Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = UPR system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2383 KB  
Review
The Role of Crosstalk Between the Unfolded Protein Response and Autophagy in Diseases Associated with Sympathetic Nervous System Imbalance: Mechanisms and Therapeutic Perspectives
by Bo Xu, Yi Yang and Renjun Wang
Int. J. Mol. Sci. 2026, 27(3), 1282; https://doi.org/10.3390/ijms27031282 - 27 Jan 2026
Abstract
Sympathetic nervous system (SNS) imbalance is a common pathological basis for cardiovascular diseases, non-alcoholic fatty liver disease, and diabetes. This review focuses on these diseases, analyzing two core mechanisms: excessive sympathetic excitation induced by endoplasmic reticulum stress (ERS) or autophagy dysfunction in key [...] Read more.
Sympathetic nervous system (SNS) imbalance is a common pathological basis for cardiovascular diseases, non-alcoholic fatty liver disease, and diabetes. This review focuses on these diseases, analyzing two core mechanisms: excessive sympathetic excitation induced by endoplasmic reticulum stress (ERS) or autophagy dysfunction in key central nuclei (e.g., hypothalamus, rostral ventrolateral medulla); and ERS/autophagy abnormalities in peripheral target organs caused by chronic SNS overactivation. Existing studies confirm that chronic SNS overactivation promotes peripheral metabolic overload via sustained catecholamine release, inducing persistent ERS and disrupting the protective unfolded protein response (UPR)–autophagy network, ultimately leading to cell apoptosis, inflammation, and fibrosis. Notably, central ERS or autophagy dysfunction further perturbs autonomic homeostasis, exacerbating sympathetic overexcitation. This review systematically elaborates on SNS overactivation as a critical bridge mediating UPR–autophagy network dysregulation in central and peripheral tissues, and explores therapeutic prospects of targeting key nodes (e.g., chemical chaperones, specific UPR modulators, nanomedicine), providing a theoretical basis for basic research and clinical translation. Full article
(This article belongs to the Special Issue New Insights into the Molecular Mechanisms of the UPR and Cell Stress)
Show Figures

Figure 1

26 pages, 3962 KB  
Review
Exploring Small-Molecule Inhibitors of Glucosidase II: Advances, Challenges, and Therapeutic Potential in Cancer and Viral Infection
by Tay Zar Myo Oo, Yupanun Wuttiin, Kanyamas Choocheep, Warunee Kumsaiyai, Piyawan Bunpo and Ratchada Cressey
Int. J. Mol. Sci. 2025, 26(24), 11867; https://doi.org/10.3390/ijms262411867 - 9 Dec 2025
Cited by 1 | Viewed by 595
Abstract
Glucosidase II (GluII) is a heterodimeric enzyme localized in the endoplasmic reticulum (ER), essential for the sequential trimming of glucose residues during N-linked glycosylation. This critical function facilitates glycoprotein folding via the calnexin/calreticulin chaperone system, maintaining ER homeostasis. Dysregulation or inhibition of GluII [...] Read more.
Glucosidase II (GluII) is a heterodimeric enzyme localized in the endoplasmic reticulum (ER), essential for the sequential trimming of glucose residues during N-linked glycosylation. This critical function facilitates glycoprotein folding via the calnexin/calreticulin chaperone system, maintaining ER homeostasis. Dysregulation or inhibition of GluII has been implicated in various pathological processes, including cancer, viral infections, and glycoprotein misfolding disorders. This review summarizes the current knowledge of GluII’s structure and function, highlights a wide range of natural and synthetic GluII inhibitors—including iminosugar derivatives (e.g., deoxynojirimycin (DNJ), castanospermine (CAST)), non-iminosugar compounds (e.g., bromoconduritol, catechins), and mechanism-based cyclophellitol analogues—and evaluates their biological effects and therapeutic potential. The cellular impact of GluII inhibition is explored in the context of ER stress, unfolded protein response (UPR), tumor cell apoptosis, and viral replication. Key challenges in developing selective GluII inhibitors are discussed, with a focus on strategies to minimize off-target effects, including prodrug design, allosteric modulation, and emerging genetic approaches such as microRNA (miRNA)-mediated downregulation of GluII subunits. Taken together, these insights underscore the therapeutic relevance of GluII as a druggable target and pave the way for the rational design of next-generation inhibitors in oncology, infectious diseases, and metabolic disorders. Full article
(This article belongs to the Special Issue New Research Perspectives in Protein Glycosylation)
Show Figures

