Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (331)

Search Parameters:
Keywords = U87 MG cancer cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5480 KiB  
Article
Liposomal Co-Delivery of Acteoside, CBD, and Naringenin: A Synergistic Strategy Against Gliomas
by Jagoda Szkudlarek, Ludwika Piwowarczyk, Violetta Krajka-Kuźniak, Aleksandra Majchrzak-Celińska, Szymon Tomczak, Mikołaj Baranowski, Rafał Pietrzyk, Aneta Woźniak-Braszak and Anna Jelińska
Pharmaceutics 2025, 17(8), 1026; https://doi.org/10.3390/pharmaceutics17081026 - 7 Aug 2025
Abstract
Background/Objectives: Adult-type diffuse gliomas, including astrocytoma and glioblastoma multiforme (GBM), are brain tumors with a very poor prognosis. While current treatment options for glioma patients are not providing satisfactory outcomes, research indicates that natural compounds could serve as alternative treatments. However, their [...] Read more.
Background/Objectives: Adult-type diffuse gliomas, including astrocytoma and glioblastoma multiforme (GBM), are brain tumors with a very poor prognosis. While current treatment options for glioma patients are not providing satisfactory outcomes, research indicates that natural compounds could serve as alternative treatments. However, their low bioavailability requires nanotechnology solutions, such as liposomes. Methods: In this study, we propose the co-encapsulation of acteoside (ACT) with other natural compounds, cannabidiol (CBD) or naringenin (NG), in a cationic liposomal nanoformulation consisting of DOTAP and POPC lipids, which were prepared using the dry lipid film method. The liposomes were characterized by their physicochemical properties, including particle size, zeta potential, and polydispersity index (PDI), with additional analyses performed using 1H Nuclear Magnetic Resonance (NMR). Furthermore, biological experiments were performed with U-87 MG astrocytoma and U-138 MG GBM cell lines and non-cancerous MRC-5 lung fibroblasts using the MTT assay and evaluating the expression of Bax and Bcl-xL to evaluate their potential as anticancer agents. Conclusions: The IC50 values for the nanoformulations in U-138 MG cells at 48 h were 6 µM for ACT + CBD and 5 µM for ACT + NG. ACT and CBD or NG demonstrated a potential synergistic effect against GBM in a liposomal formulation. Notably, treatment with ACT + CBD (5 µM) and ACT + NG (5 µM) liposomal formulations significantly upregulated Bax protein level in U-138 cells at both 24 and 48 h. In parallel, ACT + CBD (5 µM) also modulated Bcl-xL protein level in both U-138 MG and U-87 MG cell lines at the same time points. The obtained nanoformulations were homogeneous and stable for 21 days, evidenced by a narrow particle size distribution, a low polydispersity index (PDI) < 0.3, and a positive zeta potential. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

16 pages, 2340 KiB  
Article
Single-Cell Transcriptomic Changes in Patient-Derived Glioma and U87 Glioblastoma Cell Cultures Infected with the Oncolytic Virus VV-GMCSF-Lact
by Dmitriy V. Semenov, Natalia S. Vasileva, Maxim E. Menyailo, Sergey V. Mishinov, Yulya I. Savinovskaya, Alisa B. Ageenko, Anna S. Chesnokova, Maya A. Dymova, Grigory A. Stepanov, Galina V. Kochneva, Vladimir A. Richter and Elena V. Kuligina
Int. J. Mol. Sci. 2025, 26(14), 6983; https://doi.org/10.3390/ijms26146983 - 20 Jul 2025
Viewed by 481
Abstract
Oncolytic virotherapy is a rapidly evolving approach to cancer treatment. Our group previously designed VV-GMCSF-Lact, a recombinant oncolytic vaccinia virus targeting solid tumors including gliomas. In this study, we used single-cell RNA sequencing to compare transcriptional responses in human glioma cells, non-malignant brain [...] Read more.
Oncolytic virotherapy is a rapidly evolving approach to cancer treatment. Our group previously designed VV-GMCSF-Lact, a recombinant oncolytic vaccinia virus targeting solid tumors including gliomas. In this study, we used single-cell RNA sequencing to compare transcriptional responses in human glioma cells, non-malignant brain cells, and immortalized glioblastoma U87 MG cells following infection with this oncolytic virus. We found that proneural glioblastoma cells and microglia-like cells from patient-derived glioma cultures were the most susceptible to VV-GMCSF-Lact. Increased expressions of histones, translational regulators, and ribosomal proteins positively correlated with viral load at the transcript level. Furthermore, higher viral loads were accompanied by a large-scale downregulation of genes involved in mitochondrial translation, metabolism, and oxidative phosphorylation. Levels of early vaccinia virus transcripts are also positively correlated with infection intensity, suggesting that the fate of cells is determined at the early stage of infection. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

