. The activity of cefepime-enmetazobactam against β-lactamase-producing isolates was variable. The resistance of the studied extended-spectrum β-lactamase (ESBL)-producing and ampicillin C β-lactamase (AmpC)-producing isolates was low (0–2.8% and 0%, respectively). The resistance was higher among oxacillinase-48 β-lactamase (OXA-48)-producing and Klebsiella pneumoniae carbapenemase (KPC)-producing isolates (3.4–13.2% and 36.7–57.8%, respectively). High resistance was noted among metallo-β-lactamase (MBL)-producing isolates (reaching 87.5% in one study), especially those producing New Delhi metallo-β-lactamase (NDM) and Verona integron-encoded metallo-β-lactamase (VIM), which had the highest rates of resistance. The high activity of cefepime-enmetazobactam against Enterobacterales and selected lactose non-fermenting Gram-negative pathogens, including ESBL-producing and AmpC-producing isolates, makes it a potential carbapenem-sparing agent. The drug should be used after in vitro antimicrobial susceptibility testing in patients with infections caused by OXA-48, KPC, and MBL-producing isolates. Full article
Show Figures

Figure 1

32 pages, 944 KiB  
Review
Continuous Manufacturing of Recombinant Drugs: Comprehensive Analysis of Cost Reduction Strategies, Regulatory Pathways, and Global Implementation
by Sarfaraz K. Niazi
Pharmaceuticals 2025, 18(8), 1157; https://doi.org/10.3390/ph18081157 - 4 Aug 2025
Abstract
The biopharmaceutical industry is undergoing a fundamental transformation from traditional batch manufacturing to continuous manufacturing (CM) for recombinant drugs and biosimilars, driven by regulatory support through the International Council for Harmonization (ICH) Q13 guidance and compelling economic advantages. This comprehensive review examines the [...] Read more.
The biopharmaceutical industry is undergoing a fundamental transformation from traditional batch manufacturing to continuous manufacturing (CM) for recombinant drugs and biosimilars, driven by regulatory support through the International Council for Harmonization (ICH) Q13 guidance and compelling economic advantages. This comprehensive review examines the technical, economic, and regulatory aspects of implementing continuous manufacturing specifically for recombinant protein production and biosimilar development, synthesizing validated data from peer-reviewed research, regulatory sources, and global implementation case studies. The analysis demonstrates that continuous manufacturing offers substantial benefits, including a reduced equipment footprint of up to 70%, a 3- to 5-fold increase in volumetric productivity, enhanced product quality consistency, and facility cost reductions of 30–50% compared to traditional batch processes. Leading biomanufacturers across North America, Europe, and the Asia–Pacific region are successfully integrating perfusion upstream processes with connected downstream bioprocesses, enabling the fully end-to-end continuous manufacture of biopharmaceuticals with demonstrated commercial viability. The regulatory framework has been comprehensively established through ICH Q13 guidance and region-specific implementations across the FDA, EMA, PMDA, and emerging market authorities. This review provides a critical analysis of advanced technologies, including single-use perfusion bioreactors, continuous chromatography systems, real-time process analytical technology, and Industry 4.0 integration strategies. The economic modeling presents favorable return-on-investment profiles, accompanied by a detailed analysis of global market dynamics, regional implementation patterns, and supply chain integration opportunities. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