Figure 1

31 pages, 17051 KB  
Article
From Nature to Function: Green Composites Using Camphoric Acid-Based Unsaturated Polyester Resin and Bamboo/Flax Non-Woven Reinforcements
by Slavko Mijatov, Sanja Savić, Saša Brzić, Stefan Ivanović, Milena Simić, Milena Milošević and Aleksandar Marinković
Polymers 2025, 17(22), 3038; https://doi.org/10.3390/polym17223038 - 17 Nov 2025
Viewed by 882
Abstract
Unsaturated polyester resins (UPRs) were synthesized from camphoric acid and diluted with styrene, partially replaced (up to 30%) by trimethylolpropane triacrylate (TMPTA). Rheological tests showed increased but sustainable viscosity due to TMPTA’s higher polarity. These UPRs served as matrices for composites reinforced with [...] Read more.
Unsaturated polyester resins (UPRs) were synthesized from camphoric acid and diluted with styrene, partially replaced (up to 30%) by trimethylolpropane triacrylate (TMPTA). Rheological tests showed increased but sustainable viscosity due to TMPTA’s higher polarity. These UPRs served as matrices for composites reinforced with non-woven bamboo and flax mats from recycled waste. Mechanical testing revealed that Cf-UPR/TMPTA30 exhibited the highest tensile strength (25.2 MPa) and modulus (0.96 GPa), compared to 18.7 MPa and 0.74 GPa for the styrene-based resin, respectively, attributed to greater cross-link density. Bamboo composites showed lower tensile properties (13.6 MPa) due to random fiber orientation and porosity, while flax-reinforced systems, especially Cf-UPR/TMPTA30–FLAX, reached 42.7 MPa tensile and 95.5 MPa flexural strength, indicating synergy between TMPTA-modified resin and flax fibers. Dynamic-mechanical analysis confirmed stable thermo-mechanical behavior, and water uptake tests showed reduced absorption (by ~10%), suggesting improved fiber/matrix adhesion. SEM images revealed brittle fracture and fiber pull-out in styrene systems, but fiber breakage and ductile textures in TMPTA-based ones, proving better stress transfer. Thermal analysis indicated slightly earlier degradation onset for TMPTA-modified resins but higher char yield in fiber composites. Overall, TMPTA substitution and flax reinforcement enhance the mechanical, interfacial, and thermal properties of bio-based UPRs, supporting sustainable high-performance composites. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

36 pages, 5976 KB  
Review
The Unfolded Protein Response—Novel Mechanisms, Challenges, and Key Considerations for Therapeutic Intervention
by P. M. Quan Mai, Tam-Anh Truong, Sai Kumar Samala, Bhoomika Muruvekere Lakshmisha, Prapannajeet Biswal, Khadijeh Koushki, Prudhvi Chand Mallepaddi, Geraldine Vijay and Sunil Krishnan
Cancers 2025, 17(22), 3639; https://doi.org/10.3390/cancers17223639 - 13 Nov 2025
Cited by 1 | Viewed by 2658
Abstract
Background: The unfolded protein response (UPR) is an evolutionarily conserved, synchronized, and orchestrated process triggered by eukaryotic cells in response to endoplasmic reticulum (ER) stress. UPR restores the ER’s capacity to handle large protein loads within it, and still fold and process these [...] Read more.
Background: The unfolded protein response (UPR) is an evolutionarily conserved, synchronized, and orchestrated process triggered by eukaryotic cells in response to endoplasmic reticulum (ER) stress. UPR restores the ER’s capacity to handle large protein loads within it, and still fold and process these proteins accurately. Many recent studies have documented the non-canonical roles of the UPR, outside of protein quality control, in the context of lipid metabolism and the immune system in cancer. Cancer cells have been known to hijack the UPR to promote survival and evade immune surveillance. However, the underlying mechanisms remain poorly understood. Objectives: Here, we critically summarize canonical and non-canonical UPR mechanisms in the contexts of tumor immune microenvironment and lipid metabolism, dissect their crosstalk with other cell fate signaling pathways within cancer, and propose therapeutic strategies to exploit this relationship. We also discuss the fundamental challenges of solely targeting UPR and emphasize the importance of patient stratification, biomarker development, and rational combination therapies to maximize the potential for therapeutic gain. We provide a deconvoluted mechanistic understanding of the UPR process in an attempt to spark prospective clinically relevant therapeutics research. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Figure 1