10 pages, 769 KiB  
Article
A Novel Closo-Ortho-Carborane-Based Glucosamine Derivative as a Promising Agent for Boron Neutron Capture Therapy
by Daniela Imperio, Ian Postuma, Salvatore Villani, Erika Del Grosso, Laura Cansolino, Cinzia Ferrari, Silvia Fallarini, Silva Bortolussi and Luigi Panza
Pharmaceuticals 2025, 18(7), 986; https://doi.org/10.3390/ph18070986 - 30 Jun 2025
Viewed by 366
Abstract
Background: Boron Neutron Capture Therapy (BNCT) is a promising cancer treatment that combines tumor-selective boron delivery agents with thermal neutrons to kill cancer cells while sparing normal tissue. BNCT requires boron-containing compounds that exhibit high tumor selectivity and achieve therapeutic boron concentrations within [...] Read more.
Background: Boron Neutron Capture Therapy (BNCT) is a promising cancer treatment that combines tumor-selective boron delivery agents with thermal neutrons to kill cancer cells while sparing normal tissue. BNCT requires boron-containing compounds that exhibit high tumor selectivity and achieve therapeutic boron concentrations within tumor cells. This work focuses on the early development of a novel boron cluster carbohydrate derivative based on the glucosamine structure. Our results indicate that this derivative may have advantages over the typical boron delivery agent used in clinical applications and may significantly improve boron delivery capacity at the cellular level. Methods: The performance of the compound in terms of boron uptake was tested in the U87-MG glioblastoma cell line employing neutron autoradiography imaging and quantification. Results: The compound was non-toxic for cells, and it showed a remarkable capacity to enrich cells with boron. The ratio between boron concentration provided in the culture medium and boron concentration achieved in cells was compared to that obtained with boronophenylalanine (BPA), the gold standard in BNCT. The result demonstrated a significantly better performance compared with BPA, showing that the novel agent can concentrate boron in cells more than in culture medium. Conclusions: The encouraging preliminary results provide a starting point for its potential application in in vivo tests. Full article
Show Figures