30 pages, 955 KiB  
Review
Breaking Barriers with Sound: The Implementation of Histotripsy in Cancer
by Ashutosh P. Raman, Parker L. Kotlarz, Alexis E. Giff, Katherine A. Goundry, Paul Laeseke, Erica M. Knavel Koepsel, Mosa Alhamami and Dania Daye
Cancers 2025, 17(15), 2548; https://doi.org/10.3390/cancers17152548 - 1 Aug 2025
Viewed by 334
Abstract
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and [...] Read more.
Histotripsy is a novel, noninvasive, non-thermal technology invented in 2004 for the precise destruction of biologic tissue. It offers a powerful alternative to more conventional thermal or surgical interventions. Using short-pulse, low-duty cycle ultrasonic waves, histotripsy creates cavitation bubble clouds that selectively and precisely destroy targeted tissue in a predefined volume while sparing critical structures like bile ducts, ureters, and blood vessels. Such precision is of value when treating tumors near vital structures. The FDA has cleared histotripsy for the treatment of all liver tumors. Major medical centers are currently spearheading clinical trials, and some institutions have already integrated the technology into patient care. Histotripsy is now being studied for a host of other cancers, including primary kidney and pancreatic tumors. Preclinical murine and porcine models have already revealed promising outcomes. One of histotripsy’s primary advantages is its non-thermal mechanical actuation. This feature allows it to circumvent the limitations of heat-based techniques, including the heat sink effect and unpredictable treatment margins near sensitive tissues. In addition to its non-invasive ablative capacities, it is being preliminarily explored for its potential to induce immunomodulation and promote abscopal inhibition of distant, untreated tumors through CD8+ T cell responses. Thus, it may provide a multilayered therapeutic effect in the treatment of cancer. Histotripsy has the potential to improve precision and outcomes across a multitude of specialties, from oncology to cardiovascular medicine. Continued trials are crucial to further expand its applications and validate its long-term efficacy. Due to the speed of recent developments, the goal of this review is to provide a comprehensive and updated overview of histotripsy. It will explore its physics-based mechanisms, differentiating it from similar technologies, discuss its clinical applications, and examine its advantages, limitations, and future. Full article
Show Figures

Figure 1

22 pages, 6758 KiB  
Article
Screening of an FDA-Approved Drug Library: Menadione Induces Multiple Forms of Programmed Cell Death in Colorectal Cancer Cells via MAPK8 Cascades
by Liyuan Cao, Weiwei Song, Jinli Sun, Yang Ge, Wei Mu and Lei Li
Pharmaceuticals 2025, 18(8), 1145; https://doi.org/10.3390/ph18081145 - 31 Jul 2025
Viewed by 259
Abstract
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing [...] Read more.
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing new drugs is time-consuming and resource-intensive. As a more efficient approach, drug repurposing offers a promising alternative for discovering new therapies. Methods: In this study, we screened 1068 small molecular compounds from an FDA-approved drug library in CRC cells. Menadione was selected for further study based on its activity profile. Mechanistic analysis included a cell death pathway PCR array, differential gene expression, enrichment, and network analysis. Gene expressions were validated by RT-qPCR. Results: We identified menadione as a potent anti-tumor drug. Menadione induced three programmed cell death (PCD) signaling pathways: necroptosis, apoptosis, and autophagy. Furthermore, we found that the anti-tumor effect induced by menadione in CRC cells was mediated through a key gene: MAPK8. Conclusions: By employing methods of cell biology, molecular biology, and bioinformatics, we conclude that menadione can induce multiple forms of PCD in CRC cells by activating MAPK8, providing a foundation for repurposing the “new use” of the “old drug” menadione in CRC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

