Targeting Advanced Pancreatic Ductal Adenocarcinoma: A Practical Overview
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Targeting KRAS: From G12C Inhibitors to Pan-RAS and Beyond
3.2. Homologous Recombination Deficiency: The Role of BRCA and PALB2
3.3. NTRK and RET Gene Fusions
3.4. NRG1 Fusions: Emerging Opportunities in Targeting PDAC
3.5. Immunotherapy Beyond the Immune Desert?
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting Cancer Incidence and Deaths to 2030. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- Ilic, M.; Ilic, I. Epidemiology of pancreatic cancer. World J. Gastroenterol. 2016, 22, 9694–9705. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Laversanne, M.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Tomorrow; International Agency for Research on Cancer: Lyon, France, 2024; Available online: https://gco.iarc.fr/tomorrow (accessed on 1 May 2025).
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouché, O.; Guimbaud, R.; Bécouarn, Y.; Adenis, A.; Raoul, J.-L.; Gourgou-Bourgade, S.; De La Fouchardière, C.; et al. FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef] [PubMed]
- Golan, T.; Hammel, P.; Reni, M.; Van Cutsem, E.; Macarulla, T.; Hall, M.J.; Park, J.-O.; Hochhauser, D.; Arnold, D.; Oh, D.-Y.; et al. Maintenance Olaparib for Germline BRCA-Mutated Metastatic Pancreatic Cancer. N. Engl. J. Med. 2019, 381, 317–327. [Google Scholar] [CrossRef]
- Strickler, J.H.; Satake, H.; George, T.J.; Yaeger, R.; Hollebecque, A.; Garrido-Laguna, I.; Schuler, M.; Burns, T.F.; Coveler, A.L.; Falchook, G.S.; et al. Sotorasib in KRAS p.G12C–Mutated Advanced Pancreatic Cancer. N. Engl. J. Med. 2023, 388, 33–43. [Google Scholar] [CrossRef]
- Bekaii-Saab, T.S.; Yaeger, R.; Spira, A.I.; Pelster, M.S.; Sabari, J.K.; Hafez, N.; Barve, M.; Velastegui, K.; Yan, X.; Pant, S.; et al. Adagrasib in Advanced Solid Tumors Harboring a KRAS G12C Mutation. J. Clin. Oncol. 2023, 41, 4097–4114. [Google Scholar] [CrossRef]
- Orlandi, E.; Guasconi, M.; Romboli, A.; Giuffrida, M.; Toscani, I.; Anselmi, E.; Porzio, R.; Madaro, S.; Vecchia, S.; Citterio, C. State of the Art of Immune Checkpoint Inhibitors in Pancreatic Cancer: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 2620. [Google Scholar] [CrossRef]
- Ju, Y.; Xu, D.; Liao, M.-M.; Sun, Y.; Bao, W.-D.; Yao, F.; Ma, L. Barriers and Opportunities in Pancreatic Cancer Immunotherapy. NPJ Precis. Oncol. 2024, 8, 199. [Google Scholar] [CrossRef]
- Özdemir, B.C.; Pentcheva-Hoang, T.; Carstens, J.L.; Zheng, X.; Wu, C.-C.; Simpson, T.R.; Laklai, H.; Sugimoto, H.; Kahlert, C.; Novitskiy, S.V.; et al. Depletion of Carcinoma-Associated Fibroblasts and Fibrosis Induces Immunosuppression and Accelerates Pancreas Cancer with Reduced Survival. Cancer Cell 2014, 25, 719–734. [Google Scholar] [CrossRef]
- Luchini, C.; Brosens, L.A.A.; Wood, L.D.; Chatterjee, D.; Shin, J.I.; Sciammarella, C.; Fiadone, G.; Malleo, G.; Salvia, R.; Kryklyva, V.; et al. Comprehensive Characterisation of Pancreatic Ductal Adenocarcinoma with Microsatellite Instability. Gut 2021, 70, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Rojas, L.A.; Sethna, Z.; Soares, K.C.; Olcese, C.; Pang, N.; Patterson, E.; Lihm, J.; Ceglia, N.; Guasp, P.; Chu, A.; et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature 2023, 618, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Conroy, T.; Pfeiffer, P.; Vilgrain, V.; Lamarca, A.; Seufferlein, T.; O’rEilly, E.; Hackert, T.; Golan, T.; Prager, G.; Haustermans, K.; et al. Pancreatic cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2023, 34, 987–1002. [Google Scholar] [CrossRef] [PubMed]
- National Comprehensive Cancer Network. Pancreatic Adenocarcinoma (Version 1.2025). NCCN Clinical Practice Guidelines in Oncology. Available online: https://www.nccn.org (accessed on 1 May 2025).