Graphical abstract

22 pages, 23349 KiB  
Article
Ag/AgCl-Decorated Layered Lanthanum/Niobium Oxide Microparticles as Efficient Photocatalysts for Azo Dye Remediation and Cancer Cell Inactivation
by Elmuez Dawi and Mohsen Padervand
Catalysts 2025, 15(7), 638; https://doi.org/10.3390/catal15070638 - 30 Jun 2025
Viewed by 411
Abstract
Ag/AgCl-decorated layered lanthanum oxide (La2O3) and niobium pentoxide (Nb2O5) plasmonic photocatalysts are fabricated through an ionic liquid-mediated co-precipitation method. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), [...] Read more.
Ag/AgCl-decorated layered lanthanum oxide (La2O3) and niobium pentoxide (Nb2O5) plasmonic photocatalysts are fabricated through an ionic liquid-mediated co-precipitation method. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), powder X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), diffuse reflectance spectroscopy (DRS), and photoluminescence (PL) techniques were used to illustrate the physicochemical properties of the materials. The photoactivity was evaluated for the degradation of Acid Blue 92 (AB92) azo dye, a typical organic contaminant from the textile industry, and U251 cancer cell inactivation. According to the results, Nb2O5–Ag/AgCl was able to remove >99% of AB92 solution in 35 min with the rate constant of 0.12 min−1, 2.4 times higher than that of La2O3–Ag/AgCl. A pH of 3 and a catalyst dosage of 0.02 g were determined as the optimized factors to reach the highest degradation efficiency under solar energy at noon, which was opted to have the highest sunlight intensity over the reactor. Also, 0.02 mg/mL of Nb2O5–Ag/AgCl was determined to be of great potential to reduce cancer cell viability by more than 50%, revealed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and mitochondrial membrane potential (MMP) examinations. The mechanism of degradation was also discussed, considering the key role of Ag0 nanoparticles in inducing a plasmonic effect and improving the charge separation. This work provides helpful insights to opt for an efficient rare metal oxide with good biocompatibility as support for the plasmonic photocatalysts with the goal of environmental purification under sunlight. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Figure 1

15 pages, 1745 KiB  
Brief Report
Establishment of U-87MG Cellular Fibrosis as a Novel in Vitro Model to Analyze Glioblastoma Cells’ Sensitivity to Temozolomide
by Valentina Lopardo, Roberta Maria Esposito, Antonio C. Pagano Zottola, Federica Santoro, Nicola Grasso, Alfonso Carotenuto, Annibale Alessandro Puca and Elena Ciaglia
Int. J. Mol. Sci. 2025, 26(13), 6121; https://doi.org/10.3390/ijms26136121 - 25 Jun 2025
Viewed by 416
Abstract
Glioblastoma (GBM), a highly malignant brain tumor, arises within a complex microenvironment that plays a critical role in facilitating tumor progression, ensuring survival, and enabling immune evasion, ultimately contributing to therapeutic resistance. Cancer-associated fibrosis is increasingly recognized as a key factor in the [...] Read more.
Glioblastoma (GBM), a highly malignant brain tumor, arises within a complex microenvironment that plays a critical role in facilitating tumor progression, ensuring survival, and enabling immune evasion, ultimately contributing to therapeutic resistance. Cancer-associated fibrosis is increasingly recognized as a key factor in the tumor pathophysiology, particularly in extracranial cancers, and reported therapeutic strategies in several cancers consist of the current use of the standard-of-care treatment combined with anti-fibrotic drugs. However, it remains unclear how the fibrotic changes associated with the GBM microenvironment contribute to the transformation of GBM from a chemosensitive state to a chemoresistant one. Here, we developed an in vitro model that mimics a fibrosis-like mechanism using the U-87MG GBM cell line. To achieve this, we identified the optimal experimental conditions (i.e., U-87MG cultured in serum-deprivation medium in the presence of recombinant TGF-B1 at 5 ng/mL for 72 h) that effectively induced fibrosis, as suggested by the counter-regulated expression of E- and N-cadherin and sustained levels of α-SMA and collagen I. As expected, U-87MG fibrotic cells were demonstrated to be more resistant to TMZ (predicted EC50 = 35 µM) as compared to the non-fibrotic counterpart (EC50 not achieved here; predicted EC50 = 351 µM). Accordingly, the anti-fibrotic uPAcyclin—a new derivative cyclic compound inspired as a A6 decapeptide drug—showed a significant cytotoxic effect, sensitizing resistant U-87MG fibrotic cells to TMZ. This highlights that targeting fibrosis may help to overcome TMZ resistance in GBM. Full article
(This article belongs to the Special Issue Cellular Plasticity and EMT in Cancer and Fibrotic Diseases)
Show Figures