17 pages, 3101 KiB  
Article
Comparison of Zeiss MEL90 and Alcon WaveLight EX500 Excimer Lasers in FDA Premarket Approval Trials for the Treatment of Myopia, Hyperopia, and Mixed Astigmatism
by Traeson M. Brandenburg, Mina M. Sitto, Phillip C. Hoopes and Majid Moshirfar
J. Clin. Med. 2025, 14(15), 5403; https://doi.org/10.3390/jcm14155403 - 31 Jul 2025
Viewed by 244
Abstract
Background/Objectives: Although both the MEL90 (Carl Zeiss Meditec AG, Jena, Germany) and WaveLight EX500 (Alcon Laboratories, Inc., Fort Worth, TX, USA) are two widely used excimer lasers, comparisons between the two remain limited. This study evaluates visual and refractive outcomes from the [...] Read more.
Background/Objectives: Although both the MEL90 (Carl Zeiss Meditec AG, Jena, Germany) and WaveLight EX500 (Alcon Laboratories, Inc., Fort Worth, TX, USA) are two widely used excimer lasers, comparisons between the two remain limited. This study evaluates visual and refractive outcomes from the U.S. Food and Drug Administration (FDA) premarket approval trials of these platforms in the treatment of myopia with and without astigmatism, hyperopia with and without astigmatism, and mixed astigmatism. Methods: Clinical outcomes from FDA premarket approval trials were compared between the recently approved MEL90 and the WaveLight (now termed EX500) excimer lasers. Results: A total of 714 eyes (358 patients) from MEL90 and 1353 eyes (706 patients) from EX500 were analyzed up to 6 months postoperatively. In the hyperopia/hyperopic astigmatism cohort, the EX500 demonstrated greater efficacy relative to MEL90, with more eyes achieving a postoperative uncorrected distance visual acuity (UDVA) of 20/20 or better (48.6% vs. 68.7%, respectively; p < 0.001). In both the MEL90 and EX500, at least 85% of eyes with myopia/myopic astigmatism and 68% with mixed astigmatism achieved a postoperative UDVA of 20/20 or better. For all refractive cohorts, more than 95% of eyes achieved a UDVA of 20/40 or better at 6 months (all p > 0.05). The EX500 was more likely to demonstrate an improvement of more than two lines of UDVA compared to baseline CDVA (all p < 0.05). In contrast, the MEL90 showed greater predictability of spherical equivalent within ±0.50 D and ±1.00 D for the hyperopia/hyperopic astigmatism cohort (both p = 0.007), as well as within ±0.50 D for the myopia/myopic astigmatism cohort (p < 0.001). Postoperatively, both platforms were associated with decreased glare and halos, although findings were variable in the EX500 mixed astigmatism cohort. Conclusions: Both excimer lasers demonstrated safe and effective outcomes that exceed the threshold set by the FDA. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

13 pages, 683 KiB  
Article
Saliva Has High Sensitivity and Specificity for Detecting SARS-CoV-2 Compared to Nasal Swabs but Exhibits Different Viral Dynamics from Days of Symptom Onset
by Tor W. Jensen, Rebecca L. Smith and Joseph T. Walsh
Diagnostics 2025, 15(15), 1918; https://doi.org/10.3390/diagnostics15151918 - 30 Jul 2025
Viewed by 193
Abstract
Background/Objectives: Saliva as a diagnostic medium for COVID-19 requires fewer resources to collect and is more readily adopted across a range of testers. Our study compared an Emergency Use Authorized direct saliva-to-RT-qPCR test against an FDA-authorized nasal swab RT-qPCR assay for participants [...] Read more.
Background/Objectives: Saliva as a diagnostic medium for COVID-19 requires fewer resources to collect and is more readily adopted across a range of testers. Our study compared an Emergency Use Authorized direct saliva-to-RT-qPCR test against an FDA-authorized nasal swab RT-qPCR assay for participants who reported symptoms of respiratory infection. Methods: We analyzed 737 symptomatic participants who self-selected to test at either a community testing facility or a walk-in clinic due to respiratory symptoms and provided matched saliva and nasal swab samples. Samples were collected between March and September of 2023, both before and after the declared end of the public health emergency. Results: A total of 120 participants tested positive in at least one of the tests. For participants testing in the first 5 days of reported symptoms, the saliva test had a 94.0 positive percent agreement (PPA; 95% C.I. 88.9–99.1%) with the nasal test and a 99.0 negative percent agreement (NPA; 95% C.I. 98.1–99.9%). The viral load decreased beyond day 1 of reported symptoms for saliva testing. Viral load increased up to day 4 for nasal swabs and then decreased. The same number of discordant positive samples (five each) occurred for both tests within 5 days of symptoms onset. Conclusions: In the endemic phase of COVID-19 and for development of new tests, testing methods that are less invasive are more likely to be adopted. The results of saliva-based versus nasal swab PCR measurements relative to days of symptom onset are needed to optimize future testing strategies. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