- Sohal, D.P.S.; Kennedy, E.B.; Cinar, P.; Conroy, T.; Copur, M.S.; Crane, C.H.; Garrido-Laguna, I.; Lau, M.W.; Johnson, T.; Krishnamurthi, S.; et al. Metastatic Pancreatic Cancer: ASCO Guideline Update. J. Clin. Oncol. 2020, 38, 3217–3230. [Google Scholar] [CrossRef]
- Waters, A.M.; Der, C.J. KRAS: The critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb. Perspect. Med. 2018, 8, a031435. [Google Scholar] [CrossRef]
- Prior, I.A.; Hood, F.E.; Hartley, J.L. The frequency of Ras mutations in cancer. Cancer Res. 2020, 80, 2969–2974. [Google Scholar] [CrossRef]
- Janes, M.R.; Zhang, J.; Li, L.-S.; Hansen, R.; Peters, U.; Guo, X.; Chen, Y.; Babbar, A.; Firdaus, S.J.; Darjania, L.; et al. Targeting KRAS mutant cancers with a covalent G12C-Specific inhibitor. Cell 2018, 172, 578–589.e17. [Google Scholar] [CrossRef]
- Heist, R.S.; Koyama, T.; Murciano-Goroff, Y.R.; Hollebecque, A.; Cassier, P.A.; Han, J.-Y.; Tosi, D.; Sacher, A.G.; Burns, T.F.; Spira, A.I.; et al. Pan-tumor activity of olomorasib (LY3537982), a second-generation KRAS G12C inhibitor (G12Ci), in patients with KRAS G12C-mutant advanced solid tumors. J. Clin. Oncol. 2024, 42 (Suppl. S16), 3007. [Google Scholar] [CrossRef]
- Li, J.; Shen, L.; Gu, Y.; Calles, A.; Wu, L.; Ba, Y.; Li, Z.-H.; Bai, C.; Yao, Y.; Hubert, A.; et al. Preliminary activity and safety results of KRAS G12C inhibitor glecirasib (JAB-21822) in patients with pancreatic cancer and other solid tumors. J. Clin. Oncol. 2024, 42 (Suppl. S3), 604. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Narang, A.; He, J.; Wolfgang, C.; Li, K.; Zheng, L. Consensus, debate, and prospective on pancreatic cancer treatments. J. Hematol. Oncol. 2024, 17, 92. [Google Scholar] [CrossRef]
- Wei, D.; Wang, L.; Zuo, X.; Maitra, A.; Bresalier, R.S. A small molecule with big impact: MRTX1133 targets the KRASG12D mutation in pancreatic cancer. Clin. Cancer Res. 2024, 30, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Arbour, K.; Punekar, S.; Garrido-Laguna, I.; Hong, D.; Wolpin, B.; Pelster, M.; Barve, M.; Starodub, A.; Sommerhalder, D.; Chang, S.; et al. 652O Preliminary clinical activity of RMC-6236, a first-in-class, RAS-selective, tri-complex RAS-MULTI(ON) inhibitor in patients with KRAS mutant pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). Ann. Oncol. 2023, 34, S458. [Google Scholar] [CrossRef]
- Revolution Medicines. Revolution Medicines Announces Publication on the Discovery of and Translational Research for RMC-6236, an Investigational RAS(ON) Multi-Selective Tri-Complex Inhibitor Designed to Block Multiple RAS Variants. GlobeNewswire. Available online: https://www.globenewswire.com/news-release/2024/04/09/2860330/0/en/Revolution-Medicines-Announces-Publication-on-the-Discovery-of-and-Translational-Research-for-RMC-6236-an-Investigational-RAS-ON-Multi-Selective-Tri-Complex-Inhibitor-Designed-to-B.html (accessed on 28 July 2025).