Figure 1

32 pages, 5511 KiB  
Article
Development of Carbohydrate Polyelectrolyte Nanoparticles for Use in Drug Delivery Systems that Cross the Blood–Brain Barrier to Treat Brain Tumors
by Vladimir E. Silant’ev, Mikhail E. Shmelev, Andrei S. Belousov, Fedor O. Trukhin, Nadezhda E. Struppul, Aleksandra A. Patlay, Anna K. Kravchenko, Sergey P. Shchava and Vadim V. Kumeiko
Polymers 2025, 17(12), 1690; https://doi.org/10.3390/polym17121690 - 18 Jun 2025
Viewed by 505
Abstract
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among [...] Read more.
The low effectiveness of various brain cancer treatment methods is due to a number of significant challenges. Most of them are unable to penetrate the blood–brain barrier (BBB) when drugs are administered systemically through the bloodstream. Nanoscale particles play a special role among materials capable of binding drug molecules and successfully crossing the BBB. Biopolymeric nanoparticles (NPs) demonstrate excellent biocompatibility and have the remarkable ability to modify the environment surrounding tumor cells, thereby potentially improving cellular uptake of delivery agents. In our research, nanoscale polyelectrolyte complexes (PECs) ranging in size from 56 to 209 nm were synthesized by ionic interaction of the oppositely charged polysaccharides pectin and chitosan. The structural characteristics of these complexes were carefully characterized by infrared (FTIR) and Raman spectroscopy. The immobilization efficiency of antitumor drugs was comprehensively evaluated using UV spectrophotometry. The cytotoxicity of the NPs was evaluated in the U87-MG cell line. The preliminary data indicate a significant decrease in the metabolic activity of these tumor cells. Important details on the interaction of the NPs with an endothelial layer structurally similar to the BBB were obtained by simulating the BBB using a model based on human blood vessels. Our studies allowed us to establish a significant correlation between the kinetic parameters of drug immobilization and the ratio of biopolymer concentrations in the initial compositions, which provides valuable information for future optimization of drug delivery system design. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Drug Delivery Applications)
Show Figures

Figure 1

24 pages, 3323 KiB  
Article
Aphanizomenon flos-aquae: A Biorefinery for Health and Energy—Unleashing Phycocyanin’s Power and Biogas Potential
by Pilar Águila-Carricondo, Raquel García-García, Juan Pablo de la Roche, Pedro Luis Galán, Luis Fernando Bautista, Juan J. Espada and Gemma Vicente
Mar. Drugs 2025, 23(6), 225; https://doi.org/10.3390/md23060225 - 24 May 2025
Viewed by 792
Abstract
This study presents a biorefinery approach for Aphanizomenon flos-aquae, demonstrating its potential as a dual source for phycocyanin and biogas. The antioxidant capacity of the extract was evaluated using the ABTS•+ assay, while flow cytometry determined its cytotoxic effects on breast [...] Read more.
This study presents a biorefinery approach for Aphanizomenon flos-aquae, demonstrating its potential as a dual source for phycocyanin and biogas. The antioxidant capacity of the extract was evaluated using the ABTS•+ assay, while flow cytometry determined its cytotoxic effects on breast cancer (HCC1806) and brain glioma (U-118 MG) cell lines, comparing pure C-phycocyanin to the non-purified extract. The non-purified extract scavenged 77% of ABTS•+ radicals at 2.4 mg/mL, compared to 22% for pure C-phycocyanin. In U-118 MG cells, pure C-phycocyanin accounted for 55.5% of the 29.9 ± 6.1% total mortality observed with the non-purified extract at 0.75 mg/mL. HCC1806 cytotoxicity (80.9 ± 5.1% at 1 mg/mL) was attributed to synergistic effects of other extract components. The spent biomass was valorized through anaerobic digestion for biogas production, enhancing process sustainability. At a 2:1 inoculum-to-substrate ratio, the anaerobic digestion of the spent biomass yielded 447 ± 18 mL CH4/gVS, significantly higher than the 351 ± 19 mL CH4/gVS from the initial biomass. LCA estimated the environmental impacts of the A. flos-aquae biorefinery for phycocyanin production, targeting the cosmetic, food, and nutraceutical sectors, and highlighting the benefits of spent biomass valorization to produce biogas within a circular economy framework. This integrated approach demonstrates the potential of A. flos-aquae for the sustainable production of high-value compounds and renewable energy. Full article
(This article belongs to the Special Issue Algae-Powered Skincare: Innovations in Marine-Derived Cosmeceuticals)
Show Figures