12 pages, 294 KiB  
Review
Targeting Advanced Pancreatic Ductal Adenocarcinoma: A Practical Overview
by Chiara Citterio, Stefano Vecchia, Patrizia Mordenti, Elisa Anselmi, Margherita Ratti, Massimo Guasconi and Elena Orlandi
Gastroenterol. Insights 2025, 16(3), 26; https://doi.org/10.3390/gastroent16030026 - 30 Jul 2025
Viewed by 275
Abstract
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid tumors, with a five-year overall survival rate below 10%. While the introduction of multi-agent chemotherapy regimens has improved outcomes marginally, most patients with advanced disease continue to have limited therapeutic options. Molecular [...] Read more.
Background/Objectives: Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest solid tumors, with a five-year overall survival rate below 10%. While the introduction of multi-agent chemotherapy regimens has improved outcomes marginally, most patients with advanced disease continue to have limited therapeutic options. Molecular profiling has uncovered actionable genomic alterations in select subgroups of PDAC, yet the clinical impact of targeted therapies remains modest. This review aims to provide a clinically oriented synthesis of emerging molecular targets in PDAC, their therapeutic relevance, and practical considerations for biomarker testing, including current FDA and EMA indications. Methods: A narrative review was conducted using data from PubMed, Embase, Scopus, and international guidelines (NCCN, ESMO, ASCO). The selection focused on evidence published between 2020 and 2025, highlighting molecularly defined PDAC subsets and the current status of targeted therapies. Results: Actionable genomic alterations in PDAC include KRAS G12C mutations, BRCA1/2 and PALB2-associated homologous recombination deficiency, MSI-H/dMMR status, and rare gene fusions involving NTRK, RET, and NRG1. While only a minority of patients are eligible for targeted treatments, early-phase trials and real-world data have shown promising results in these subgroups. Testing molecular profiling is increasingly standard in advanced PDAC. Conclusions: Despite the rarity of targetable mutations, systematic molecular profiling is critical in advanced PDAC to guide off-label therapy or clinical trial enrollment. A practical framework for identifying and acting on molecular targets is essential to bridge the gap between precision oncology and clinical management. Full article
(This article belongs to the Special Issue Advances in the Management of Gastrointestinal and Liver Diseases)
18 pages, 3939 KiB  
Article
Transparent Alicyclic Polyimides Prepared via Copolymerization or Crosslinking: Enhanced Flexibility and Optical Properties for Flexible Display Cover Windows
by Hyuck-Jin Kwon, Jun Hwang, Suk-Min Hong and Chil Won Lee
Polymers 2025, 17(15), 2081; https://doi.org/10.3390/polym17152081 - 30 Jul 2025
Viewed by 322
Abstract
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such [...] Read more.
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such as flexible display cover windows. Furthermore, the refractive index of most transparent polyimides is approximately 1.57, which differs from that of the optically clear adhesives (OCAs) and window materials that have values typically around 1.5, resulting in visual distortion. This study employed 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB) as the base structure of polyimides (6T). Additionally, 1,3-bis(aminomethyl)cyclohexane (BAC) with a monocyclic structure and bis(aminomethyl)bicyclo[2,2,1]heptane (BBH) with a bicyclic structure were introduced as co-monomers or crosslinking agents to 6T. The mechanical, thermal, and optical properties of the obtained copolymers (6T-BAC and 6T-BBH series) and crosslinked polymers (6T-CL-BAC and 6T-CL-BBH series) were compared. Both the copolymer series (6T-BAC and 6T-BBH) and the crosslinked series (6T-CL-BAC and 6T-CL-BBH) exhibited improved optical properties compared to the conventional 6T, with maximum transmittance exceeding 90% and refractive indices ranging from approximately 1.53 to 1.55. Notably, the copolymer series achieved transmittance levels above 95% and exhibited lower refractive indices (~1.53), demonstrating superior optical performance relative not only to the 6T baseline but also to the crosslinked series. The alicyclic polyimides synthesized in this study exhibited mechanical flexibility, high optical transmittance, and a refractive index approaching 1.5, demonstrating their applicability for use as flexible display cover window materials. Full article
Show Figures