- Han, X.; Sun, Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm 2023, 4, e290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nagashima, T.; Inamura, K.; Nishizono, Y.; Suzuki, A.; Tanaka, H.; Yoshinari, T.; Yamanaka, Y. ASP3082, a First-in-class novel KRAS G12D degrader, exhibits remarkable anti-tumor activity in KRAS G12D mutated cancer models. Eur. J. Cancer 2022, 174, S30. [Google Scholar] [CrossRef]
- Golan, T.; O’kAne, G.M.; Denroche, R.E.; Raitses-Gurevich, M.; Grant, R.C.; Holter, S.; Wang, Y.; Zhang, A.; Jang, G.H.; Stossel, C.; et al. Genomic features and classification of homologous recombination deficient pancreatic ductal adenocarcinoma. Gastroenterology 2021, 160, 2119–2132.e9. [Google Scholar] [CrossRef]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2012, 12, 68–78. [Google Scholar] [CrossRef]
- Lord, C.J.; Ashworth, A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 2013, 19, 1381–1388. [Google Scholar] [CrossRef]
- Pilié, P.G.; Tang, C.; Mills, G.B.; Yap, T.A. State-of-the-art strategies for targeting the DNA damage response in cancer. Nat. Rev. Clin. Oncol. 2019, 16, 81–104. [Google Scholar] [CrossRef]
- O’cOnnor, M.J. Targeting the DNA Damage Response in Cancer. Mol. Cell 2015, 60, 547–560. [Google Scholar] [CrossRef]
- Hu, C.; Hart, S.N.; Polley, E.C.; Gnanaolivu, R.; Shimelis, H.; Lee, K.Y.; Lilyquist, J.; Na, J.; Moore, R.; Antwi, S.O.; et al. Association between inherited germline mutations in cancer predisposition genes and risk of pancreatic cancer. JAMA 2018, 319, 2401–2409. [Google Scholar] [CrossRef]
- Holter, S.; Borgida, A.; Dodd, A.; Grant, R.; Semotiuk, K.; Hedley, D.; Dhani, N.; Narod, S.; Akbari, M.; Moore, M.; et al. Germline BRCA mutations in a large clinic-based cohort of patients with pancreatic adenocarcinoma. J. Clin. Oncol. 2015, 33, 3124–3129. [Google Scholar] [CrossRef] [PubMed]
- Reiss, K.A.; Yu, S.; Judy, R.; Symecko, H.; Nathanson, K.L.; Domchek, S.M. Retrospective analysis of platinum-based chemotherapy in PALB2-mutated pancreatic cancer. JCO Precis. Oncol. 2021, 5, PO.20.00411. [Google Scholar] [CrossRef]
- Pishvaian, M.J.; Blais, E.M.; Brody, J.R.; Lyons, E.; DeArbeloa, P.; Hendifar, A.; Mikhail, S.; Chung, V.; Sahai, V.; Sohal, D.P.S.; et al. Overall survival in patients with pancreatic cancer receiving matched therapies following molecular profiling. Lancet Oncol. 2020, 21, 508–518. [Google Scholar] [CrossRef] [PubMed]
- Javle, M.; Shacham-Shmueli, E.; Xiao, L.; Varadhachary, G.; Halpern, N.; Fogelman, D.; Boursi, B.; Uruba, S.; Margalit, O.; Wolff, R.A.; et al. Olaparib monotherapy for previously treated pancreatic cancer with DNA damage repair genetic alterations other than germline BRCA variants: Findings from two phase 2 nonrandomized clinical trials. JAMA Oncol. 2021, 7, 693–699. [Google Scholar] [CrossRef]
- Wattenberg, M.M.; Asch, D.; Yu, S.; O’dWyer, P.J.; Domchek, S.M.; Nathanson, K.L.; Rosen, M.A.; Beatty, G.L.; Siegelman, E.S.; Reiss, K.A. Platinum responsiveness and PARP inhibitor sensitivity in pancreatic cancer patients with germline BRCA1/2 versus PALB2 mutations. Br. J. Cancer 2020, 122, 333–339. [Google Scholar] [CrossRef]
- Pokataev, I.; Fedyanin, M.; Polyanskaya, E.; Popova, A.; Agafonova, J.; Menshikova, S.; Tryakin, A.; Rumyantsev, A.; Tjulandin, S. Efficacy of platinum-based chemotherapy and prognosis of patients with pancreatic cancer with homologous recombination deficiency: Comparative analysis of published clinical studies. ESMO Open 2020, 5, e000578. [Google Scholar] [CrossRef]
