Mitochondrial Quality Control in Neurodegeneration and Cancer: A Common Denominator, Distinct Therapeutic Challenges
Abstract
1. Mitochondrial Homeostasis: From Physiological Function to Dysfunction
2. Cellular Mechanisms of Mitochondrial Quality Control
2.1. The Mitochondrial Unfolded Protein Response (mtUPR): Mechanisms and Regulation
2.2. Mitophagy: Mitochondria-Selective Autophagic Clearance
3. Disruption of Mitochondrial Quality Control in Neurodegeneration
3.1. Mitochondria as Central Players in Neuronal Vulnerability: Energy Providers or Sources of Oxidative Damage
3.2. mtUPR in Neurodegeneration: From Protective Signaling to Detrimental Outcomes
3.3. Mitophagy in Neurodegeneration: Maintaining Fidelity or Promoting Decline?
4. Mitochondrial Quality Control as a Determinant of Cancer Cell Survival and Proliferation
5. Does Mitochondrial Quality Control Breakdown Represent a Converging Mechanism in Neurodegenerative Diseases and Cancer?
Category | Neurodegeneration | Cancer | References |
---|---|---|---|
Mitochondrial damage mechanisms | |||
mtDNA integrity | High susceptibility to oxidative damage, deletions, and mutations impairing bioenergetics, leading to progressive neuronal dysfunction. | mtDNA instability fuels metabolic reprogramming, supporting aerobic glycolysis and tumorigenesis. | [156,157,158,159,160] |
Oxidative stress | Persistent ROS damages the respiratory chain, proteins, and mtDNA, triggering neuroinflammation and apoptosis. | Cancer cells tolerate higher ROS levels and use them as signaling mediators to sustain proliferation and angiogenesis. | [127,128,156,157,158] |
Mitochondria–nuclear crosstalk in DNA damage | |||
Mitochondrial dysfunction exacerbates nuclear DNA damage, promoting apoptosis in postmitotic neurons unable to re-enter the cell cycle. | Mitochondrial dysfunction promotes genomic instability that fuels proliferation and malignant transformation. | [163,164] | |
MQC pathways | |||
Mitophagy (PINK1/parkin, BNIP3, NIX, FUNDC1) | Loss-of-function mutations or impaired activity reduce the clearance of damaged mitochondria, exacerbating oxidative stress and neurodegeneration. | Often upregulated or rewired to adapt to hypoxia and nutrient stress, promoting tumor growth and therapeutic resistance. | [70,131,132,133,148,149,150,151,152,153,154,161] |
mtUPR (ATF5, HSP60, HSP70, SIRT3 axis) | It can be neuroprotective when transiently activated, but chronic activation induces neuronal death. | Frequently upregulated, enhances survival, proliferation, metastasis, and therapy resistance. | [5,75,103,104,105,106,107,108,162] |
Proteostasis (Lonp1, ClpP, chaperones) | Insufficient clearance of damaged proteins contributes to proteotoxic stress and neuronal loss. | Overactivation sustains tumor metabolism and survival; ClpP inhibition reduces cancer cell viability. | [108,109,110,111,112,113,114,115,116,117,118] |
Mitochondrial dynamics (fusion/fission: mitofusin 1 and 2 (Mfn1/2), mitochondrial Dynamin-like GTPase OPA1 (OPA1), Dynamin-related protein 1 (Drp1) | Imbalanced dynamics impair mitochondrial distribution and synaptic function. | Dysregulated dynamics favor metabolic reprogramming, proliferation, and metastasis. | [4,9,115] |
Biogenesis (PGC-1α, NRF1, mitochondrial transcription factor A (TFAM)) | Impaired induction leads to reduced mitochondrial renewal and energy deficiency. | Often hijacked to support rapid proliferation and metabolic plasticity. | [4,9,115] |
6. Targeting Mitochondrial Quality Control: Therapeutic Opportunities and Future Directions
7. Controversies, Limitations, and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
α-Syn | alpha-synuclein |
Aβ | amyloid beta |
AD | Alzheimer’s disease |
Akt | protein kinase B |
ALS | amyotrophic lateral sclerosis |
AMBRA1 | BECN1-regulated autophagy protein 1 |
AMPK | AMP-activated protein kinase |
APP | amyloid precursor protein |
ARIH1 | ariadne RBR E3 ubiquitin protein ligase 1 |
ATF4 | activating transcription factor 4 |
ATF5 | activating transcription factor 5 |
ATP5A1 | mitochondrial ATP synthase F(1) complex subunit alpha |
ATPs | adenosine triphosphates |
BNIP3 | BCL2 interacting protein 3 |
C/EBP | CCAAT/enhancer-binding protein |
CHOP | C/EBP homologous protein |
ClpP | caseinolytic protease P |
DELE1 | DAP3-binding cell death enhancer 1 |
DNM1L | Dynamin-1-like protein |
DRP1 | Dynamin-related protein 1 |
eIF2α | eukaryotic translation initiation factor 2A |
ER | endoplasmic reticulum |
Erα | estrogen receptor alpha |
Erk1/2 | extracellular signal-regulated kinases 1 and 2 |
ETC | electron transport chain |
FGF21 | fibroblast growth factor 21 |
FOXO3A | transcription factor forkhead box protein O3a |
FUNDC1 | fun14 domain-containing protein 1 |
GABARAP | GABA type A receptor-associated protein |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase |
GDF15 | Growth differentiation factor 15 |
GP78 | glycoprotein 78 |
HD | Huntington’s disease |
HIF-1 | hypoxia-inducible factor 1 |
HRI | Heme-regulated inhibitor kinase |
HSP10 | heat shock protein 10 |
HSP60 | heat shock protein 60 |
HSP70 | heat shock protein 70 |
HSP90 | heat shock protein 90 |
HTT | wild-type huntingtin |
IMS | intermembrane space |
iPSCs | induced pluripotent stem cells |
JNK | c-Jun N-terminal kinase |
KRAS | oncogenic GTPase KRas |
LC3B | light chain 3 beta |
LIR | LC3 interaction region |
Lonp1 | Lon peptidase 1 |
Lys6 | lysine 6 |
Lys11 | lysine 11 |
Lys48 | lysine 48 |
Lys63 | lysine 63 |
MAP1A/MAP1B LC3 | microtubule-associated protein 1A/1B-light chain 3 |
MAPKs | mitogen-activated protein kinases |
Mdivi-1 | mitochondrial division inhibitor 1 |
Mfn1 | mitofusin 1 |
Mfn1/2 | mitofusin 1/2 |
Mfn2 | mitofusin 2 |
mHTT | mutant huntingtin |
Mito-CP | mitochondria-targeted carboxy-proxyl |
Mito-metformin | mitochondrial targeting of metformin |
MQC | mitochondrial quality control |
MRPP3 | mitochondrial RNase P protein 3 |
MUL1 | mitochondrial E3 ubiquitin protein ligase 1 |
mPTP | mitochondrial permeability transition pore |
mRNA | messenger RNA |
mTOR | mammalian (mechanistic) target of rapamycin |
mtDNA | mitochondrial DNA |
mtUPR | mitochondrial unfolded protein response |
NAD+ | nicotinamide adenine dinucleotide, oxidized form |
NBR1 | neighbor of BRCA1 gene 1 |
NDP52 | calcium binding and coiled-coil domain 2 |
NIX | BNIP3-like protein X |
NMJs | neuromuscular junctions |
NMN | nicotinamide mononucleotide |
NR | nicotinamide riboside |
NRF1 | nuclear respiratory factor 1 |
OPTN | optineurin |
OPA1 | mitochondrial Dynamin-like GTPase OPA1 |
OXPHOS | mitochondrial oxidative phosphorylation |
p53 | cellular tumor antigen p53 |
p62/SQSTM1 | sequestosome 1 |
PD | Parkinson’s disease |
PGC-1α | peroxisome proliferator-activated receptor gamma coactivator 1-alpha |
PI3K | phosphoinositide-3-kinase |
Pin1 | peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 |
PINK1 | PTEN-induced putative kinase 1 |
polyQ | polyglutamine |
PPP | pentose phosphate pathway |
QC | quality control |
Rab9a | ras-related protein Rab-9A |
ROS | reactive oxygen species |
rRNA | Ribosomal RNA |
SIAH1 | siah E3 ubiquitin protein ligase 1 |
SMURF1 | SMAD-specific E3 ubiquitin protein ligase 1 |
SOD2 | superoxide dismutase 2 |
SIRT1 | sirtuin 1 |
SIRT3 | sirtuin 3 |
STING | stimulator interferon genes |
TAX1BP1 | calcium binding and coiled-coil domain 3 |
TBK1 | Tank-binding kinase 1 |
TDP-43 | TAR DNA-binding protein 43 |
TFAM | mitochondrial transcription factor A |
TIM | translocase of the inner membrane |
TIM23 | translocase of the inner membrane 23 |
TLR9 | toll-like receptor 9 |
TOM | translocase of the outer membrane |
TRAP1 | Tumor necrosis factor receptor-associated protein 1 |
tRNA | Transfer RNA |
Tyr18 | tyrosine 18 |
Ub | ubiquitin |
ULK1 | Unc-51-like kinase 1 |
UCHL-1 | ubiquitin C-terminal hydrolase L1 |
USP15 | ubiquitin-specific protease 15 |
USP30 | ubiquitin-specific protease 30 |
USP35 | ubiquitin-specific protease 35 |
USP8 | ubiquitin-specific protease 8 |
VCP | valosin-containing protein |
VDAC1 | voltage-dependent anion-selective channel 1 |
References