Graphical abstract

13 pages, 596 KiB  
Review
Drug Repurposing of New Treatments for Neuroendocrine Tumors
by Stefania Bellino, Daniela Lucente and Anna La Salvia
Cancers 2025, 17(15), 2488; https://doi.org/10.3390/cancers17152488 - 28 Jul 2025
Viewed by 367
Abstract
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for [...] Read more.
Drug repurposing or drug repositioning is the process of identifying new therapeutic uses for approved or investigational drugs beyond the original treatment indication. The discovery of new drugs for cancer therapy needs this cost-effective and time-saving alternative strategy to traditional drug development for a rapid clinical translation in Phase II/III studies, especially for unmet medical needs and rare diseases. Neuroendocrine tumors (NETs) are a heterogeneous group of rare neoplasms arising from cells of the neuroendocrine system that, though often indolent, can be aggressive and metastatic. In this context, drug repurposing has emerged as a promising strategy to improve treatment options due to the limited number of effective treatments and the heterogeneity of the disease. Indeed, a large number of non-oncology drugs have the potential to address more than one target that could be therapeutic for cancer patients. Although many repurposed drugs are used off-label, efficacy for the new use must be demonstrated in clinical trials. Within regulatory frameworks, both the Food and Drug Administration (FDA) and the European Medicines Agency (EMA) have procedures to reduce the need for extensive new studies and to expedite the review of drugs for serious conditions when preliminary evidence indicates substantial clinical improvement over available therapy. In spite of several advantages, including reduced development time, lower costs, known safety profiles, and faster regulatory approval, difficulty in obtaining new patents for old drugs with limited protection for intellectual property may reduce commercial returns and disincentivize investments. This review aims to provide comprehensive information on some marketed drugs currently under investigation to be repurposed or used in clinical practice for NETs and to discuss the major clinical challenges. Although drug repurposing is a useful strategy for early access to medicines, the monitoring of the clinical benefit of oncologic drugs during the post-marketing authorization is crucial to support the safety and effectiveness of treatments. Full article
(This article belongs to the Special Issue Advances in Drug Repurposing to Overcome Cancers)
Show Figures

Graphical abstract

15 pages, 664 KiB  
Article
Real-World Safety of Vedolizumab in Inflammatory Bowel Disease: A Retrospective Cohort Study Supported by FAERS Signal Analysis
by Bojana Milašinović, Sandra Vezmar Kovačević, Srđan Marković, Marija Jovanović, Tamara Knežević Ivanovski, Đorđe Kralj, Petar Svorcan, Branislava Miljković and Katarina Vučićević
Pharmaceuticals 2025, 18(8), 1127; https://doi.org/10.3390/ph18081127 - 28 Jul 2025
Viewed by 394
Abstract
Background/Objectives: Vedolizumab is a gut-selective anti-integrin monoclonal antibody approved for the treatment of inflammatory bowel disease (IBD). While clinical trials have demonstrated a favorable safety profile, real-world studies are essential for identifying rare adverse events (AEs) and evaluating post-marketing safety. This study [...] Read more.
Background/Objectives: Vedolizumab is a gut-selective anti-integrin monoclonal antibody approved for the treatment of inflammatory bowel disease (IBD). While clinical trials have demonstrated a favorable safety profile, real-world studies are essential for identifying rare adverse events (AEs) and evaluating post-marketing safety. This study assessed vedolizumab’s safety in a real-world cohort and supported the detection of potential safety signals. Methods: A retrospective chart review was conducted on adult IBD patients treated with vedolizumab at a tertiary center in the Republic of Serbia between October 2021 and August 2022. Data included demographics, AEs, and newly reported extraintestinal manifestations (EIMs). Exposure-adjusted incidence rates were calculated per 100 patient-years (PYs). Disproportionality analysis using the FDA Adverse Event Reporting System (FAERS) was performed to identify safety signals, employing reporting odds ratios (RORs) and proportional reporting ratios (PRRs) for AEs also observed in the cohort. Prior IBD therapies and reasons for discontinuation were evaluated. Results: A total of 107 patients (42.1% Crohn’s disease, 57.9% ulcerative colitis) were included, with a median vedolizumab exposure of 605 days. There were 92 AEs (56.51/100 PYs), most frequently infections (23.95/100 PYs), gastrointestinal disorders (4.30/100 PYs), and skin disorders (4.30/100 PYs). The most frequently reported preferred terms (PTs) included COVID-19, COVID-19 pneumonia, nephrolithiasis, and nasopharyngitis. Arthralgia (12.90/100 PYs) was the most frequent newly reported EIM. No discontinuations due to vedolizumab AEs occurred. FAERS analysis revealed potential signals for events not listed in prescribing information but observed in the cohort: nephrolithiasis, abdominal pain, diarrhea, malaise, cholangitis, gastrointestinal infection, blood pressure decreased, weight decreased, female genital tract fistula, respiratory symptom, and appendicectomy. Most patients had received three prior therapies, often stopping one due to AEs. Conclusions: Vedolizumab demonstrated a favorable safety profile in the IBD cohort. However, FAERS-identified signals, such as nephrolithiasis, gastrointestinal infections, and decreased blood pressure, warrant further investigation in larger, more diverse populations. Full article
(This article belongs to the Special Issue Therapeutic Drug Monitoring and Adverse Drug Reactions: 2nd Edition)
Show Figures