22 pages, 2330 KB  
Article
Effects of Stress of the Endoplasmic Reticulum on Genome-Wide Gene Expression in the Bovine Liver Cell Model BFH12
by Eron Bajrami, Gaiping Wen, Sarah M. Grundmann, Robert Ringseis, Denise K. Gessner and Klaus Eder
Dairy 2025, 6(6), 64; https://doi.org/10.3390/dairy6060064 - 31 Oct 2025
Viewed by 1294
Abstract
Previous studies have demonstrated that high-yielding dairy cows experience endoplasmic reticulum (ER) stress in the liver during early lactation. To date, most insights into the role of ER stress in metabolism and disease pathophysiology have been derived from rodent and human models. In [...] Read more.
Previous studies have demonstrated that high-yielding dairy cows experience endoplasmic reticulum (ER) stress in the liver during early lactation. To date, most insights into the role of ER stress in metabolism and disease pathophysiology have been derived from rodent and human models. In dairy cattle, however, the specific impact of ER stress on metabolic pathways and its contribution to disease development remain insufficiently characterized. The objective of this study was therefore to investigate the molecular effects of ER stress using a bovine liver cell model (BFH12 cells). ER stress was induced by incubation with Tunicamycin (TM) and Thapsigargin (TG). Molecular responses to ER stress were assessed via a whole-genome array analysis and PCR targeting genes involved in selected metabolic pathways. Incubation with both ER stress inducers resulted in a marked upregulation of genes associated with the unfolded protein response (UPR) within a 4 to 24-h time frame, indicative of the production of robust ER stress in these cells. Unexpectedly, treatment with TM led to a downregulation of numerous genes involved in lipid biosynthesis, including those related to lipogenesis and cholesterol synthesis. Furthermore, incubation with TM and TG induced upregulation of genes involved in fatty acid oxidation and was accompanied by a reduction in intracellular triglyceride concentrations. Genes associated with inflammatory responses were upregulated by both TM and TG, whereas genes encoding antioxidant enzymes were downregulated. Genes involved in ketogenesis did not exhibit a consistent pattern of regulation. Overall, several effects of ER stress previously described in rodent models could not be replicated in this bovine liver cell system. Extrapolating these findings to dairy cows suggests that while ER stress may contribute to hepatic inflammation, it is unlikely to play a significant role in the development of hepatic lipidosis or ketosis. Full article
(This article belongs to the Section Dairy Animal Health)
Show Figures

Figure 1

22 pages, 2326 KB  
Article
Stabilization of G-Quadruplexes Modulates the Expression of DNA Damage and Unfolded Protein Response Genes in Canine Lymphoma/Leukemia Cells
by Beatriz Hernández-Suárez, David A. Gillespie, Ewa Dejnaka, Bożena Obmińska-Mrukowicz and Aleksandra Pawlak
Int. J. Mol. Sci. 2025, 26(20), 9928; https://doi.org/10.3390/ijms26209928 - 12 Oct 2025
Viewed by 1078
Abstract
G-quadruplexes have been identified as a promising anti-cancer target because of their ability to modulate the stability of mRNAs encoding oncogenes, tumor suppressor genes, and other potential therapeutic targets. Deregulation of DNA damage and Unfolded Protein Response pathways in cancer cells may create [...] Read more.
G-quadruplexes have been identified as a promising anti-cancer target because of their ability to modulate the stability of mRNAs encoding oncogenes, tumor suppressor genes, and other potential therapeutic targets. Deregulation of DNA damage and Unfolded Protein Response pathways in cancer cells may create vulnerabilities that can be exploited therapeutically. Previous studies have shown variations in the relative expression of DDR and UPR components in canine lymphoma and leukemia cell lines CLBL-1, CLB70, and GL-1. In the present study, we report the presence of G-quadruplex structures in these canine cell lines. Downregulation of the expression of DDR and UPR components at the mRNA level was observed in the CLBL-1 and CLB70 cell lines after stabilization of G4 structures using the ligand PhenDC3. In contrast, in GL-1 cells, important components of the DDR pathway, such as PARP1, GADD45A, and PIK3CB were upregulated in response to PhenDC3 treatment. Downregulation of DDIT4 mRNA expression, which encodes an important UPR component, was detected in the CLBL-1 and GL-1 cell lines after PhenDC3 exposure. These results suggest that G4 structures can be used to manipulate the expression of potential targets to treat lymphoma in dogs. A substantial enrichment of DNA replication and pyrimidine metabolism pathways was found in the GL-1 cell line after G4 stabilization. This finding suggests that PhenDC3 may induce DNA replication stress in this cell line. Collectively, these results support the feasibility of employing canine cancer cells as a model system to investigate the role of G-quadruplex structures in cancer. Full article
Show Figures