- Hong, W.-L.; Huang, H.; Zeng, X.; Duan, C.-Y. Targeting Mitochondrial Quality Control: New Therapeutic Strategies for Major Diseases. Mil. Med. Res. 2024, 11, 59. [Google Scholar] [CrossRef]
- Smyrnias, I. The Mitochondrial Unfolded Protein Response and Its Diverse Roles in Cellular Stress. Int. J. Biochem. Cell Biol. 2021, 133, 105934. [Google Scholar] [CrossRef]
- Ashton, T.M.; McKenna, W.G.; Kunz-Schughart, L.A.; Higgins, G.S. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clin. Cancer Res. 2018, 24, 2482–2490. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, J.; Li, X.; Qi, L.; Zheng, Z.; Kong, J.; Zhang, G.; Guo, Y. Mitochondria at the Crossroads: Quality Control Mechanisms in Neuronal Senescence and Neurodegeneration. Neurobiol. Dis. 2025, 208, 106862. [Google Scholar] [CrossRef]
- Kenny, T.C.; Germain, D. MtDNA, Metastasis, and the Mitochondrial Unfolded Protein Response (UPRmt). Front. Cell Dev. Biol. 2017, 5, 37. [Google Scholar] [CrossRef]
- Yuan, Y.; Ju, Y.S.; Kim, Y.; Li, J.; Wang, Y.; Yoon, C.J.; Yang, Y.; Martincorena, I.; Creighton, C.J.; Weinstein, J.N.; et al. Comprehensive Molecular Characterization of Mitochondrial Genomes in Human Cancers. Nat. Genet. 2020, 52, 342–352. [Google Scholar] [CrossRef]
- Song, J.; Herrmann, J.M.; Becker, T. Quality Control of the Mitochondrial Proteome. Nat. Rev. Mol. Cell Biol. 2021, 22, 54–70. [Google Scholar] [CrossRef]
- Torres, A.K.; Fleischhart, V.; Inestrosa, N.C. Mitochondrial Unfolded Protein Response (UPRmt): What We Know Thus Far. Front. Cell Dev. Biol. 2024, 12, 1405393. [Google Scholar] [CrossRef]
- Zhang, J.; Qiao, W.; Luo, Y. Mitochondrial Quality Control Proteases and Their Modulation for Cancer Therapy. Med. Res. Rev. 2023, 43, 399–436. [Google Scholar] [CrossRef]
- Hertweck, K.L.; Dasgupta, S. The Landscape of MtDNA Modifications in Cancer: A Tale of Two Cities. Front. Oncol. 2017, 7, 262. [Google Scholar] [CrossRef]
- Rath, S.; Sharma, R.; Gupta, R.; Ast, T.; Chan, C.; Durham, T.J.; Goodman, R.P.; Grabarek, Z.; Haas, M.E.; Hung, W.H.W.; et al. MitoCarta3.0: An Updated Mitochondrial Proteome Now with Sub-Organelle Localization and Pathway Annotations. Nucleic Acids Res. 2021, 49, D1541–D1547. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Zhou, H.; Ji, W.; Min, W. Mitochondrial Redox Signaling and Tumor Progression. Cancers 2016, 8, 40. [Google Scholar] [CrossRef]
- Cilleros-Holgado, P.; Gómez-Fernández, D.; Piñero-Pérez, R.; Romero-Domínguez, J.M.; Reche-López, D.; López-Cabrera, A.; Álvarez-Córdoba, M.; Munuera-Cabeza, M.; Talaverón-Rey, M.; Suárez-Carrillo, A.; et al. Mitochondrial Quality Control via Mitochondrial Unfolded Protein Response (MtUPR) in Ageing and Neurodegenerative Diseases. Biomolecules 2023, 13, 1789. [Google Scholar] [CrossRef]
- Wang, B.; Chen, W.; Huang, Q.; Chen, Y.; Wang, Y. Targeting Cancer Mitochondria by Inducing an Abnormal Mitochondrial Unfolded Protein Response Leads to Tumor Suppression. Int. J. Med. Sci. 2024, 21, 1204–1212. [Google Scholar] [CrossRef]
- Ejma, M.; Madetko, N.; Brzecka, A.; Guranski, K.; Alster, P.; Misiuk-Hojło, M.; Somasundaram, S.G.; Kirkland, C.E.; Aliev, G. The Links between Parkinson’s Disease and Cancer. Biomedicines 2020, 8, 416. [Google Scholar] [CrossRef]
- Basak, B.; Holzbaur, E.L.F. Mitophagy in Neurons: Mechanisms Regulating Mitochondrial Turnover and Neuronal Homeostasis. J. Mol. Biol. 2025, 437, 169161. [Google Scholar] [CrossRef]
- Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing Mitochondrial Proteins: Machineries and Mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]
- Xia, J.; Jin, J.; Dai, S.; Fan, H.; Chen, K.; Li, J.; Luo, F.; Peng, X. Mitophagy: A Key Regulator of Radiotherapy Resistance in the Tumor Immune Microenvironment. Mol. Asp. Med. 2025, 105, 101385. [Google Scholar] [CrossRef]
- Jain, N.; Chacinska, A.; Rehling, P. Understanding Mitochondrial Protein Import: A Revised Model of the Presequence Translocase. Trends Biochem. Sci. 2025, 50, 585–595. [Google Scholar] [CrossRef]
- Münch, C. The Different Axes of the Mammalian Mitochondrial Unfolded Protein Response. BMC Biol. 2018, 16, 81. [Google Scholar] [CrossRef]
- Kim, Y.E.; Hipp, M.S.; Bracher, A.; Hayer-Hartl, M.; Ulrich Hartl, F. Molecular Chaperone Functions in Protein Folding and Proteostasis. Annu. Rev. Biochem. 2013, 82, 323–355. [Google Scholar] [CrossRef]
- Okamoto, T.; Yamamoto, H.; Kudo, I.; Matsumoto, K.; Odaka, M.; Grave, E.; Itoh, H. HSP60 Possesses a GTPase Activity and Mediates Protein Folding with HSP10. Sci. Rep. 2017, 7, 16931. [Google Scholar] [CrossRef]
- Walter, S.; Buchner, J. Molecular Chaperones—Cellular Machines for Protein Folding. Angew. Chem. Int. Ed. 2002, 41, 1098–1113. [Google Scholar] [CrossRef]
- Song, H.Y.; Dunbar, J.D.; Zhang, Y.X.; Guo, D.; Donner, D.B. Identification of a Protein with Homology to Hsp90 That Binds the Type 1 Tumor Necrosis Factor Receptor. J. Biol. Chem. 1995, 270, 3574–3581. [Google Scholar] [CrossRef]
- Gesualdi, N.M.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor Necrosis Factor-Associated Protein 1 (TRAP-1) Protects Cells from Oxidative Stress and Apoptosis. Stress 2007, 10, 342–350. [Google Scholar] [CrossRef]
- Webb, C.T.; Gorman, M.A.; Lazarou, M.; Ryan, M.T.; Gulbis, J.M. Crystal Structure of the Mitochondrial Chaperone TIM9•10 Reveals a Six-Bladed α-Propeller. Mol. Cell 2006, 21, 123–133. [Google Scholar] [CrossRef]
- Haroon, S.; Vermulst, M. Linking Mitochondrial Dynamics to Mitochondrial Protein Quality Control. Curr. Opin. Genet. Dev. 2016, 38, 68–74. [Google Scholar] [CrossRef]
- Naresh, N.U.; Haynes, C.M. Signaling and Regulation of the Mitochondrial Unfolded Protein Response. Cold Spring Harb. Perspect. Biol. 2019, 11, a033944. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Haynes, C.M.; Pellegrino, M.W. The Mitochondrial Unfolded Protein Response: Signaling from the Powerhouse. J. Biol. Chem. 2017, 292, 13500–13506. [Google Scholar] [CrossRef]
- Haynes, C.M.; Ron, D. The Mitochondrial UPR—Protecting Organelle Protein Homeostasis. J. Cell Sci. 2010, 123, 3849–3855. [Google Scholar] [CrossRef]
- Shpilka, T.; Du, Y.; Yang, Q.; Melber, A.; Uma Naresh, N.; Lavelle, J.; Kim, S.; Liu, P.; Weidberg, H.; Li, R.; et al. UPRmt Scales Mitochondrial Network Expansion with Protein Synthesis via Mitochondrial Import in Caenorhabditis Elegans. Nat. Commun. 2021, 12, 479. [Google Scholar] [CrossRef]
- Rolland, S.G.; Schneid, S.; Schwarz, M.; Rackles, E.; Fischer, C.; Haeussler, S.; Regmi, S.G.; Yeroslaviz, A.; Habermann, B.; Mokranjac, D.; et al. Compromised Mitochondrial Protein Import Acts as a Signal for UPRmt. Cell Rep. 2019, 28, 1659–1669.e5. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Tian, Y.; Gao, J.; Zhou, B.; Zhou, X.; Chang, X.; Zhou, H. Enhancement of Mitochondrial Homeostasis: A Novel Approach to Attenuate Hypoxic Myocardial Injury. Int. J. Med. Sci. 2024, 21, 2897–2911. [Google Scholar] [CrossRef]
- Münch, C.; Harper, J.W. Mitochondrial Unfolded Protein Response Controls Matrix Pre-RNA Processing and Translation. Nature 2016, 534, 710–713. [Google Scholar] [CrossRef]
- Papa, L.; Germain, D. Estrogen Receptor Mediates a Distinct Mitochondrial Unfolded Protein Response. J. Cell Sci. 2011, 124, 1396–1402. [Google Scholar] [CrossRef]
- Skorko-Glonek, J.; Zurawa-Janicka, D.; Koper, T.; Jarzab, M.; Figaj, D.; Glaza, P.; Lipinska, B. HtrA Protease Family as Therapeutic Targets. Curr. Pharm. Des. 2012, 19, 977–1009. [Google Scholar] [CrossRef]
- Zhang, J.; Xiang, H.; Liu, J.; Chen, Y.; He, R.-R.; Liu, B. Mitochondrial Sirtuin 3: New Emerging Biological Function and Therapeutic Target. Theranostics 2020, 10, 8315–8342. [Google Scholar] [CrossRef]
- Tseng, A.H.H.; Shieh, S.-S.; Wang, D.L. SIRT3 Deacetylates FOXO3 to Protect Mitochondria against Oxidative Damage. Free Radic. Biol. Med. 2013, 63, 222–234. [Google Scholar] [CrossRef]
- Lin, Y.-F.; Schulz, A.M.; Pellegrino, M.W.; Lu, Y.; Shaham, S.; Haynes, C.M. Maintenance and Propagation of a Deleterious Mitochondrial Genome by the Mitochondrial Unfolded Protein Response. Nature 2016, 533, 416–419. [Google Scholar] [CrossRef]
- Kim, I.; Rodriguez-Enriquez, S.; Lemasters, J.J. Selective Degradation of Mitochondria by Mitophagy. Arch. Biochem. Biophys. 2007, 462, 245–253. [Google Scholar] [CrossRef]