Figure 1

30 pages, 1032 KiB  
Review
Circulating Biomarkers for the Early Diagnosis of Alzheimer’s Disease
by Vharoon Sharma Nunkoo, Anamaria Jurcau, Mihaela Les, Alexander Cristian, Marius Militaru, Cristian Marge, Diana Carina Iovanovici and Maria Carolina Jurcau
Int. J. Mol. Sci. 2025, 26(15), 7268; https://doi.org/10.3390/ijms26157268 - 27 Jul 2025
Viewed by 560
Abstract
With a rapidly growing incidence and prevalence, Alzheimer’s disease (AD) is rapidly becoming one of the most disabling, lethal, and expensive diseases of the century. To diagnose AD as early as possible, the scientific world struggles to find reliable and non-invasive biomarkers that [...] Read more.
With a rapidly growing incidence and prevalence, Alzheimer’s disease (AD) is rapidly becoming one of the most disabling, lethal, and expensive diseases of the century. To diagnose AD as early as possible, the scientific world struggles to find reliable and non-invasive biomarkers that could predict the conversion of mild cognitive impairment to AD and delineate the ongoing pathogenic vicious pathways to be targeted with therapy. Research supports the use of blood biomarkers, such as Aβ1-42/Aβ1-40 ratio, phosphorylated tau181, and p-tau217 for diagnostic purposes, although the cut-offs are not clearly established and can depend on the assays used. For more accurate diagnosis, markers of neurodegeneration (neurofilament light) and neuroinflammation (glial fibrillary acidic protein) could be introduced in the biomarker panel. The recent approval of the Lumipulse G p-tau217/Aβ1-42 plasma ratio by the FDA for the early detection of amyloid plaques associated with Alzheimer’s disease in adult patients, aged 55 years and older, exhibiting signs and symptoms of the disease represents a significant advancement in the diagnosis of Alzheimer’s disease, offering a more accessible and less invasive way to diagnose this devastating disease and allow potentially earlier access to treatment options. Full article
Show Figures