Figure 1

26 pages, 1532 KB  
Review
Harnessing p97/VCP: A Transformative AAA+ ATPase Target for Next-Generation Cancer Therapeutics
by Maria Janina Carrera Espinoza, Sarah K. Tucker, Sruthi Sureshkumar, Madison E. Gamble, Natalie L. Hakim, Sofia Orrantia, Claudia M. Espitia, Alexis B. Cruickshank-Taylor, Wei Wang, Kevin R. Kelly, Jennifer S. Carew and Steffan T. Nawrocki
Cancers 2025, 17(18), 2945; https://doi.org/10.3390/cancers17182945 - 9 Sep 2025
Viewed by 2604
Abstract
Increased basal protein synthesis activity is a hallmark feature that distinguishes many types of malignant cells from their normal counterparts. The survival and proliferation of cancer cells are tightly linked to functional unfolded protein response (UPR) and endoplasmic reticulum (ER)-associated degradation (ERAD) pathways [...] Read more.
Increased basal protein synthesis activity is a hallmark feature that distinguishes many types of malignant cells from their normal counterparts. The survival and proliferation of cancer cells are tightly linked to functional unfolded protein response (UPR) and endoplasmic reticulum (ER)-associated degradation (ERAD) pathways due to their high rates of protein synthesis. The evolutionarily conserved AAA+ ATPase valosin-containing protein (VCP)/p97 facilitates the extraction of proteins from organelles, chromatin, and protein complexes to target them for ubiquitin–proteasome system (UPS)-mediated degradation. p97 plays a key role in protein quality control and in the maintenance of protein homeostasis through its regulation of ERAD. The disruption of p97 activity leads to an accumulation of undegraded proteins, triggers the UPR, and can culminate in proteotoxic cell death. Given this, p97 inhibition offers an opportunity to selectively kill cancer cells that exhibit high basal protein synthesis rates. This review explores p97’s molecular structure, diverse cellular roles, and clinical potential with a particular focus on CB-5083 and CB-5339, the only p97 inhibitors to date that have advanced into clinical trials. We discuss their mechanisms of action, clinical trial outcomes, and the transformative potential of rational combination strategies to maximize their therapeutic potential. By integrating foundational biological insights with translational perspectives, we highlight p97 as a precision target for cancer treatment. Full article
(This article belongs to the Special Issue Next-Generation Cancer Therapies)
Show Figures

Figure 1

32 pages, 1709 KB  
Review
Mitochondrial Quality Control in Neurodegeneration and Cancer: A Common Denominator, Distinct Therapeutic Challenges
by Agnieszka Dominiak, Elżbieta Gawinek, Agnieszka Anna Banaszek and Anna Wilkaniec
Int. J. Mol. Sci. 2025, 26(17), 8693; https://doi.org/10.3390/ijms26178693 - 6 Sep 2025
Cited by 3 | Viewed by 3059
Abstract
Mitochondrial quality control (MQC) mechanisms, including proteostasis, mitophagy, mitochondrial dynamics, and biogenesis, are essential for maintaining mitochondrial function and overall cellular health. Dysregulation of these systems is a common feature of both neurodegenerative diseases and cancer, but the outcomes differ. Neurons depend strongly [...] Read more.
Mitochondrial quality control (MQC) mechanisms, including proteostasis, mitophagy, mitochondrial dynamics, and biogenesis, are essential for maintaining mitochondrial function and overall cellular health. Dysregulation of these systems is a common feature of both neurodegenerative diseases and cancer, but the outcomes differ. Neurons depend strongly on healthy mitochondria and are easily damaged when MQC fails, resulting in organellar dysfunction and oxidative stress. By contrast, cancer cells often adapt by using MQC pathways to sustain survival and resist cell death. The mitochondrial unfolded protein response (mtUPR) and mitophagy are central to these processes, yet their roles are context-dependent. In neurodegeneration, activation of these pathways may help neurons survive, yet persistent stimulation can shift towards harmful effects. In cancer, these same pathways enhance metabolic flexibility, promote resistance to treatment, and support tumor progression. Although therapeutic strategies targeting MQC are being explored, their translation to the clinic is difficult, partly due to opposite effects in different diseases. The observed inverse epidemiological link between cancer and neurodegeneration may also reflect the distinct regulation of MQC pathways. A clearer understanding of these mechanisms is needed to identify new treatment strategies for disorders that are clinically distinct but share common mitochondrial defects. Full article
Show Figures