- Lemasters, J.J. Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging. Rejuvenation Res. 2005, 8, 3–5. [Google Scholar] [CrossRef]
- Palikaras, K.; Lionaki, E.; Tavernarakis, N. Mechanisms of Mitophagy in Cellular Homeostasis, Physiology and Pathology. Nat. Cell Biol. 2018, 20, 1013–1022. [Google Scholar] [CrossRef]
- Palikaras, K.; Princz, A.; Tavernarakis, N. Mitophagy Modulators. In Encyclopedia of Biomedical Gerontology; Reference Module in Biomedical Sciences; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar] [CrossRef]
- Gersch, M.; Gladkova, C.; Schubert, A.F.; Michel, M.A.; Maslen, S.; Komander, D. Mechanism and Regulation of the Lys6-Selective Deubiquitinase USP30. Nat. Struct. Mol. Biol. 2017, 24, 920–930. [Google Scholar] [CrossRef]
- Bingol, B.; Sheng, M. Mechanisms of Mitophagy: PINK1, Parkin, USP30 and Beyond. Free Radic. Biol. Med. 2016, 100, 210–222. [Google Scholar] [CrossRef]
- Durcan, T.M.; Tang, M.Y.; Pérusse, J.R.; Dashti, E.A.; Aguileta, M.A.; McLelland, G.; Gros, P.; Shaler, T.A.; Faubert, D.; Coulombe, B.; et al. USP8 Regulates Mitophagy by Removing K6-linked Ubiquitin Conjugates from Parkin. EMBO J. 2014, 33, 2473–2491. [Google Scholar] [CrossRef]
- Bingol, B.; Tea, J.S.; Phu, L.; Reichelt, M.; Bakalarski, C.E.; Song, Q.; Foreman, O.; Kirkpatrick, D.S.; Sheng, M. The Mitochondrial Deubiquitinase USP30 Opposes Parkin-Mediated Mitophagy. Nature 2014, 510, 370–375. [Google Scholar] [CrossRef]
- Villa, E.; Marchetti, S.; Ricci, J.-E. No Parkin Zone: Mitophagy without Parkin. Trends Cell Biol. 2018, 28, 882–895. [Google Scholar] [CrossRef]
- Onishi, M.; Yamano, K.; Sato, M.; Matsuda, N.; Okamoto, K. Molecular Mechanisms and Physiological Functions of Mitophagy. EMBO J. 2021, 40, e104705. [Google Scholar] [CrossRef]
- Wang, X.-L.; Feng, S.-T.; Wang, Z.-Z.; Chen, N.-H.; Zhang, Y. Role of Mitophagy in Mitochondrial Quality Control: Mechanisms and Potential Implications for Neurodegenerative Diseases. Pharmacol. Res. 2021, 165, 105433. [Google Scholar] [CrossRef]
- Zheng, X.; Boyer, L.; Jin, M.; Mertens, J.; Kim, Y.; Ma, L.; Ma, L.; Hamm, M.; Gage, F.H.; Hunter, T. Metabolic Reprogramming during Neuronal Differentiation from Aerobic Glycolysis to Neuronal Oxidative Phosphorylation. eLife 2016, 5, e13374. [Google Scholar] [CrossRef]
- Bolaños, J.P.; Almeida, A. The Pentose-phosphate Pathway in Neuronal Survival against Nitrosative Stress. IUBMB Life 2010, 62, 14–18. [Google Scholar] [CrossRef]
- Quintana, D.D.; Garcia, J.A.; Anantula, Y.; Rellick, S.L.; Engler-Chiurazzi, E.B.; Sarkar, S.N.; Brown, C.M.; Simpkins, J.W. Amyloid-β Causes Mitochondrial Dysfunction via a Ca2+-Driven Upregulation of Oxidative Phosphorylation and Superoxide Production in Cerebrovascular Endothelial Cells. J. Alzheimer’s Dis. 2020, 75, 119–138. [Google Scholar] [CrossRef]
- Keeney, P.M.; Xie, J.; Capaldi, R.A.; Bennett, J.P. Parkinson’s Disease Brain Mitochondrial Complex I Has Oxidatively Damaged Subunits and Is Functionally Impaired and Misassembled. J. Neurosci. 2006, 26, 5256–5264. [Google Scholar] [CrossRef] [PubMed]
- Lill, C.M. Genetics of Parkinson’s Disease. Mol. Cell Probes 2016, 30, 386–396, Erratum in Mol. Cell Probes 2020, 52, 101537. [Google Scholar] [CrossRef]
- Wilkaniec, A.; Strosznajder, J.B.; Adamczyk, A. Toxicity of Extracellular Secreted Alpha-Synuclein: Its Role in Nitrosative Stress and Neurodegeneration. Neurochem. Int. 2013, 62, 776–783, Erratum in Neurochem. Int. 2013, 62, 1079. [Google Scholar] [CrossRef]
- Ganjam, G.K.; Bolte, K.; Matschke, L.A.; Neitemeier, S.; Dolga, A.M.; Höllerhage, M.; Höglinger, G.U.; Adamczyk, A.; Decher, N.; Oertel, W.H.; et al. Mitochondrial Damage by α-Synuclein Causes Cell Death in Human Dopaminergic Neurons. Cell Death Dis. 2019, 10, 865. [Google Scholar] [CrossRef]
- Pozo Devoto, V.M.; Dimopoulos, N.; Alloatti, M.; Pardi, M.B.; Saez, T.M.; Otero, M.G.; Cromberg, L.E.; Marín-Burgin, A.; Scassa, M.E.; Stokin, G.B.; et al. ASynuclein Control of Mitochondrial Homeostasis in Human-Derived Neurons Is Disrupted by Mutations Associated with Parkinson’s Disease. Sci. Rep. 2017, 7, 5042. [Google Scholar] [CrossRef]
- Wilkaniec, A.; Cieślik, M.; Murawska, E.; Babiec, L.; Gąssowska-Dobrowolska, M.; Pałasz, E.; Jęśko, H.; Adamczyk, A. P2X7 Receptor Is Involved in Mitochondrial Dysfunction Induced by Extracellular Alpha Synuclein in Neuroblastoma SH-SY5Y Cells. Int. J. Mol. Sci. 2020, 21, 3959. [Google Scholar] [CrossRef]
- Joshi, D.C.; Chavan, M.B.; Gurow, K.; Gupta, M.; Dhaliwal, J.S.; Ming, L.C. The Role of Mitochondrial Dysfunction in Huntington’s Disease: Implications for Therapeutic Targeting. Biomed. Pharmacother. 2025, 183, 117827. [Google Scholar] [CrossRef]
- Bossy-Wetzel, E.; Petrilli, A.; Knott, A.B. Mutant Huntingtin and Mitochondrial Dysfunction. Trends Neurosci. 2008, 31, 609–616. [Google Scholar] [CrossRef]
- Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.; Serre, V.; Moore, D.G.; et al. A Mitochondrial Origin for Frontotemporal Dementia and Amyotrophic Lateral Sclerosis through CHCHD10 Involvement. Brain 2014, 137, 2329–2345. [Google Scholar] [CrossRef]
- Genin, E.C.; Plutino, M.; Bannwarth, S.; Villa, E.; Cisneros-Barroso, E.; Roy, M.; Ortega-Vila, B.; Fragaki, K.; Lespinasse, F.; Pinero-Martos, E.; et al. CHCHD10 Mutations Promote Loss of Mitochondrial Cristae Junctions with Impaired Mitochondrial Genome Maintenance and Inhibition of Apoptosis. EMBO Mol. Med. 2016, 8, 58–72. [Google Scholar] [CrossRef]
- Brown, C.A.; Lally, C.; Kupelian, V.; Flanders, W.D. Estimated Prevalence and Incidence of Amyotrophic Lateral Sclerosis and SOD1 and C9orf72 Genetic Variants. Neuroepidemiology 2021, 55, 342–353. [Google Scholar] [CrossRef]
- Choi, S.Y.; Lopez-Gonzalez, R.; Krishnan, G.; Phillips, H.L.; Li, A.N.; Seeley, W.W.; Yao, W.-D.; Almeida, S.; Gao, F.-B. C9ORF72-ALS/FTD-Associated Poly(GR) Binds Atp5a1 and Compromises Mitochondrial Function In Vivo. Nat. Neurosci. 2019, 22, 851–862. [Google Scholar] [CrossRef]
- Jordan, J.; de Groot, P.W.J.; Galindo, M.F. Mitochondria: The Headquarters in Ischemia-Induced Neuronal Death. Cent. Nerv. Syst. Agents Med. Chem. 2011, 11, 98–106. [Google Scholar] [CrossRef]
- Tao, G.; Liao, W.; Hou, J.; Jiang, X.; Deng, X.; Chen, G.; Ding, C. Advances in Crosstalk among Innate Immune Pathways Activated by Mitochondrial DNA. Heliyon 2024, 10, e24029. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, R.; Xu, Z.; Ke, Y.; Sun, R.; Yang, H.; Zhang, X.; Zhen, X.; Zheng, L.-T. Early Glycolytic Reprogramming Controls Microglial Inflammatory Activation. J. Neuroinflamm. 2021, 18, 129. [Google Scholar] [CrossRef]
- Ji, T.; Zhang, X.; Xin, Z.; Xu, B.; Jin, Z.; Wu, J.; Hu, W.; Yang, Y. Does Perturbation in the Mitochondrial Protein Folding Pave the Way for Neurodegeneration Diseases? Ageing Res. Rev. 2020, 57, 100997. [Google Scholar] [CrossRef]
- Beck, J.S.; Mufson, E.J.; Counts, S.E. Evidence for Mitochondrial UPR Gene Activation in Familial and Sporadic Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 13, 610–614. [Google Scholar] [CrossRef]
- Counts, S.E.; Kelly, S.C.; Weinberg, R.B.; Beck, J.S. [P2–179]: Mitochondrial Unfolded Protein Response (mtUPR) Dysfunction During the Progression of Alzheimer’s Disease. Alzheimer’s Dement. 2017, 13, P674–P675. [Google Scholar] [CrossRef]
- Wang, W.; Ma, X.; Bhatta, S.; Shao, C.; Zhao, F.; Fujioka, H.; Torres, S.; Wu, F.; Zhu, X. Intraneuronal β-Amyloid Impaired Mitochondrial Proteostasis through the Impact on LONP1. Proc. Natl. Acad. Sci. USA 2023, 120, e2316823120. [Google Scholar] [CrossRef] [PubMed]
- de Castro, I.P.; Martins, L.M.; Loh, S.H.Y. Mitochondrial Quality Control and Parkinson’s Disease: A Pathway Unfolds. Mol. Neurobiol. 2011, 43, 80–86. [Google Scholar] [CrossRef]
- Pimenta de Castro, I.; Costa, A.C.; Lam, D.; Tufi, R.; Fedele, V.; Moisoi, N.; Dinsdale, D.; Deas, E.; Loh, S.H.Y.; Martins, L.M. Genetic Analysis of Mitochondrial Protein Misfolding in Drosophila Melanogaster. Cell Death Differ. 2012, 19, 1308–1316. [Google Scholar] [CrossRef]