Figure 1

33 pages, 1777 KiB  
Review
Immunomodulatory Natural Products in Cancer Organoid-Immune Co-Cultures: Bridging the Research Gap for Precision Immunotherapy
by Chang-Eui Hong and Su-Yun Lyu
Int. J. Mol. Sci. 2025, 26(15), 7247; https://doi.org/10.3390/ijms26157247 - 26 Jul 2025
Viewed by 597
Abstract
Natural products demonstrate potent immunomodulatory properties through checkpoint modulation, macrophage polarization, and T cell/natural killer (NK) cell activation. While cancer organoid-immune co-culture platforms enable physiologically relevant modeling of tumor–immune interactions, systematic investigation of natural product immunomodulation in these systems remains entirely unexplored. We [...] Read more.
Natural products demonstrate potent immunomodulatory properties through checkpoint modulation, macrophage polarization, and T cell/natural killer (NK) cell activation. While cancer organoid-immune co-culture platforms enable physiologically relevant modeling of tumor–immune interactions, systematic investigation of natural product immunomodulation in these systems remains entirely unexplored. We conducted a comprehensive literature analysis examining natural products tested in cancer organoids, immunomodulatory mechanisms from traditional models, technical advances in organoid-immune co-cultures, and standardization requirements for clinical translation. Our analysis reveals a critical research gap: no published studies have investigated natural product-mediated immunomodulation using organoid-immune co-culture systems. Even though compounds like curcumin, resveratrol, and medicinal mushroom polysaccharides show extensive immunomodulatory effects in two-dimensional (2D) cultures, and organoid technology achieves high clinical correlation for drug response prediction, all existing organoid studies focus exclusively on direct cytotoxicity. Technical challenges include compound stability, limited matrix penetration requiring substantially higher concentrations than 2D cultures, and maintaining functional immune populations in three-dimensional (3D) systems. The convergence of validated organoid-immune co-culture platforms, Food and Drug Administration (FDA) regulatory support through the Modernization Act 2.0, and extensive natural product knowledge creates unprecedented opportunities. Priority research directions include systematic screening of immunomodulatory natural products in organoid-immune co-cultures, development of 3D-optimized delivery systems, and clinical validation trials. Success requires moving beyond cytotoxicity-focused studies to investigate immunomodulatory mechanisms in physiologically relevant 3D systems, potentially unlocking new precision cancer immunotherapy approaches. Full article
Show Figures

Figure 1

28 pages, 4633 KiB  
Review
Innovative Strategies in Hernia Mesh Design: Materials, Mechanics, and Modeling
by Evangelia Antoniadi, Nuno Miguel Ferreira, Maria Francisca Vaz, Marco Parente, Maria Pia Ferraz and Elisabete Silva
Materials 2025, 18(15), 3509; https://doi.org/10.3390/ma18153509 - 26 Jul 2025
Viewed by 431
Abstract
Hernia is a physiological condition that significantly impacts patients’ quality of life. Surgical treatment for hernias often involves the use of specialized meshes to support the abdominal wall. While this method is highly effective, it frequently leads to complications such as pain, infections, [...] Read more.
Hernia is a physiological condition that significantly impacts patients’ quality of life. Surgical treatment for hernias often involves the use of specialized meshes to support the abdominal wall. While this method is highly effective, it frequently leads to complications such as pain, infections, inflammation, adhesions, and even the need for revision surgeries. According to the Food and Drug Administration (FDA), hernia recurrence rates can reach up to 11%, surgical site infections occur in up to 21% of cases, and chronic pain incidence ranges from 0.3% to 68%. These statistics highlight the urgent need to improve mesh technologies to minimize such complications. The design and material composition of meshes are critical in reducing postoperative complications. Moreover, integrating drug-eluting properties into the meshes could address issues like infections and inflammation by enabling localized delivery of antibiotics and anti-inflammatory agents. Mesh design is equally important, with innovative structures like auxetic designs offering enhanced mechanical properties, flexibility, and tissue integration. These advanced designs can distribute stress more evenly, reduce fatigue, and improve performance in areas subjected to high pressures, such as during intense coughing, sneezing, or heavy lifting. Technological advancements, such as 3D printing, enable the precise fabrication of meshes with tailored designs and properties, providing new opportunities for innovation. By addressing these challenges, the development of next-generation mesh implants has the potential to reduce complications, improve patient outcomes, and significantly enhance quality of life for individuals undergoing hernia repair. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