Figure 1

24 pages, 5090 KB  
Article
PAC1 Receptor Knockout Mice Reveal Critical Links Between ER Stress, Myelin Homeostasis, and Neurodegeneration
by Minduli Withana, Laura Bradfield, Margo I. Jansen, Giuseppe Musumeci, James A. Waschek and Alessandro Castorina
Int. J. Mol. Sci. 2025, 26(17), 8668; https://doi.org/10.3390/ijms26178668 - 5 Sep 2025
Viewed by 1623
Abstract
The pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1) plays a pivotal role in central nervous system development and homeostasis. Comparisons of PAC1 knockout (PAC1−/−), heterozygous (PAC1+/−) and wild-type (PAC1+/+) mice demonstrate that PAC1 deficiency severely impairs pre-weaning [...] Read more.
The pituitary adenylate cyclase-activating polypeptide receptor 1 (PAC1) plays a pivotal role in central nervous system development and homeostasis. Comparisons of PAC1 knockout (PAC1−/−), heterozygous (PAC1+/−) and wild-type (PAC1+/+) mice demonstrate that PAC1 deficiency severely impairs pre-weaning survival and results in marked developmental deficits, including reduced postnatal weight and altered locomotor behavior. PAC1−/− mice exhibited hyperlocomotion, reduced anxiety-like behavior, and transient deficits in motor coordination. Gene expression analyses revealed widespread dysregulation of oligodendrocyte-associated markers, with significant myelin reduction and decreased mature oligodendrocyte density in the corpus callosum. ER stress was evidenced in both white matter and motor cortex, as indicated by altered expression of UPR-related genes and increased phosphorylated (p)IRE1+ neurons. Retinal morphology was compromised in PAC1−/− animals, with reduced overall retinal and ganglion cell layer thickness. Notably, no gross morphological or molecular abnormalities were detected in the spinal cord regarding myelin content or MBP expression; however, synaptic marker expression was selectively reduced in the ventral horn of PAC1-deficient mice. Together, these findings highlight a critical role for PAC1 in oligodendrocyte maturation, retinal development, and synaptogenesis, providing new insights with relevance in multiple sclerosis and other neurodevelopmental and neurodegenerative conditions. Full article
Show Figures

Figure 1

25 pages, 3777 KB  
Review
Metabolic Reprogramming Through Polyphenol Networks: A Systems Approach to Metabolic Inflammation and Insulin Resistance
by Shakila Jahan Shimu, Jawad Ul Karim Mahir, Fardin Al Fahad Shakib, Arafath Amin Ridoy, Ratin Al Samir, Nadia Jahan, Md Fahim Hasan, Sadman Sazzad, Shamima Akter, Mohammad Sarif Mohiuddin, Md Jalal Ahmed Shawon, Mohammad Hossain Shariare, Mohammad Mohabbulla Mohib and Mohammad Borhan Uddin
Med. Sci. 2025, 13(3), 180; https://doi.org/10.3390/medsci13030180 - 5 Sep 2025
Cited by 2 | Viewed by 4546
Abstract
Obesity-induced insulin resistance and type 2 diabetes mellitus (T2DM) represent complex systemic disorders marked by chronic inflammation, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. These pathophysiological processes disrupt insulin signaling and β-cell function, leading to impaired glucose homeostasis across multiple organs. [...] Read more.
Obesity-induced insulin resistance and type 2 diabetes mellitus (T2DM) represent complex systemic disorders marked by chronic inflammation, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. These pathophysiological processes disrupt insulin signaling and β-cell function, leading to impaired glucose homeostasis across multiple organs. Conventional therapies often target isolated pathways, overlooking the intricate molecular crosstalk and organelle-level disturbances driving disease progression. Citrus-derived polyphenols—including hesperidin, naringenin, nobiletin, and tangeretin—have emerged as promising agents capable of orchestrating a multi-targeted “metabolic reprogramming.” These compounds modulate key signaling pathways, including AMPK, PI3K/Akt, NF-κB, and Nrf2, thereby enhancing insulin sensitivity, reducing pro-inflammatory cytokine expression, and restoring redox balance. Furthermore, they improve mitochondrial biogenesis, stabilize membrane potential, and alleviate ER stress by modulating the unfolded protein response (UPR), thus supporting cellular energy homeostasis and protein folding capacity. Evidence from preclinical studies and select clinical trials suggests that citrus polyphenols can significantly improve glycemic control, reduce oxidative and inflammatory markers, and preserve β-cell function. Their pleiotropic actions across molecular and organ-level targets position them as integrative metabolic modulators. This review presents a systems-level synthesis of how citrus polyphenols rewire metabolic signaling networks and organelle resilience, offering a holistic therapeutic strategy to mitigate the root causes of obesity-induced insulin resistance. Full article
(This article belongs to the Section Endocrinology and Metabolic Diseases)
Show Figures