- Martinez, B.A.; Petersen, D.A.; Gaeta, A.L.; Stanley, S.P.; Caldwell, G.A.; Caldwell, K.A. Dysregulation of the Mitochondrial Unfolded Protein Response Induces Non-Apoptotic Dopaminergic Neurodegeneration in C. elegans Models of Parkinson’s Disease. J. Neurosci. 2017, 37, 11085–11100. [Google Scholar] [CrossRef]
- Almeida, L.M.; Oliveira, Â.; Oliveira, J.M.A.; Pinho, B.R. Stress Response Mechanisms in Protein Misfolding Diseases: Profiling a Cellular Model of Huntington’s Disease. Arch. Biochem. Biophys. 2023, 745, 109711. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, F.; Liu, C.; Jin, B.; Jiang, Y.; Tang, M.; Qi, X.; Guo, X. Mutant Huntingtin Inhibits the Mitochondrial Unfolded Protein Response by Impairing ABCB10 MRNA Stability. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2019, 1865, 1428–1435. [Google Scholar] [CrossRef]
- Wang, P.; Deng, J.; Dong, J.; Liu, J.; Bigio, E.H.; Mesulam, M.; Wang, T.; Sun, L.; Wang, L.; Lee, A.Y.-L.; et al. TDP-43 Induces Mitochondrial Damage and Activates the Mitochondrial Unfolded Protein Response. PLoS Genet. 2019, 15, e1007947. [Google Scholar] [CrossRef]
- Narendra, D.; Tanaka, A.; Suen, D.-F.; Youle, R.J. Parkin Is Recruited Selectively to Impaired Mitochondria and Promotes Their Autophagy. J. Cell Biol. 2008, 183, 795–803. [Google Scholar] [CrossRef]
- Burman, J.L.; Yu, S.; Poole, A.C.; Decal, R.B.; Pallanck, L. Analysis of Neural Subtypes Reveals Selective Mitochondrial Dysfunction in Dopaminergic Neurons from Parkin Mutants. Proc. Natl. Acad. Sci. USA 2012, 109, 10438–10443. [Google Scholar] [CrossRef]
- Choubey, V.; Safiulina, D.; Vaarmann, A.; Cagalinec, M.; Wareski, P.; Kuum, M.; Zharkovsky, A.; Kaasik, A. Mutant A53T α-Synuclein Induces Neuronal Death by Increasing Mitochondrial Autophagy. J. Biol. Chem. 2011, 286, 10814–10824. [Google Scholar] [CrossRef]
- Chinta, S.J.; Mallajosyula, J.K.; Rane, A.; Andersen, J.K. Mitochondrial Alpha-Synuclein Accumulation Impairs Complex I Function in Dopaminergic Neurons and Results in Increased Mitophagy In Vivo. Neurosci. Lett. 2010, 486, 235–239. [Google Scholar] [CrossRef]
- Shaltouki, A.; Hsieh, C.-H.; Kim, M.J.; Wang, X. Alpha-Synuclein Delays Mitophagy and Targeting Miro Rescues Neuron Loss in Parkinson’s Models. Acta Neuropathol. 2018, 136, 607–620. [Google Scholar] [CrossRef]
- Wilkaniec, A.; Lenkiewicz, A.M.; Czapski, G.A.; Jęśko, H.M.; Hilgier, W.; Brodzik, R.; Gąssowska-Dobrowolska, M.; Culmsee, C.; Adamczyk, A. Extracellular Alpha-Synuclein Oligomers Induce Parkin S-Nitrosylation: Relevance to Sporadic Parkinson’s Disease Etiopathology. Mol. Neurobiol. 2019, 56, 125–140. [Google Scholar] [CrossRef]
- Wilkaniec, A.; Lenkiewicz, A.M.; Babiec, L.; Murawska, E.; Jęśko, H.M.; Cieślik, M.; Culmsee, C.; Adamczyk, A. Exogenous Alpha-Synuclein Evoked Parkin Downregulation Promotes Mitochondrial Dysfunction in Neuronal Cells. Implic. Park. Dis. Pathology. Front. Aging Neurosci. 2021, 13, 591475. [Google Scholar] [CrossRef]
- Fang, E.F.; Hou, Y.; Palikaras, K.; Adriaanse, B.A.; Kerr, J.S.; Yang, B.; Lautrup, S.; Hasan-Olive, M.M.; Caponio, D.; Dan, X.; et al. Mitophagy Inhibits Amyloid-β and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer’s Disease. Nat. Neurosci. 2019, 22, 401–412. [Google Scholar] [CrossRef]
- Moreira, P.I.; Siedlak, S.L.; Wang, X.; Santos, M.S.; Oliveira, C.R.; Tabaton, M.; Nunomura, A.; Szweda, L.I.; Aliev, G.; Smith, M.A.; et al. Increased Autophagic Degradation of Mitochondria in Alzheimer Disease. Autophagy 2007, 3, 614–615. [Google Scholar] [CrossRef]
- Martín-Maestro, P.; Gargini, R.; Perry, G.; Avila, J.; García-Escudero, V. PARK2 Enhancement Is Able to Compensate Mitophagy Alterations Found in Sporadic Alzheimer’s Disease. Hum. Mol. Genet. 2016, 25, 792–806. [Google Scholar] [CrossRef]
- Ye, X.; Sun, X.; Starovoytov, V.; Cai, Q. Parkin-Mediated Mitophagy in Mutant HAPP Neurons and Alzheimer’s Disease Patient Brains. Hum. Mol. Genet. 2015, 24, 2938–2951. [Google Scholar] [CrossRef]
- Tammineni, P.; Jeong, Y.Y.; Feng, T.; Aikal, D.; Cai, Q. Impaired Axonal Retrograde Trafficking of the Retromer Complex Augments Lysosomal Deficits in Alzheimer’s Disease Neurons. Hum. Mol. Genet. 2017, 26, 4352–4366. [Google Scholar] [CrossRef]
- Corsetti, V.; Florenzano, F.; Atlante, A.; Bobba, A.; Ciotti, M.T.; Natale, F.; Della Valle, F.; Borreca, A.; Manca, A.; Meli, G.; et al. NH2-Truncated Human Tau Induces Deregulated Mitophagy in Neurons by Aberrant Recruitment of Parkin and UCHL-1: Implications in Alzheimer’s Disease. Hum. Mol. Genet. 2015, 24, 3058–3081. [Google Scholar] [CrossRef]
- Cummins, N.; Tweedie, A.; Zuryn, S.; Bertran-Gonzalez, J.; Götz, J. Disease-associated Tau Impairs Mitophagy by Inhibiting Parkin Translocation to Mitochondria. EMBO J. 2019, 38, e99360. [Google Scholar] [CrossRef]
- Tak, Y.J.; Park, J.-H.; Rhim, H.; Kang, S. ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin. Int. J. Mol. Sci. 2020, 21, 7525. [Google Scholar] [CrossRef]
- Rogers, R.S.; Tungtur, S.; Tanaka, T.; Nadeau, L.L.; Badawi, Y.; Wang, H.; Ni, H.-M.; Ding, W.-X.; Nishimune, H. Impaired Mitophagy Plays a Role in Denervation of Neuromuscular Junctions in ALS Mice. Front. Neurosci. 2017, 11, 473. [Google Scholar] [CrossRef]
- de Calbiac, H.; Renault, S.; Haouy, G.; Jung, V.; Roger, K.; Zhou, Q.; Campanari, M.-L.; Chentout, L.; Demy, D.L.; Marian, A.; et al. Poly-GP Accumulation Due to C9orf72 Loss of Function Induces Motor Neuron Apoptosis through Autophagy and Mitophagy Defects. Autophagy 2024, 20, 2164–2185. [Google Scholar] [CrossRef]
- Perera, N.D.; Sheean, R.K.; Lau, C.L.; Shin, Y.S.; Beart, P.M.; Horne, M.K.; Turner, B.J. Rilmenidine Promotes MTOR-Independent Autophagy in the Mutant SOD1 Mouse Model of Amyotrophic Lateral Sclerosis without Slowing Disease Progression. Autophagy 2018, 14, 534–551. [Google Scholar] [CrossRef]
- Franco-Iborra, S.; Plaza-Zabala, A.; Montpeyo, M.; Sebastian, D.; Vila, M.; Martinez-Vicente, M. Mutant HTT (Huntingtin) Impairs Mitophagy in a Cellular Model of Huntington Disease. Autophagy 2021, 17, 672–689. [Google Scholar] [CrossRef]
- Hwang, S.; Disatnik, M.; Mochly-Rosen, D. Impaired GAPDH-induced Mitophagy Contributes to the Pathology of Huntington’s Disease. EMBO Mol. Med. 2015, 7, 1307–1326. [Google Scholar] [CrossRef]
- Guo, X.; Sun, X.; Hu, D.; Wang, Y.-J.; Fujioka, H.; Vyas, R.; Chakrapani, S.; Joshi, A.U.; Luo, Y.; Mochly-Rosen, D.; et al. VCP Recruitment to Mitochondria Causes Mitophagy Impairment and Neurodegeneration in Models of Huntington’s Disease. Nat. Commun. 2016, 7, 12646. [Google Scholar] [CrossRef]
- Choi, W.; Fattah, M.; Shang, Y.; Thompson, M.P.; Carrow, K.P.; Hu, D.; Liu, Z.; Avram, M.J.; Bailey, K.; Berger, O.; et al. Proteomimetic Polymer Blocks Mitochondrial Damage, Rescues Huntington’s Neurons, and Slows Onset of Neuropathology in Vivo. Sci. Adv. 2024, 10, eado8307. [Google Scholar] [CrossRef]
- Khalil, B.; El Fissi, N.; Aouane, A.; Cabirol-Pol, M.-J.; Rival, T.; Liévens, J.-C. PINK1-Induced Mitophagy Promotes Neuroprotection in Huntington’s Disease. Cell Death Dis. 2015, 6, e1617. [Google Scholar] [CrossRef] [PubMed]
- Beatriz, M.; Vilaça, R.; Anjo, S.I.; Manadas, B.; Januário, C.; Rego, A.C.; Lopes, C. Defective Mitochondria-lysosomal Axis Enhances the Release of Extracellular Vesicles Containing Mitochondrial DNA and Proteins in Huntington’s Disease. J. Extracell. Biol. 2022, 1, e65. [Google Scholar] [CrossRef]
- Kenny, T.C.; Craig, A.J.; Villanueva, A.; Germain, D. Mitohormesis Primes Tumor Invasion and Metastasis. Cell Rep. 2019, 27, 2292–2303.e6. [Google Scholar] [CrossRef]
- Zimmers, T.A.; Jin, X.; Gutierrez, J.C.; Acosta, C.; McKillop, I.H.; Pierce, R.H.; Koniaris, L.G. Effect of in Vivo Loss of GDF-15 on Hepatocellular Carcinogenesis. J. Cancer Res. Clin. Oncol. 2008, 134, 753–759. [Google Scholar] [CrossRef]
- Lee, J.J.; van de Ven, R.A.H.; Zaganjor, E.; Ng, M.R.; Barakat, A.; Demmers, J.J.P.G.; Finley, L.W.S.; Gonzalez Herrera, K.N.; Hung, Y.P.; Harris, I.S.; et al. Inhibition of Epithelial Cell Migration and Src/FAK Signaling by SIRT3. Proc. Natl. Acad. Sci. USA 2018, 115, 7057–7062. [Google Scholar] [CrossRef]