19 pages, 2002 KiB  
Article
A Dual-Payload Bispecific ADC Improved Potency and Efficacy over Single-Payload Bispecific ADCs
by Nicole A. Wilski, Peter Haytko, Zhengxia Zha, Simin Wu, Ying Jin, Peng Chen, Chao Han and Mark L. Chiu
Pharmaceutics 2025, 17(8), 967; https://doi.org/10.3390/pharmaceutics17080967 - 25 Jul 2025
Viewed by 676
Abstract
Background/Objectives: All current FDA-approved antibody–drug conjugates (ADCs) are single-target and single-payload molecules that have limited efficacy in patients due to drug resistance. Therefore, our goal was to generate a novel ADC that was less susceptible to single points of resistance to reduce the [...] Read more.
Background/Objectives: All current FDA-approved antibody–drug conjugates (ADCs) are single-target and single-payload molecules that have limited efficacy in patients due to drug resistance. Therefore, our goal was to generate a novel ADC that was less susceptible to single points of resistance to reduce the likelihood of patient relapse. Methods: We developed a dual-targeting, dual-payload ADC by conjugating a bispecific EGFR x cMET antibody to two payloads (MMAF and SN38) that had separate mechanisms of action using a novel tri-functional linker. This dual-payload ADC was tested for potency and efficacy in dividing and nondividing in vitro cell models using multiple tumor cell types. Efficacy of the dual-payload ADC was confirmed using in vivo models. Results: Our ADC with dual MMAF and SN38 payloads was more efficacious in inhibiting cell proliferation than single-payload ADCs across multiple cancer cell lines. In addition, the dual-payload molecule inhibited nondividing cells, which were more resistant to traditional ADC payloads. The dual-payload ADC also exhibited more potent tumor growth inhibition in vivo compared to that of single-payload ADCs. Conclusions: Overall, the bispecific antibody conjugated with both the MMAF and SN38 payloads inhibited tumor growth more strongly than ADCs conjugated with MMAF or SN38 alone. Developing dual-payload ADCs could limit the impact of acquired resistance in patients as well as lower the effective dose of each payload. Full article
(This article belongs to the Special Issue Advancements and Innovations in Antibody Drug Conjugates)
Show Figures

Figure 1

26 pages, 5975 KiB  
Article
A Detailed Performance Evaluation of the GK2A Fog Detection Algorithm Using Ground-Based Visibility Meter Data (2021–2023, Part I)
by Hyun-Kyoung Lee and Myoung-Seok Suh
Remote Sens. 2025, 17(15), 2596; https://doi.org/10.3390/rs17152596 - 25 Jul 2025
Viewed by 313
Abstract
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood [...] Read more.
This study evaluated the performance of the operational GK2A (GEO-KOMPSAT-2A) fog detection algorithm (GK2A_FDA) using ground-based visibility meter data from 176 stations across South Korea from 2021 to 2023. According to the verification method using the nearest pixel and 3 × 3 neighborhood pixel approaches to the visibility meter, the 3-year average probability of detection (POD) is 0.59 and 0.70, the false alarm ratio (FAR) is 0.86 and 0.81, and the bias is 4.25 and 3.73, respectively. POD is highest during daytime (0.72; bias: 7.34), decreases at night (0.57; bias: 3.89), and is lowest at twilight (0.52; bias: 2.36). The seasonal mean POD is 0.65 in winter, 0.61 in spring and autumn, and 0.47 in summer, with August reaching the minimum value, 0.33. While POD is higher in coastal areas than inland areas, inland regions show lower FAR, indicating more stable performance. Over-detections occurred regardless of geographic location and time, mainly due to the misclassification of low-level clouds and cloud edges as fog. Especially after sunrise, the fog dissipated and transformed into low-level clouds. These findings suggest that there are limitations to improving fog detection levels using satellite data alone, especially when the surface is obscured by clouds, indicating the need to utilize other data sources, such as objective ground-based analysis data. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

Back to TopTop