Figure 1

23 pages, 17844 KB  
Article
Evaluation of Surface Properties in Biosilica-Reinforced Biobased Polyester Nanocomposites
by Hifa Salah Adeen Embirsh, Ivana O. Mladenović, Vesna Radojević, Aleksandar Marinković and Marija M. Vuksanović
Appl. Sci. 2025, 15(17), 9244; https://doi.org/10.3390/app15179244 - 22 Aug 2025
Viewed by 3715
Abstract
This study investigates the surface properties of bio-based unsaturated polyester resin (b-UPR) nanocomposites reinforced with biosilica nanoparticles derived from rice husk. The b-UPR matrix was synthesized from recycled polyethylene terephthalate (PET) and renewable monomers, providing a sustainable alternative to conventional polyester resins. Unmodified [...] Read more.
This study investigates the surface properties of bio-based unsaturated polyester resin (b-UPR) nanocomposites reinforced with biosilica nanoparticles derived from rice husk. The b-UPR matrix was synthesized from recycled polyethylene terephthalate (PET) and renewable monomers, providing a sustainable alternative to conventional polyester resins. Unmodified and modified biosilica particles with silanes: (3-trimethoxysilylpropyl methacrylate—MEMO, trimethoxyvinylsilane—VYNIL, and 3-aminopropyltrimethoxysilane with biodiesel—AMBD) were incorporated in different amounts to evaluate their influence on the wettability, topography, and viscoelastic behavior of the composites. Contact angle measurements revealed that the addition of modified biosilica significantly improved the hydrophobicity of the b-UPR surface. The greatest increase in the wetting angle, amounting to 79.9% compared to composites with unmodified silica, was observed in the composites containing 5 wt.% SiO2-AMBD. Atomic force microscopy (AFM) analysis indicated enhanced surface roughness and uniform dispersion of the nanoparticles. For the composite containing 1 wt.% of silica particles, the surface roughness increased by 25.5% with the AMBD modification and by 84.2% with the MEMO modification, compared to the unmodified system. Creep testing demonstrated that the reinforced nanocomposites exhibited improved dimensional stability under sustained load compared to the neat resin. These findings confirm that the integration of surface-modified biosilica not only enhances the mechanical properties but also optimizes the surface characteristics of bio-based polyester composites, broadening their potential for high-performance and sustainable applications. Full article
Show Figures