- Huang, S.; Chen, X.; Zheng, J.; Huang, Y.; Song, L.; Yin, Y.; Xiong, J. Low SIRT3 Expression Contributes to Tumor Progression, Development and Poor Prognosis in Human Pancreatic Carcinoma. Pathol. Res. Pract. 2017, 213, 1419–1423. [Google Scholar] [CrossRef]
- Finley, L.W.S.; Carracedo, A.; Lee, J.; Souza, A.; Egia, A.; Zhang, J.; Teruya-Feldstein, J.; Moreira, P.I.; Cardoso, S.M.; Clish, C.B.; et al. SIRT3 Opposes Reprogramming of Cancer Cell Metabolism through HIF1α Destabilization. Cancer Cell 2011, 19, 416–428. [Google Scholar] [CrossRef]
- Castilla, C.; Congregado, B.; Conde, J.M.; Medina, R.; Torrubia, F.J.; Japón, M.A.; Sáez, C. Immunohistochemical Expression of Hsp60 Correlates with Tumor Progression and Hormone Resistance in Prostate Cancer. Urology 2010, 76, 1017.e1–1017.e6. [Google Scholar] [CrossRef]
- Hamelin, C.; Cornut, E.; Poirier, F.; Pons, S.; Beaulieu, C.; Charrier, J.; Haïdous, H.; Cotte, E.; Lambert, C.; Piard, F.; et al. Identification and Verification of Heat Shock Protein 60 as a Potential Serum Marker for Colorectal Cancer. FEBS J. 2011, 278, 4845–4859. [Google Scholar] [CrossRef]
- Na, Y.; Kaul, S.C.; Ryu, J.; Lee, J.-S.; Ahn, H.M.; Kaul, Z.; Kalra, R.S.; Li, L.; Widodo, N.; Yun, C.-O.; et al. Stress Chaperone Mortalin Contributes to Epithelial-to-Mesenchymal Transition and Cancer Metastasis. Cancer Res. 2016, 76, 2754–2765. [Google Scholar] [CrossRef]
- Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of Tumor Cell Mitochondrial Homeostasis by an Organelle-Specific Hsp90 Chaperone Network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef]
- Siegelin, M.D.; Dohi, T.; Raskett, C.M.; Orlowski, G.M.; Powers, C.M.; Gilbert, C.A.; Ross, A.H.; Plescia, J.; Altieri, D.C. Exploiting the Mitochondrial Unfolded Protein Response for Cancer Therapy in Mice and Human Cells. J. Clin. Investig. 2011, 121, 1349–1360. [Google Scholar] [CrossRef]
- Ghosh, J.C.; Dohi, T.; Kang, B.H.; Altieri, D.C. Hsp60 Regulation of Tumor Cell Apoptosis. J. Biol. Chem. 2008, 283, 5188–5194. [Google Scholar] [CrossRef]
- Pavlides, S.; Whitaker-Menezes, D.; Castello-Cros, R.; Flomenberg, N.; Witkiewicz, A.K.; Frank, P.G.; Casimiro, M.C.; Wang, C.; Fortina, P.; Addya, S.; et al. The Reverse Warburg Effect: Aerobic Glycolysis in Cancer Associated Fibroblasts and the Tumor Stroma. Cell Cycle 2009, 8, 3984–4001. [Google Scholar] [CrossRef]
- Gibellini, L.; Pinti, M.; Boraldi, F.; Giorgio, V.; Bernardi, P.; Bartolomeo, R.; Nasi, M.; De Biasi, S.; Missiroli, S.; Carnevale, G.; et al. Silencing of Mitochondrial Lon Protease Deeply Impairs Mitochondrial Proteome and Function in Colon Cancer Cells. FASEB J. 2014, 28, 5122–5135. [Google Scholar] [CrossRef]
- Di, K.; Lomeli, N.; Wood, S.D.; Vanderwal, C.D.; Bota, D.A. Mitochondrial Lon Is Over-Expressed in High-Grade Gliomas, and Mediates Hypoxic Adaptation: Potential Role of Lon as a Therapeutic Target in Glioma. Oncotarget 2016, 7, 77457–77467. [Google Scholar] [CrossRef]
- Seo, J.H.; Rivadeneira, D.B.; Caino, M.C.; Chae, Y.C.; Speicher, D.W.; Tang, H.-Y.; Vaira, V.; Bosari, S.; Palleschi, A.; Rampini, P.; et al. The Mitochondrial Unfoldase-Peptidase Complex ClpXP Controls Bioenergetics Stress and Metastasis. PLoS Biol. 2016, 14, e1002507. [Google Scholar] [CrossRef]
- Cole, A.; Wang, Z.; Coyaud, E.; Voisin, V.; Gronda, M.; Jitkova, Y.; Mattson, R.; Hurren, R.; Babovic, S.; Maclean, N.; et al. Inhibition of the Mitochondrial Protease ClpP as a Therapeutic Strategy for Human Acute Myeloid Leukemia. Cancer Cell 2015, 27, 864–876. [Google Scholar] [CrossRef]
- Monaco, S.E.; Angelastro, J.M.; Szabolcs, M.; Greene, L.A. The Transcription Factor ATF5 Is Widely Expressed in Carcinomas, and Interference with Its Function Selectively Kills Neoplastic, but Not Nontransformed, Breast Cell Lines. Int. J. Cancer 2007, 120, 1883–1890. [Google Scholar] [CrossRef]
- Chen, A.; Qian, D.; Wang, B.; Hu, M.; Lu, J.; Qi, Y.; Liu, D.X. ATF5 Is Overexpressed in Epithelial Ovarian Carcinomas and Interference with Its Function Increases Apoptosis Through the Downregulation of Bcl-2 in SKOV-3 Cells. Int. J. Gynecol. Pathol. 2012, 31, 532–537. [Google Scholar] [CrossRef]
- Li, G.; Xu, Y.; Guan, D.; Liu, Z.; Liu, D.X. HSP70 Protein Promotes Survival of C6 and U87 Glioma Cells by Inhibition of ATF5 Degradation. J. Biol. Chem. 2011, 286, 20251–20259. [Google Scholar] [CrossRef]
- Nukuda, A.; Endoh, H.; Yasuda, M.; Mizutani, T.; Kawabata, K.; Haga, H. Role of ATF5 in the Invasive Potential of Diverse Human Cancer Cell Lines. Biochem. Biophys. Res. Commun. 2016, 474, 509–514. [Google Scholar] [CrossRef]
- Hu, M.; Wang, B.; Qian, D.; Li, L.; Zhang, L.; Song, X.; Liu, D.X. Interference with ATF5 Function Enhances the Sensitivity of Human Pancreatic Cancer Cells to Paclitaxel-Induced Apoptosis. Anticancer Res. 2012, 32, 4385–4394. [Google Scholar]
- Yan, C.; Li, T. Dual Role of Mitophagy in Cancer Drug Resistance. Anticancer Res. 2018, 38, 617–621. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.-H.; Cao, Y.-T.; Zhang, L.-L.; Huang, F.; Yi, C. The Role of Mitochondrial Dynamics and Mitophagy in Carcinogenesis, Metastasis and Therapy. Front. Cell Dev. Biol. 2020, 8, 413. [Google Scholar] [CrossRef]
- Guo, W.; Sun, Y.; Liu, W.; Wu, X.; Guo, L.; Cai, P.; Wu, X.; Wu, X.; Shen, Y.; Shu, Y.; et al. Small Molecule-Driven Mitophagy-Mediated NLRP3 Inflammasome Inhibition Is Responsible for the Prevention of Colitis-Associated Cancer. Autophagy 2014, 10, 972–985. [Google Scholar] [CrossRef]
- Xu, H.-M.; Hu, F. The Role of Autophagy and Mitophagy in Cancers. Arch. Physiol. Biochem. 2022, 128, 281–289. [Google Scholar] [CrossRef]
- Chang, C.-H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.W.; et al. Metabolic Competition in the Tumor Microenvironment Is a Driver of Cancer Progression. Cell 2015, 162, 1229–1241. [Google Scholar] [CrossRef]
- Apel, A.; Herr, I.; Schwarz, H.; Rodemann, H.P.; Mayer, A. Blocked Autophagy Sensitizes Resistant Carcinoma Cells to Radiation Therapy. Cancer Res. 2008, 68, 1485–1494. [Google Scholar] [CrossRef]
- Zheng, R.; Yao, Q.; Xie, G.; Du, S.; Ren, C.; Wang, Y.; Yuan, Y. TAT-ODD-P53 Enhances the Radiosensitivity of Hypoxic Breast Cancer Cells by Inhibiting Parkin-Mediated Mitophagy. Oncotarget 2015, 6, 17417–17429. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; Guo, J.; Wang, L.; Liu, X. Ambra1 Induces Autophagy and Desensitizes Human Prostate Cancer Cells to Cisplatin. Biosci. Rep. 2019, 39, BSR20170770. [Google Scholar] [CrossRef]
- Hou, H.; Er, P.; Cheng, J.; Chen, X.; Ding, X.; Wang, Y.; Chen, X.; Yuan, Z.; Pang, Q.; Wang, P.; et al. High Expression of FUNDC1 Predicts Poor Prognostic Outcomes and Is a Promising Target to Improve Chemoradiotherapy Effects in Patients with Cervical Cancer. Cancer Med. 2017, 6, 1871–1881. [Google Scholar] [CrossRef] [PubMed]
- MacKeigan, J.P.; Murphy, L.O.; Blenis, J. Sensitized RNAi Screen of Human Kinases and Phosphatases Identifies New Regulators of Apoptosis and Chemoresistance. Nat. Cell Biol. 2005, 7, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Dany, M.; Gencer, S.; Nganga, R.; Thomas, R.J.; Oleinik, N.; Baron, K.D.; Szulc, Z.M.; Ruvolo, P.; Kornblau, S.; Andreeff, M.; et al. Targeting FLT3-ITD Signaling Mediates Ceramide-Dependent Mitophagy and Attenuates Drug Resistance in AML. Blood 2016, 128, 1944–1958. [Google Scholar] [CrossRef]
- Fujiwara, M.; Marusawa, H.; Wang, H.-Q.; Iwai, A.; Ikeuchi, K.; Imai, Y.; Kataoka, A.; Nukina, N.; Takahashi, R.; Chiba, T. Parkin as a Tumor Suppressor Gene for Hepatocellular Carcinoma. Oncogene 2008, 27, 6002–6011. [Google Scholar] [CrossRef]
- Matsuda, S. Functions and Characteristics of PINK1 and Parkin in Cancer. Front. Biosci. 2015, 20, 4321. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.G.; Maugeri, G.; Magro, G.; Salvatorelli, L.; Drago, F.; D’Agata, V. Expression Pattern of Parkin Isoforms in Lung Adenocarcinomas. Tumor Biol. 2015, 36, 5133–5141. [Google Scholar] [CrossRef]
- Tay, S.-P.; Yeo, C.W.S.; Chai, C.; Chua, P.-J.; Tan, H.-M.; Ang, A.X.Y.; Yip, D.L.H.; Sung, J.-X.; Tan, P.H.; Bay, B.-H.; et al. Parkin Enhances the Expression of Cyclin-Dependent Kinase 6 and Negatively Regulates the Proliferation of Breast Cancer Cells. J. Biol. Chem. 2010, 285, 29231–29238. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Magro, G.; Salvatorelli, L.; Barbagallo, G.M.V.; Saccone, S.; Drago, F.; Cavallaro, S.; D’Agata, V. Expression Profile of Parkin Isoforms in Human Gliomas. Int. J. Oncol. 2015, 47, 1282–1292. [Google Scholar] [CrossRef]