- Buisson, R.; Niraj, J.; Rodrigue, A.; Ho, C.K.; Kreuzer, J.; Foo, T.K.; Hardy, E.J.-L.; Dellaire, G.; Haas, W.; Xia, B.; et al. Coupling of homologous recombination and the checkpoint by ATR. Mol. Cell 2017, 65, 336–346.e3. [Google Scholar] [CrossRef]
- Milella, M.; Orsi, G.; di Marco, M.; Salvatore, L.; Procaccio, L.; Noventa, S.; Bozzarelli, S.; Garajova, I.; Vasile, E.; Giordano, G.; et al. Real-world impact of olaparib exposure in advanced pancreatic cancer patients harboring germline BRCA1-2 pathogenic variants. Cancer Med. 2025, 14, e70364. [Google Scholar] [CrossRef]
- Cocco, E.; Scaltriti, M.; Drilon, A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018, 15, 731–747. [Google Scholar] [CrossRef]
- Subbiah, V.; Cote, G.J. Advances in targeting RET-dependent cancers. Cancer Discov. 2020, 10, 498–505. [Google Scholar] [CrossRef]
- Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016, 1, e000023. [Google Scholar] [CrossRef]
- Drilon, A.; Rekhtman, N.; Ladanyi, M.; Paik, P. Squamous-cell carcinomas of the lung: Emerging biology and therapies. Nat. Rev. Clin. Oncol. 2012, 9, 613–623. [Google Scholar] [CrossRef]
- Jones, M.R.; Williamson, L.M.; Topham, J.T.; Lee, M.K.; Goytain, A.; Ho, J.; Denroche, R.E.; Jang, G.-H.; Pleasance, E.D.; Shen, Y.; et al. NRG1 gene fusions are recurrent, clinically actionable gene rearrangements in KRAS wild-type pancreatic ductal adenocarcinoma. Clin. Cancer Res. 2019, 25, 4674–4681. [Google Scholar] [CrossRef]
- Singhi, A.D.; George, B.; Greenbowe, J.R.; Chung, J.; Suh, J.; Maitra, A.; Klempner, S.J.; Hendifar, A.; Milind, J.M.; Golan, T.; et al. Real-time targeted genome profile analysis of pancreatic ductal adenocarcinomas identifies genetic alterations that might be targeted therapeutically. Gastroenterology 2019, 156, 2242–2253.e4. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Laetsch, T.W.; Kummar, S.; Dubois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Doebele, R.C.; Farago, A.F.; Pappo, A.S.; et al. Efficacy of larotrectinib in TRK fusion–positive cancers in adults and children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with NTRK fusion-positive solid tumours: Integrated analysis of three phase 1–2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Subbiah, V.; Gautschi, O.; Tomasini, P.; de Braud, F.; Solomon, B.J.; Tan, D.S.-W.; Alonso, G.; Wolf, J.; Park, K.; et al. Selpercatinib in patients with RET fusion-positive pancreatic cancer: Results from the LIBRETTO-001 trial. J. Clin. Oncol. 2021, 39 (Suppl. S15), 3604. [Google Scholar] [CrossRef]
- Fernandez-Cuesta, L.; Plenker, D.; Osada, H.; Sun, R.; Menon, R.; Leenders, F.; Ortiz-Cuaran, S.; Peifer, M.; Bos, M.; Daßler, J.; et al. CD74–NRG1 fusions in lung adenocarcinoma. Cancer Discov. 2014, 4, 415–422. [Google Scholar] [CrossRef]
- Nagasaka, M.; Ou, S.-H.I. NRG1 and NRG2 fusion positive tumors: Ligand-fusion oncogenesis. Trends Cancer 2022, 8, 242–258. [Google Scholar] [CrossRef]
- Heining, C.; Horak, P.; Uhrig, S.; Codo, P.L.; Klink, B.; Hutter, B.; Fröhlich, M.; Bonekamp, D.; Richter, D.; Steiger, K.; et al. NRG1 fusions in KRAS wild-type pancreatic ductal adenocarcinoma. Cancer Discov. 2018, 8, 1087–1095. [Google Scholar] [CrossRef] [PubMed]