Figure 1

44 pages, 1023 KB  
Review
Systemic Neurodegeneration and Brain Aging: Multi-Omics Disintegration, Proteostatic Collapse, and Network Failure Across the CNS
by Victor Voicu, Corneliu Toader, Matei Șerban, Răzvan-Adrian Covache-Busuioc and Alexandru Vlad Ciurea
Biomedicines 2025, 13(8), 2025; https://doi.org/10.3390/biomedicines13082025 - 20 Aug 2025
Cited by 20 | Viewed by 6410
Abstract
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) [...] Read more.
Neurodegeneration is increasingly recognized not as a linear trajectory of protein accumulation, but as a multidimensional collapse of biological organization—spanning intracellular signaling, transcriptional identity, proteostatic integrity, organelle communication, and network-level computation. This review intends to synthesize emerging frameworks that reposition neurodegenerative diseases (ND) as progressive breakdowns of interpretive cellular logic, rather than mere terminal consequences of protein aggregation or synaptic attrition. The discussion aims to provide a detailed mapping of how critical signaling pathways—including PI3K–AKT–mTOR, MAPK, Wnt/β-catenin, and integrated stress response cascades—undergo spatial and temporal disintegration. Special attention is directed toward the roles of RNA-binding proteins (e.g., TDP-43, FUS, ELAVL2), m6A epitranscriptomic modifiers (METTL3, YTHDF1, IGF2BP1), and non-canonical post-translational modifications (SUMOylation, crotonylation) in disrupting translation fidelity, proteostasis, and subcellular targeting. At the organelle level, the review seeks to highlight how the failure of ribosome-associated quality control (RQC), autophagosome–lysosome fusion machinery (STX17, SNAP29), and mitochondrial import/export systems (TIM/TOM complexes) generates cumulative stress and impairs neuronal triage. These dysfunctions are compounded by mitochondrial protease overload (LONP1, CLPP), UPR maladaptation, and phase-transitioned stress granules that sequester nucleocytoplasmic transport proteins and ribosomal subunits, especially in ALS and FTD contexts. Synaptic disassembly is treated not only as a downstream event, but as an early tipping point, driven by impaired PSD scaffolding, aberrant endosomal recycling (Rab5, Rab11), complement-mediated pruning (C1q/C3–CR3 axis), and excitatory–inhibitory imbalance linked to parvalbumin interneuron decay. Using insights from single-cell and spatial transcriptomics, the review illustrates how regional vulnerability to proteostatic and metabolic stress converges with signaling noise to produce entropic attractor collapse within core networks such as the DMN, SN, and FPCN. By framing neurodegeneration as an active loss of cellular and network “meaning-making”—a collapse of coordinated signal interpretation, triage prioritization, and adaptive response—the review aims to support a more integrative conceptual model. In this context, therapeutic direction may shift from damage containment toward restoring high-dimensional neuronal agency, via strategies that include the following elements: reprogrammable proteome-targeting agents (e.g., PROTACs), engineered autophagy adaptors, CRISPR-based BDNF enhancers, mitochondrial gatekeeping stabilizers, and glial-exosome neuroengineering. This synthesis intends to offer a translational scaffold for viewing neurodegeneration as not only a disorder of accumulation but as a systems-level failure of cellular reasoning—a perspective that may inform future efforts in resilience-based intervention and precision neurorestoration. Full article
(This article belongs to the Special Issue Cell Signaling and Molecular Regulation in Neurodegenerative Disease)
Show Figures

Figure 1

23 pages, 2161 KB  
Review
Recent Advances in Engineering the Unfolded Protein Response in Recombinant Chinese Hamster Ovary Cell Lines
by Dyllan Rives, Tara Richbourg, Sierra Gurtler, Julia Martone and Mark A. Blenner
Int. J. Mol. Sci. 2025, 26(15), 7189; https://doi.org/10.3390/ijms26157189 - 25 Jul 2025
Cited by 1 | Viewed by 3400
Abstract
Chinese hamster ovary (CHO) cells are the most common protein production platform for glycosylated biopharmaceuticals due to their relatively efficient secretion systems, post-translational modification (PTM) machinery, and quality control mechanisms. However, high productivity and titer demands can overburden these processes. In particular, the [...] Read more.
Chinese hamster ovary (CHO) cells are the most common protein production platform for glycosylated biopharmaceuticals due to their relatively efficient secretion systems, post-translational modification (PTM) machinery, and quality control mechanisms. However, high productivity and titer demands can overburden these processes. In particular, the endoplasmic reticulum (ER) can become overwhelmed with misfolded proteins, triggering the unfolded protein response (UPR) as evidence of ER stress. The UPR increases the expression of multiple genes/proteins, which are beneficial to protein folding and secretion. However, if the stressed ER cannot return to a state of homeostasis, a prolonged UPR results in apoptosis. Because ER stress poses a substantial bottleneck for secreting protein therapeutics, CHO cells are both selected for and engineered to improve high-quality protein production through optimized UPR and ER stress management. This is vital for optimizing industrial CHO cell fermentation. This review begins with an overview of common ER-stress related markers. Next, the optimal UPR profile of high-producing CHO cells is discussed followed by the context-dependency of a UPR profile for any given recombinant CHO cell line. Recent efforts to control and engineer ER stress-related responses in CHO cell lines through the use of various bioprocess operations and activation/inhibition strategies are elucidated. Finally, this review concludes with a discussion on future directions for engineering the CHO cell UPR. Full article
(This article belongs to the Special Issue New Insights into the Molecular Mechanisms of the UPR and Cell Stress)
Show Figures