- Hu, H.-H.; Kannengiesser, C.; Lesage, S.; André, J.; Mourah, S.; Michel, L.; Descamps, V.; Basset-Seguin, N.; Bagot, M.; Bensussan, A.; et al. PARKIN Inactivation Links Parkinson’s Disease to Melanoma. J. Natl. Cancer Inst. 2016, 108, djv340. [Google Scholar] [CrossRef]
- Poulogiannis, G.; McIntyre, R.E.; Dimitriadi, M.; Apps, J.R.; Wilson, C.H.; Ichimura, K.; Luo, F.; Cantley, L.C.; Wyllie, A.H.; Adams, D.J.; et al. PARK2 Deletions Occur Frequently in Sporadic Colorectal Cancer and Accelerate Adenoma Development in Apc Mutant Mice. Proc. Natl. Acad. Sci. USA 2010, 107, 15145–15150. [Google Scholar] [CrossRef]
- Veeriah, S.; Taylor, B.S.; Meng, S.; Fang, F.; Yilmaz, E.; Vivanco, I.; Janakiraman, M.; Schultz, N.; Hanrahan, A.J.; Pao, W.; et al. Somatic Mutations of the Parkinson’s Disease–Associated Gene PARK2 in Glioblastoma and Other Human Malignancies. Nat. Genet. 2010, 42, 77–82. [Google Scholar] [CrossRef]
- Lee, Y.S.; Jung, Y.Y.; Park, M.H.; Yeo, I.J.; Im, H.S.; Nam, K.T.; Kim, H.D.; Kang, S.K.; Song, J.K.; Kim, Y.R.; et al. Deficiency of Parkin Suppresses Melanoma Tumor Development and Metastasis through Inhibition of MFN2 Ubiquitination. Cancer Lett. 2018, 433, 156–164. [Google Scholar] [CrossRef]
- Sun, X.; Liu, M.; Hao, J.; Li, D.; Luo, Y.; Wang, X.; Yang, Y.; Li, F.; Shui, W.; Chen, Q.; et al. Parkin Deficiency Contributes to Pancreatic Tumorigenesis by Inducing Spindle Multipolarity and Misorientation. Cell Cycle 2013, 12, 1133–1141. [Google Scholar] [CrossRef]
- Agnihotri, S.; Golbourn, B.; Huang, X.; Remke, M.; Younger, S.; Cairns, R.A.; Chalil, A.; Smith, C.A.; Krumholtz, S.-L.; Mackenzie, D.; et al. Correction: PINK1 Is a Negative Regulator of Growth and the Warburg Effect in Glioblastoma. Cancer Res. 2022, 82, 4695, Erratum for Cancer Res. 2016, 76, 4708–4719. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, Z.; Lu, S.; Wang, L.; Liu, A.; Liu, X. Silencing of PINK1 Represses Cell Growth, Migration and Induces Apoptosis of Lung Cancer Cells. Biomed. Pharmacother. 2018, 106, 333–341. [Google Scholar] [CrossRef]
- Yamashita, K.; Miyata, H.; Makino, T.; Masuike, Y.; Furukawa, H.; Tanaka, K.; Miyazaki, Y.; Takahashi, T.; Kurokawa, Y.; Yamasaki, M.; et al. High Expression of the Mitophagy-Related Protein Pink1 Is Associated with a Poor Response to Chemotherapy and a Poor Prognosis for Patients Treated with Neoadjuvant Chemotherapy for Esophageal Squamous Cell Carcinoma. Ann. Surg. Oncol. 2017, 24, 4025–4032. [Google Scholar] [CrossRef]
- Chourasia, A.H.; Tracy, K.; Frankenberger, C.; Boland, M.L.; Sharifi, M.N.; Drake, L.E.; Sachleben, J.R.; Asara, J.M.; Locasale, J.W.; Karczmar, G.S.; et al. Mitophagy Defects Arising from BNip3 Loss Promote Mammary Tumor Progression to Metastasis. EMBO Rep. 2015, 16, 1145–1163. [Google Scholar] [CrossRef] [PubMed]
- Erkan, M.; Kleeff, J.; Esposito, I.; Giese, T.; Ketterer, K.; Büchler, M.W.; Giese, N.A.; Friess, H. Loss of BNIP3 Expression Is a Late Event in Pancreatic Cancer Contributing to Chemoresistance and Worsened Prognosis. Oncogene 2005, 24, 4421–4432. [Google Scholar] [CrossRef] [PubMed]
- Okami, J.; Simeone, D.M.; Logsdon, C.D. Silencing of the Hypoxia-Inducible Cell Death Protein BNIP3 in Pancreatic Cancer. Cancer Res. 2004, 64, 5338–5346. [Google Scholar] [CrossRef] [PubMed]
- Chourasia, A.H.; Boland, M.L.; Macleod, K.F. Mitophagy and Cancer. Cancer Metab. 2015, 3, 4. [Google Scholar] [CrossRef]
- Sowter, H.M.; Ferguson, M.; Pym, C.; Watson, P.; Fox, S.B.; Han, C.; Harris, A.L. Expression of the Cell Death Genes BNip3 and NIX in Ductal Carcinoma in Situ of the Breast; Correlation of BNip3 Levels with Necrosis and Grade. J. Pathol. 2003, 201, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Humpton, T.J.; Alagesan, B.; DeNicola, G.M.; Lu, D.; Yordanov, G.N.; Leonhardt, C.S.; Yao, M.A.; Alagesan, P.; Zaatari, M.N.; Park, Y.; et al. Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discov. 2019, 9, 1268–1287. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, Y.; Siraj, S.; Jin, H.; Fan, Y.; Yang, X.; Huang, X.; Wang, X.; Wang, J.; Liu, L.; et al. FUN14 Domain-Containing 1–Mediated Mitophagy Suppresses Hepatocarcinogenesis by Inhibition of Inflammasome Activation in Mice. Hepatology 2019, 69, 604–621. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Fan, Y.; Cao, P.; Tan, K. Insight into the Mitochondrial Unfolded Protein Response and Cancer: Opportunities and Challenges. Cell Biosci. 2022, 12, 18. [Google Scholar] [CrossRef]
- Macdonald, R.; Barnes, K.; Hastings, C.; Mortiboys, H. Mitochondrial Abnormalities in Parkinson’s Disease and Alzheimer’s Disease: Can. Mitochondria Be Targeted Therapeutically? Biochem. Soc. Trans. 2018, 46, 891–909. [Google Scholar] [CrossRef]
- Houck, A.L.; Seddighi, S.; Driver, J.A. At the Crossroads Between Neurodegeneration and Cancer: A Review of Overlapping Biology and Its Implications. Curr. Aging Sci. 2019, 11, 77–89. [Google Scholar] [CrossRef]
- Swerdlow, R.H. Mitochondria and Mitochondrial Cascades in Alzheimer’s Disease. J. Alzheimer’s Dis. 2018, 62, 1403–1416. [Google Scholar] [CrossRef]
- Urra, F.A.; Muñoz, F.; Lovy, A.; Cárdenas, C. The Mitochondrial Complex(I)Ty of Cancer. Front. Oncol. 2017, 7, 118. [Google Scholar] [CrossRef]
- Warburg, O. On the Origin of Cancer Cells. Science (1979) 1956, 123, 309–314. [Google Scholar] [CrossRef]
- O’Callaghan, B.; Hardy, J.; Plun-Favreau, H. PINK1: From Parkinson’s Disease to Mitophagy and Back Again. PLoS Biol. 2023, 21, e3002196. [Google Scholar] [CrossRef]
- Sorrentino, V.; Romani, M.; Mouchiroud, L.; Beck, J.S.; Zhang, H.; D’Amico, D.; Moullan, N.; Potenza, F.; Schmid, A.W.; Rietsch, S.; et al. Enhancing Mitochondrial Proteostasis Reduces Amyloid-β Proteotoxicity. Nature 2017, 552, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Driver, J.A. Inverse Association between Cancer and Neurodegenerative Disease: Review of the Epidemiologic and Biological Evidence. Biogerontology 2014, 15, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Brasnjevic, I.; Hof, P.R.; Steinbusch, H.W.M.; Schmitz, C. Accumulation of Nuclear DNA Damage or Neuron Loss: Molecular Basis for a New Approach to Understanding Selective Neuronal Vulnerability in Neurodegenerative Diseases. DNA Repair 2008, 7, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Cuadrado-Tejedor, M.; Vilariño, M.; Cabodevilla, F.; Del Río, J.; Frechilla, D.; Pérez-Mediavilla, A. Enhanced Expression of the Voltage-Dependent Anion Channel 1 (VDAC1) in Alzheimer’s Disease Transgenic Mice: An Insight into the Pathogenic Effects of Amyloid-β. J. Alzheimer’s Dis. 2011, 23, 195–206. [Google Scholar] [CrossRef]
- Magrì, A.; Reina, S.; De Pinto, V. VDAC1 as Pharmacological Target in Cancer and Neurodegeneration: Focus on Its Role in Apoptosis. Front. Chem. 2018, 6, 108. [Google Scholar] [CrossRef]
- Driver, J.A.; Logroscino, G.; Buring, J.E.; Gaziano, J.M.; Kurth, T. A Prospective Cohort Study of Cancer Incidence Following the Diagnosis of Parkinson’s Disease. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1260–1265. [Google Scholar] [CrossRef]
- Meek, D.W. Regulation of the P53 Response and Its Relationship to Cancer. Biochem. J. 2015, 469, 325–346. [Google Scholar] [CrossRef]
- Chang, J.R.; Ghafouri, M.; Mukerjee, R.; Bagashev, A.; Chabrashvili, T.; Sawaya, B.E. Role of P53 in Neurodegenerative Diseases. Neurodegener. Dis. 2012, 9, 68–80. [Google Scholar] [CrossRef]
- Driver, J.A.; Lu, K.P. Pin1: A New Genetic Link between Alzheimers Disease, Cancer and Aging. Curr. Aging Sci. 2010, 3, 158–165. [Google Scholar] [CrossRef]
- Gupta, V.K.; Scheunemann, L.; Eisenberg, T.; Mertel, S.; Bhukel, A.; Koemans, T.S.; Kramer, J.M.; Liu, K.S.Y.; Schroeder, S.; Stunnenberg, H.G.; et al. Restoring Polyamines Protects from Age-Induced Memory Impairment in an Autophagy-Dependent Manner. Nat. Neurosci. 2013, 16, 1453–1460. [Google Scholar] [CrossRef]