- Benayed, R.; Offin, M.; Mullaney, K.; Sukhadia, P.; Rios, K.; Desmeules, P.; Ptashkin, R.; Won, H.; Chang, J.; Halpenny, D.; et al. High yield of RNA sequencing for kinase fusions in lung adenocarcinomas negative by DNA sequencing. Clin. Cancer Res. 2019, 25, 4712–4722. [Google Scholar] [CrossRef]
- Schram, A.M.; Odintsov, I.; Espinosa-Cotton, M.; Khodos, I.; Sisso, W.J.; Mattar, M.S.; Lui, A.J.; Vojnic, M.; Shameem, S.H.; Chauhan, T.; et al. Zenocutuzumab, a HER2xHER3 Bispecific Antibody, Is Effective Therapy for Tumors Driven by NRG1 Gene Rearrangements. Cancer Discov. 2022, 12, 1233–1247. [Google Scholar] [CrossRef] [PubMed]
- Schram, A.M.; Goto, K.; Kim, D.-W.; Macarulla, T.; Hollebecque, A.; O’rEilly, E.M.; Ou, S.-H.I.; Rodon, J.; Rha, S.Y.; Nishino, K.; et al. Efficacy of zenocutuzumab in NRG1 fusion–positive cancer. N. Engl. J. Med. 2025, 392, 566–576. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Noncolorectal MSI-H/dMMR Cancer: KEYNOTE-158. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Taïeb, J.; Sayah, L.; Heinrich, K.; Kunzmann, V.; Boileve, A.; Cirkel, G.; Lonardi, S.; Chibaudel, B.; Turpin, A.; Beller, T.; et al. Efficacy of ICIs in MSI-H/dMMR Advanced Pancreatic Cancer: AGEO European Cohort. Eur. J. Cancer 2023, 188, 90–97. [Google Scholar] [CrossRef]
- Melisi, D.; Oh, D.-Y.; Hollebecque, A.; Calvo, E.; Varghese, A.; Borazanci, E.; Macarulla, T.; Merz, V.; Zecchetto, C.; Zhao, Y.; et al. Galunisertib plus durvalumab in metastatic pancreatic cancer. J. Immunother. Cancer 2021, 9, e002068. [Google Scholar] [CrossRef]
- Bockorny, B.; Semenisty, V.; Macarulla, T.; Borazanci, E.; Wolpin, B.M.; Stemmer, S.M.; Golan, T.; Geva, R.; Borad, M.J.; Pedersen, K.S.; et al. The COMBAT trial: BL-8040 and pembrolizumab in PDAC. Nat. Med. 2020, 26, 878–885. [Google Scholar] [CrossRef]
- Tsujikawa, T.; Crocenzi, T.; Durham, J.N.; Sugar, E.A.; Wu, A.A.; Onners, B.; Nauroth, J.M.; Anders, R.A.; Fertig, E.J.; Laheru, D.A.; et al. Evaluation of Cyclophosphamide/GVAX Pancreas Followed by Listeria-Mesothelin (CRS-207) with or without Nivolumab in Patients with Pancreatic Cancer. Clin. Cancer Res. 2020, 26, 3578–3588. [Google Scholar] [CrossRef]
- Naples, R.; Walsh, R.M.; Thomas, J.D.; Perlmutter, B.; McMichael, J.; Augustin, T.; Simon, R. EUS-guided fine needle biopsy sampling for genomic profiling of pancreatic ductal adenocarcinoma: A multicenter experience. Pancreatology 2021, 21, 151–157. [Google Scholar] [CrossRef]
- Song, T.J.; Kim, J.H.; Lee, S.S.; Eum, J.B.; Moon, S.H.; Park, D.H.; Seo, D.W.; Lee, S.K.; Jang, S.J.; Yun, S.C.; et al. The prospective randomized, controlled trial of endoscopic ultrasound-guided fine-needle aspiration using 22G and 19G aspiration needles for solid pancreatic or peripancreatic masses. Am. J. Gastroenterol. 2010, 105, 1739–1745. [Google Scholar] [CrossRef]
- Tanaka, H.; Matsusaki, S. The Utility of Endoscopic-Ultrasonography-Guided Tissue Acquisition for Solid Pancreatic Lesions. Diagnostics 2022, 12, 753. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
ASCO (2020) | ESMO (2023) | NCCN (2025) | |
---|---|---|---|
KRAS mutation | Not discussed in ASCO 2020. | Recommended as part of broad NGS panel in advanced PDAC. | Testing recommended for all advanced PDAC patients; specify mutation (e.g., G12C) to assess clinical trial eligibility. |
BRCA1/2 (germline) | Strong recommendation for germline BRCA1/2 testing; PARP inhibitors considered after platinum. | Germline testing recommended for all; olaparib approved for gBRCA-mutated PDAC. | Universal germline testing advised. Olaparib indicated as maintenance after platinum response in gBRCA-mutated patients. |