Figure 1

35 pages, 1216 KB  
Review
Modulation of Endoplasmic Reticulum Stress in Experimental Anti-Cancer Therapy
by Natalia Ivanovna Agalakova
Int. J. Mol. Sci. 2025, 26(13), 6407; https://doi.org/10.3390/ijms26136407 - 3 Jul 2025
Cited by 4 | Viewed by 3927
Abstract
The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an [...] Read more.
The growth of tumor cells is accompanied by an increased rate of endoplasmic reticulum stress (ERS), the accumulation of misfolded proteins, and the activation of a network of adaptive signaling pathways known as the unfolded protein response (UPR). Although the UPR is an adaptive reaction aiming to restore ER proteostasis, prolonged and severe ERS leads to cell death. Taking into account that the components of the ERS/UPR machinery in cancers of different types can be overexpressed or downregulated, both the induction of excessive ERS and suppression of UPR have been proposed as therapeutic strategies to sensitize cells to conventional chemotherapy. This narrative review presents a several examples of using natural and synthetic compounds that can either induce persistent ERS by selectively blocking ER Ca2+ pumps (SERCA) to disrupt ER Ca2+ homeostasis, or altering the activity of UPR chaperones and sensors (GRP78, PERK, IRE1α, and ATF6) to impair protein degradation signaling. The molecular alterations induced by miscellaneous inhibitors of ERS/UPR effectors are described as well. These agents showed promising therapeutic effects as a part of combination therapy in preclinical experimental settings; however, the number of clinical trials is still limited, while their results are inconsistent. Multiple side effects, high toxicity to normal cells, or poor bioavailability also hampers their clinical application. Since the pharmacological modulation of ERS/UPR is a valuable approach to sensitize cancer cells to standard chemotherapy, the search for more selective agents with better stability and low toxicity, as well as the development of more efficient delivery systems that can increase their therapeutic specificity, are highly required goals for future studies. Full article
Show Figures

Figure 1

13 pages, 1676 KB  
Article
The Anticancer Effect of Genistein Through Enhancing PERK Signaling and Suppressing the IRE1α-XBP1 Axis in Canine Mammary Gland Tumor Cells
by Ye-Ji Jang, Min-Jae Yoo, Hyuk Jang, Jun Song, Sang-Youel Park, Jawun Choi and Jae-Won Seol
Animals 2025, 15(12), 1717; https://doi.org/10.3390/ani15121717 - 10 Jun 2025
Cited by 1 | Viewed by 1130
Abstract
Genistein, a natural isoflavone, exerts anticancer effects on human breast cancer cells by modulating the unfolded protein response (UPR). However, the effect of genistein on UPR in canine mammary gland tumor (CMT) cells remains unknown. The aim of the present study was to [...] Read more.
Genistein, a natural isoflavone, exerts anticancer effects on human breast cancer cells by modulating the unfolded protein response (UPR). However, the effect of genistein on UPR in canine mammary gland tumor (CMT) cells remains unknown. The aim of the present study was to investigate the anticancer effects of genistein on CMT-U27 cells, focusing on the regulation of UPR-related pathways and the associated cell death mechanisms. CMT-U27 cells were treated with genistein. Cell viability, apoptosis, and UPR-related protein expression were analyzed using MTS assay, Annexin V-Propidium Iodide (PI) staining, Western blotting, and immunocytochemistry. Genistein treatment significantly reduced cell viability and induced apoptosis, accompanied by an increased Bcl-2-associated X (Bax) ratio of B-cell lymphoma-2 (Bcl-2) and cleaved caspase-8 and caspase-3. On regulation of the UPR system, genistein treatment showed a dual-function by enhancing the protein kinase R-like endoplasmic reticulum kinase (PERK) signaling while suppressing the inositol-requiring enzyme 1 alpha (IRE1α)–X-box-binding protein 1 (XBP1) axis. Furthermore, genistein downregulated estrogen receptor alpha (ERα), which may contribute to the inhibition of IRE1α signaling through a disrupted positive feedback loop. These findings suggested that genistein modulates the UPR to induce apoptosis in CMT-U27 cells, highlighting its potential as a therapeutic or adjuvant agent for CMTs. Full article
(This article belongs to the Section Companion Animals)
Show Figures

Figure 1

Back to TopTop