- Madeo, F.; Eisenberg, T.; Pietrocola, F.; Kroemer, G. Spermidine in Health and Disease. Science (1979) 2018, 359, eaan2788. [Google Scholar] [CrossRef] [PubMed]
- Gong, B.; Pan, Y.; Vempati, P.; Zhao, W.; Knable, L.; Ho, L.; Wang, J.; Sastre, M.; Ono, K.; Sauve, A.A.; et al. Nicotinamide Riboside Restores Cognition through an Upregulation of Proliferator-Activated Receptor-γ Coactivator 1α Regulated β-Secretase 1 Degradation and Mitochondrial Gene Expression in Alzheimer’s Mouse Models. Neurobiol. Aging 2013, 34, 1581–1588. [Google Scholar] [CrossRef]
- Hou, Y.; Lautrup, S.; Cordonnier, S.; Wang, Y.; Croteau, D.L.; Zavala, E.; Zhang, Y.; Moritoh, K.; O’Connell, J.F.; Baptiste, B.A.; et al. NAD+ Supplementation Normalizes Key Alzheimer’s Features and DNA Damage Responses in a New AD Mouse Model with Introduced DNA Repair Deficiency. Proc. Natl. Acad. Sci. USA 2018, 115, E1876–E1885. [Google Scholar] [CrossRef]
- Schöndorf, D.C.; Ivanyuk, D.; Baden, P.; Sanchez-Martinez, A.; De Cicco, S.; Yu, C.; Giunta, I.; Schwarz, L.K.; Di Napoli, G.; Panagiotakopoulou, V.; et al. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in IPSC and Fly Models of Parkinson’s Disease. Cell Rep. 2018, 23, 2976–2988. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Mattson, M.P. Dietary Restriction and 2-Deoxyglucose Administration Improve Behavioral Outcome and Reduce Degeneration of Dopaminergic Neurons in Models of Parkinson’s Disease. J. Neurosci. Res. 1999, 57, 195–206. [Google Scholar] [CrossRef]
- Andrews, Z.B.; Diano, S.; Horvath, T.L. Mitochondrial Uncoupling Proteins in the Cns: In Support of Function and Survival. Nat. Rev. Neurosci. 2005, 6, 829–840. [Google Scholar] [CrossRef]
- Howell, J.J.; Hellberg, K.; Turner, M.; Talbott, G.; Kolar, M.J.; Ross, D.S.; Hoxhaj, G.; Saghatelian, A.; Shaw, R.J.; Manning, B.D. Metformin Inhibits Hepatic MTORC1 Signaling via Dose-Dependent Mechanisms Involving AMPK and the TSC Complex. Cell Metab. 2017, 25, 463–471. [Google Scholar] [CrossRef]
- Zheng, W.; Li, K.; Zhong, M.; Wu, K.; Zhou, L.; Huang, J.; Liu, L.; Chen, Z. Mitophagy Activation by Rapamycin Enhances Mitochondrial Function and Cognition in 5×FAD Mice. Behav. Brain Res. 2024, 463, 114889. [Google Scholar] [CrossRef]
- Song, Y.; Lee, W.; Lee, Y.; Kang, E.; Cha, B.-S.; Lee, B.-W. Metformin Restores Parkin-Mediated Mitophagy, Suppressed by Cytosolic P53. Int. J. Mol. Sci. 2016, 17, 122. [Google Scholar] [CrossRef]
- Kocak, M.; Ezazi Erdi, S.; Jorba, G.; Maestro, I.; Farrés, J.; Kirkin, V.; Martinez, A.; Pless, O. Targeting Autophagy in Disease: Established and New Strategies. Autophagy 2022, 18, 473–495. [Google Scholar] [CrossRef]
- Antico, O.; Thompson, P.W.; Hertz, N.T.; Muqit, M.M.K.; Parton, L.E. Targeting Mitophagy in Neurodegenerative Diseases. Nat. Rev. Drug Discov. 2025, 24, 276–299. [Google Scholar] [CrossRef]
- Lonskaya, I.; Hebron, M.L.; Desforges, N.M.; Schachter, J.B.; Moussa, C.E.-H. Nilotinib-Induced Autophagic Changes Increase Endogenous Parkin Level and Ubiquitination, Leading to Amyloid Clearance. J. Mol. Med. 2014, 92, 373–386. [Google Scholar] [CrossRef]
- Fowler, A.; Torres-Yhagi, Y.; Pagan, F.; Hebron, M.; Willmarth, B.; Arellano, J.; Howard, H.; Matar, S.; Chiu, T.; Ahn, J.; et al. 4564 Nilotinib Alters MicroRNAs That Regulate Specific Autophagy and Ubiquitination Genes in the Cerebrospinal Fluid of Parkinson’s Patients. J. Clin. Transl. Sci. 2020, 4, 99. [Google Scholar] [CrossRef]
- Hebron, M.L.; Lonskaya, I.; Moussa, C.E.-H. Nilotinib Reverses Loss of Dopamine Neurons and Improves Motor Behavior via Autophagic Degradation of -Synuclein in Parkinson’s Disease Models. Hum. Mol. Genet. 2013, 22, 3315–3328. [Google Scholar] [CrossRef] [PubMed]
- La Barbera, L.; Vedele, F.; Nobili, A.; Krashia, P.; Spoleti, E.; Latagliata, E.C.; Cutuli, D.; Cauzzi, E.; Marino, R.; Viscomi, M.T.; et al. Nilotinib Restores Memory Function by Preventing Dopaminergic Neuron Degeneration in a Mouse Model of Alzheimer’s Disease. Prog. Neurobiol. 2021, 202, 102031. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhang, X. Targeting Cellular Mitophagy as a Strategy for Human Cancers. Front. Cell Dev. Biol. 2024, 12, 1431968. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Liu, L.; Li, Y.; Gao, J. Melatonin Increases Human Cervical Cancer HeLa Cells Apoptosis Induced by Cisplatin via Inhibition of JNK/Parkin/Mitophagy Axis. In Vitro Cell Dev. Biol. Anim. 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Ma, M.; Lin, X.; Liu, H.; Zhang, R.; Chen, R. Suppression of DRP1-mediated Mitophagy Increases the Apoptosis of Hepatocellular Carcinoma Cells in the Setting of Chemotherapy. Oncol. Rep. 2020, 43, 1010–1018. [Google Scholar] [CrossRef]
- Zhou, J.; Li, G.; Zheng, Y.; Shen, H.-M.; Hu, X.; Ming, Q.-L.; Huang, C.; Li, P.; Gao, N. A Novel Autophagy/Mitophagy Inhibitor Liensinine Sensitizes Breast Cancer Cells to Chemotherapy through DNM1L-Mediated Mitochondrial Fission. Autophagy 2015, 11, 1259–1279. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, H.-N.; Wang, K.; Zhang, L.; Huang, Z.; Liu, J.; Zhang, Z.; Luo, M.; Lei, Y.; Peng, Y.; et al. Ketoconazole Exacerbates Mitophagy to Induce Apoptosis by Downregulating Cyclooxygenase-2 in Hepatocellular Carcinoma. J. Hepatol. 2019, 70, 66–77, Erratum in J. Hepatol. 2025, 82, 154. [Google Scholar] [CrossRef]
- Boyle, K.A.; Van Wickle, J.; Hill, R.B.; Marchese, A.; Kalyanaraman, B.; Dwinell, M.B. Mitochondria-Targeted Drugs Stimulate Mitophagy and Abrogate Colon Cancer Cell Proliferation. J. Biol. Chem. 2018, 293, 14891–14904. [Google Scholar] [CrossRef]
- Yin, O.Q.P.; Wang, Y.; Schran, H. A Mechanism-Based Population Pharmacokinetic Model for Characterizing Time-Dependent Pharmacokinetics of Midostaurin and Its Metabolites in Human Subjects. Clin. Pharmacokinet. 2008, 47, 807–816. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Z.; Bunker, E.; Ramirez, A.; Lee, S.; Peng, Y.; Tan, A.-C.; Eckhardt, S.G.; Chapnick, D.A.; Liu, X. Sorafenib Targets the Mitochondrial Electron Transport Chain Complexes and ATP Synthase to Activate the PINK1–Parkin Pathway and Modulate Cellular Drug Response. J. Biol. Chem. 2017, 292, 15105–15120. [Google Scholar] [CrossRef]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Yu, L.; Wang, C.; Pan, F.; Liu, Y.; Ren, X.; Zeng, H.; Shi, Y. HePTP Promotes Migration and Invasion in Triple-Negative Breast Cancer Cells via Activation of Wnt/β-Catenin Signaling. Biomed. Pharmacother. 2019, 118, 109361. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.; Li, J.; Kros, J.M. Breakthroughs in Modern Cancer Therapy and Elusive Cardiotoxicity: Critical Research-practice Gaps, Challenges, and Insights. Med. Res. Rev. 2018, 38, 325–376. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhang, T.; Lee, T.H. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020, 10, 1158. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.-J.; Xu, D.-P.; Li, H.-B. Melatonin for the Prevention and Treatment of Cancer. Oncotarget 2017, 8, 39896–39921. [Google Scholar] [CrossRef] [PubMed]
- Verhoef, B.-E.; Maunsell, J.H. Attention Operates Uniformly throughout the Classical Receptive Field and the Surround. eLife 2016, 5, e17256. [Google Scholar] [CrossRef]
- Bouadi, O.; Tay, T.L. More Than Cell Markers: Understanding Heterogeneous Glial Responses to Implantable Neural Devices. Front. Cell Neurosci. 2021, 15, 658992. [Google Scholar] [CrossRef]
- Andreux, P.A.; Blanco-Bose, W.; Ryu, D.; Burdet, F.; Ibberson, M.; Aebischer, P.; Auwerx, J.; Singh, A.; Rinsch, C. The Mitophagy Activator Urolithin A Is Safe and Induces a Molecular Signature of Improved Mitochondrial and Cellular Health in Humans. Nat. Metab. 2019, 1, 595–603. [Google Scholar] [CrossRef]
- Riley, R.T.; Torres, O.; Showker, J.L.; Zitomer, N.C.; Matute, J.; Voss, K.A.; Gelineau-van Waes, J.; Maddox, J.R.; Gregory, S.G.; Ashley-Koch, A.E. The Kinetics of Urinary Fumonisin B1 Excretion in Humans Consuming Maize-based Diets. Mol. Nutr. Food Res. 2012, 56, 1445–1455. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, A.R.; Chow, H.-H.S.; Martinez, J.A. Effects of Resveratrol on Drug- and Carcinogen-Metabolizing Enzymes, Implications for Cancer Prevention. Pharmacol. Res. Perspect. 2017, 5, e00294. [Google Scholar] [CrossRef] [PubMed]