PALB2 | Mentioned; no formal therapeutic recommendation. | Testing advised. No formal approval for PARP inhibitors; some retrospective support. | Germline testing recommended. Platinum sensitivity supported; PARP inhibitors not currently approved. |
MSI-H/dMMR | Testing recommended in all advanced PDAC cases; pembrolizumab valid in positive cases. | Recommended in all PDAC. ICIs supported in MSI-H/dMMR tumors. | Universal testing recommended. Pembrolizumab an option for MSI-H/dMMR tumors. |
NTRK fusion | Supported for tumor-agnostic use; testing suggested as part of extended molecular workup. | Advised in KRAS wild-type or NGS testing; larotrectinib/entrectinib approved. | Recommended in KRAS wild-type PDAC or when no standard options are available. Larotrectinib/entrectinib are tumor-agnostic options. |
RET fusion | Not discussed in ASCO 2020. | Recommended in extended NGS; more relevant in KRAS wild-type PDAC. | Testing optional but advised in KRAS wild-type tumors. Selpercatinib may be considered off-label. |
NRG1 fusion | Not discussed in ASCO 2020. | Testing recommended in NGS, especially for KRAS wild-type tumors. | Testing suggested in KRAS wild-type PDAC; clinical trial enrollment strongly encouraged. |
HER2 (ERBB2) | Not discussed in ASCO 2020. | HER2 testing advised in selected cases; relevance mainly in KRAS wild-type or rare histology. | Testing recommended in KRAS wild-type or atypical tumors. Consider trial enrollment for HER2-targeted therapy. |
Drug | Target | FDA Approval | EMA Approval |
---|---|---|---|
Sotorasib | KRAS G12C | Yes (NSCLC, 2021) | Yes (NSCLC, 2022) |
Adagrasib | KRAS G12C | Yes (NSCLC, 2022) | Yes (NSCLC, 2023) |
Olomorasib | KRAS G12C | No | No |
Glecirasib | KRAS G12C | No | No |
Zenocutuzumab | NRG1 fusion | No (investigational) | No |
Larotrectinib | NTRK fusion | Yes (tumor-agnostic, 2018) | Yes (tumor-agnostic, 2019) |
Entrectinib | NTRK fusion | Yes (tumor-agnostic, 2019) | Yes (tumor-agnostic, 2020) |
Selpercatinib | RET fusion | Yes (solid tumors incl. PDAC, 2022) | Yes (lung and thyroid cancer, not PDAC) |
Pembrolizumab | MSI-H/dMMR | Yes (tumor-agnostic, 2017) | Yes (tumor-agnostic, 2020) |
Olaparib | gBRCA1/2 | Yes (PDAC, maintenance, 2019) | Yes (PDAC, maintenance, 2020) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Citterio, C.; Vecchia, S.; Mordenti, P.; Anselmi, E.; Ratti, M.; Guasconi, M.; Orlandi, E. Targeting Advanced Pancreatic Ductal Adenocarcinoma: A Practical Overview. Gastroenterol. Insights 2025, 16, 26. https://doi.org/10.3390/gastroent16030026
Citterio C, Vecchia S, Mordenti P, Anselmi E, Ratti M, Guasconi M, Orlandi E. Targeting Advanced Pancreatic Ductal Adenocarcinoma: A Practical Overview. Gastroenterology Insights. 2025; 16(3):26. https://doi.org/10.3390/gastroent16030026
Chicago/Turabian StyleCitterio, Chiara, Stefano Vecchia, Patrizia Mordenti, Elisa Anselmi, Margherita Ratti, Massimo Guasconi, and Elena Orlandi. 2025. "Targeting Advanced Pancreatic Ductal Adenocarcinoma: A Practical Overview" Gastroenterology Insights 16, no. 3: 26. https://doi.org/10.3390/gastroent16030026
APA StyleCitterio, C., Vecchia, S., Mordenti, P., Anselmi, E., Ratti, M., Guasconi, M., & Orlandi, E. (2025). Targeting Advanced Pancreatic Ductal Adenocarcinoma: A Practical Overview. Gastroenterology Insights, 16(3), 26. https://doi.org/10.3390/gastroent16030026