- London, C.A.; Malpas, P.B.; Wood-Follis, S.L.; Boucher, J.F.; Rusk, A.W.; Rosenberg, M.P.; Henry, C.J.; Mitchener, K.L.; Klein, M.K.; Hintermeister, J.G.; et al. Multi-Center, Placebo-Controlled, Double-Blind, Randomized Study of Oral Toceranib Phosphate (SU11654), a Receptor Tyrosine Kinase Inhibitor, for the Treatment of Dogs with Recurrent (Either Local or Distant) Mast Cell Tumor Following Surgical Excision. Clin. Cancer Res. 2009, 15, 3856–3865. [Google Scholar] [CrossRef] [PubMed]
- Zlotorynski, E. Quad-Jumping. Nat. Rev. Mol. Cell Biol. 2016, 17, 2–3. [Google Scholar] [CrossRef]
- Du, Y.; Zhu, Y.-J.; Zhou, Y.-X.; Ding, J.; Liu, J.-Y. Metformin in Therapeutic Applications in Human Diseases: Its Mechanism of Action and Clinical Study. Mol. Biomed. 2022, 3, 41. [Google Scholar] [CrossRef]
- Gao, F.; Xu, T.; Zang, F.; Luo, Y.; Pan, D. Cardiotoxicity of Anticancer Drugs: Molecular Mechanisms, Clinical Management and Innovative Treatment. Drug Des. Devel Ther. 2024, 18, 4089–4116. [Google Scholar] [CrossRef]
- Martens, C.R.; Denman, B.A.; Mazzo, M.R.; Armstrong, M.L.; Reisdorph, N.; McQueen, M.B.; Chonchol, M.; Seals, D.R. Chronic Nicotinamide Riboside Supplementation Is Well-Tolerated and Elevates NAD+ in Healthy Middle-Aged and Older Adults. Nat. Commun. 2018, 9, 1286. [Google Scholar] [CrossRef]
- Conze, D.; Crespo-Barreto, J.; Kruger, C. Safety Assessment of Nicotinamide Riboside, a Form of Vitamin B3. Hum. Exp. Toxicol. 2016, 35, 1149–1160. [Google Scholar] [CrossRef]
- Harron, D.W.G. Distinctive Features of Rilmenidine Possibly Related to Its Selectivity for Imidazoline Receptors. Am. J. Hypertens. 1992, 5, 91S–98S. [Google Scholar] [CrossRef]
- Li, M.-M.; Teng, J.; Wang, Y. Chronic Colchicine Poisoning with Neuromyopathy, Gastric Ulcers and Myelosuppression in a Gout Patient: A Case Report. World J. Clin. Cases 2021, 9, 11050–11055. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lee, Y.J.; Jeong, J.H.; Jung, J.; Lee, J.W.; Kim, H.J.; Ko, B.S.; Son, B.H.; Ahn, S.H.; Lee, Y.; et al. Risk of Endometrial Cancer and Frequencies of Invasive Endometrial Procedures in Young Breast Cancer Survivors Treated With Tamoxifen: A Nationwide Study. Front. Oncol. 2021, 11, 636378. [Google Scholar] [CrossRef] [PubMed]
Drug | Type of Disease | Mitophagy Inhibitor/Inducer | Direct Target | Mechanism in Therapeutics | Clinical Trial Status | Off-Target Effects/Side Effects |
---|---|---|---|---|---|---|
Ketoconazole | Cancer | Inducer | PINK1/parkin | Promotes apoptosis of liver cancer cells and induces the PINK1-parkin mitophagy pathway [191] | No | severe hepatotoxicity (FDA black box warning); adrenal insufficiency (inhibition of adrenal steroidogenesis); strong CYP3A4 inhibition → extensive drug–drug interactions [193] |
Sorafenib (BAY 43-9006) | Cancer | Inducer | PINK1 | Stabilizes PINK1 on the outer membrane of the mitochondria [194] | A Phase II Study of BAY 43-9006 (Sorafenib) in Metastatic, Androgen-Independent Prostate Cancer ClinicalTrials.gov ID NCT00090545 | hypertension, diarrhea, hand–foot skin reaction [195] |
Liensinine | Cancer | Inhibitor | Dynamin-1-like protein (DNM1L) | Suppresses the fusion of the autophagosome with the lysosome and the excessive accumulation of autophagosomes [190] | No | cardiotoxicity, antiarrhythmic effects at high doses [196,197] |
Melatonin | Cancer | Inhibitor | JNK/parkin | Enhances apoptosis of cells and lowers the level of parkin and c-Jun N-terminal kinase (JNK) [188] | Phase I Dose Finding Study for Melatonin in Pediatric Oncology Patients with Relapsed Solid Tumors ClinicalTrials.gov ID NCT01858155 | drowsiness, headache, endocrine disruption (rare) [198,199] |
Mdivi-1 | Cancer | Inhibitor | DRP1 | Inhibits DRP1-mediated mitophagy and enhances cisplatin-induced apoptosis | No | poor specificity, off-target inhibition of mitochondrial respiration [200,201] |
Urolithin A, actinonin, spermidine | Neurodegenerative disease | Inducer | PINK1/parkin | Activates PINK1/parkin- and NIX-dependent mitophagy [171] | No | gastrointestinal discomfort, interindividual variability [202] |
Resveratrol | Neurodegenerative disease | Inhibitor | PINK1/parkin | Weakens the overexpression of PINK1/parkin, inhibiting mitophagy and restoring mitochondrial homeostasis | No | poor bioavailability, drug interactions [203,204] |
Rapamycin | Neurodegenerative disease | Inducer | mTOR | Activates mitophagy and enhances lysosomal biogenesis and autophagosome formation [181] Activates mitophagy and its downstream PINK1-parkin pathway [197] | Multiple trials: HD (preclinical evidence), ALS (NCT03359538), AD (Phase II, NCT04629495) | immunosuppression, dyslipidemia, insulin resistance [205,206] |
Metformin | Neurodegenerative disease | Inducer | Complex I of ETC | Inhibits mTORC1 through AMPK and the TSC complex [196] Decreases ER stress and p53 expression, resulting in induction of parkin-mediated mitophagy [198] | Preventing Cognitive Decline with Metformin ClinicalTrials.gov ID NCT04511416 | gastrointestinal upset, lactic acidosis (rare) [207,208] |
Nicotinamide riboside | Neurodegenerative disease | Inducer | Sirtuins | Promotes mitophagy through sirtuin activation and enhancement of PI3K-Akt and MAPK/ERK1/2 signaling [191] | Metabolic Cofactor Supplementation in AD and PD Patients ClinicalTrials.gov ID NCT04044131 A Randomized Controlled Trial of Nicotinamide Riboside Supplementation in Early Parkinson’s Disease ClinicalTrials.gov ID NCT03568968 N-DOSE: A Dose Optimization Trial of Nicotinamide Riboside in Parkinson’s Disease ClinicalTrials.gov ID NCT05589766 | flushing, liver enzyme elevations [209,210] |
Rilmenidine | Neurodegenerative disease | Inducer | mTOR/AMPK pathway | Enhances autophagy, improves disease progression in HD models [181] | Pilot clinical trial completed (EudraCT 2009-018119-14), further randomized trials planned | hypotension, dry mouth, dizziness [211] |
Colchicine | Neurodegenerative disease | Inducer | Microtubules | Promotes autophagy by disrupting microtubule dynamics, aiding clearance of misfolded proteins [181] | Clinical trial ongoing (NCT03693781) | gastrointestinal upset, myelosuppression, neuropathy [212] |
Tamoxifen | Neurodegenerative disease | Inducer | Estrogen receptor modulator | Enhances autophagy, reducing accumulation of misfolded proteins [181] | Clinical trial ongoing (NCT02166944) | hot flashes, thromboembolic events, endometrial cancer risk [213] |
USP30 inhibitors | Neurodegenerative disease | Inducer | USP30 | Promote mitophagy by inhibiting USP30, a negative regulator of mitochondrial clearance [182] | Entering Phase I trials | unknown, theoretical risks based on mechanism [182] |
PINK1 activators | Neurodegenerative disease | Inducer | PINK1 | Directly stimulates PINK1 to enhance selective mitophagy and improve mitochondrial quality [182] | Entering Phase I trials | unknown, theoretical risks based on mechanism [182] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dominiak, A.; Gawinek, E.; Banaszek, A.A.; Wilkaniec, A. Mitochondrial Quality Control in Neurodegeneration and Cancer: A Common Denominator, Distinct Therapeutic Challenges. Int. J. Mol. Sci. 2025, 26, 8693. https://doi.org/10.3390/ijms26178693
Dominiak A, Gawinek E, Banaszek AA, Wilkaniec A. Mitochondrial Quality Control in Neurodegeneration and Cancer: A Common Denominator, Distinct Therapeutic Challenges. International Journal of Molecular Sciences. 2025; 26(17):8693. https://doi.org/10.3390/ijms26178693
Chicago/Turabian StyleDominiak, Agnieszka, Elżbieta Gawinek, Agnieszka Anna Banaszek, and Anna Wilkaniec. 2025. "Mitochondrial Quality Control in Neurodegeneration and Cancer: A Common Denominator, Distinct Therapeutic Challenges" International Journal of Molecular Sciences 26, no. 17: 8693. https://doi.org/10.3390/ijms26178693
APA StyleDominiak, A., Gawinek, E., Banaszek, A. A., & Wilkaniec, A. (2025). Mitochondrial Quality Control in Neurodegeneration and Cancer: A Common Denominator, Distinct Therapeutic Challenges. International Journal of Molecular Sciences, 26(17), 8693. https://doi.org/10.3390/ijms26178693