Graphical abstract

13 pages, 1045 KiB  
Article
All-Trans Retinoic Acid Induces Differentiation and Downregulates Stemness Markers and MGMT Expression in Glioblastoma Stem Cells
by Justin Tang and Raymond Yang
Cells 2025, 14(10), 746; https://doi.org/10.3390/cells14100746 - 20 May 2025
Viewed by 740
Abstract
Background: Glioblastoma (GBM) remains almost uniformly fatal, owing in part to therapy-resistant cancer stem-like cells (CSCs) and to temozolomide (TMZ) resistance driven by O6-methylguanine-DNA methyltransferase (MGMT). Differentiation therapy with all-trans retinoic acid (ATRA) has the potential to attenuate stemness and sensitize [...] Read more.
Background: Glioblastoma (GBM) remains almost uniformly fatal, owing in part to therapy-resistant cancer stem-like cells (CSCs) and to temozolomide (TMZ) resistance driven by O6-methylguanine-DNA methyltransferase (MGMT). Differentiation therapy with all-trans retinoic acid (ATRA) has the potential to attenuate stemness and sensitize GBM to TMZ. We therefore asked whether ATRA reduces expression of key CSC markers and MGMT in established GBM lines. Methods: Two established human GBM cell lines, U87-MG and A172, were cultured under neurosphere-promoting conditions to enrich for potential stem-like subpopulations. Cells were treated with either 1 µM ATRA or vehicle control (DMSO) for 5 days. Total RNA was extracted, and cDNA was synthesized. Quantitative Real-Time PCR (qPCR) assessed relative mRNA expression levels of key stemness transcription factors (SOX2, NES) and the DNA repair gene MGMT and corresponding protein levels were measured by an Enzyme-Linked Immunosorbent Assay (ELISA). Gene expression was normalized to the geometric mean of two validated housekeeping genes (GAPDH, ACTB). Relative quantification was calculated using the ΔΔCt method, and statistical significance was determined using Student’s t-tests. Results: ATRA markedly suppressed stemness and MGMT in both lines. In U87-MG, SOX2 mRNA fell 3.7-fold (p = 0.0008) and protein 2.99-fold (148.3 ± 6.0 → 49.7 ± 2.7 pg µg−1; p = 0.0002); Nestin dropped 4.1-fold (p = 0.0005) and 3.51-fold (450.0 ± 17.3 → 128.3 ± 4.4 pg µg−1; p = 0.00008). MGMT decreased 2.6-fold at transcript level (p = 0.0065) and 2.11-fold at protein level (81.7 ± 4.4 → 38.7 ± 1.8 pg µg−1; p = 0.0005). In A172, SOX2 was reduced 2.9-fold (p = 0.0041) and 2.31-fold (p = 0.0007); Nestin 3.3-fold (p = 0.0028) and 2.79-fold (p = 0.00009). MGMT declined 2.2-fold (p = 0.0132) and 1.82-fold (p = 0.0015), respectively. Conclusions: Five-day exposure to ATRA diminishes SOX2, Nestin, and MGMT at both mRNA and protein levels in stem-enriched GBM cultures, supporting the premise that ATRA-induced differentiation can concurrently blunt CSC traits and TMZ-resistance mechanisms. These data provide a molecular rationale for testing ATRA in combination regimens aimed at improving GBM therapy. Full article
(This article belongs to the Special Issue The Pivotal Role of Tumor Stem Cells in Glioblastoma)
Show Figures

Figure 1

16 pages, 2766 KiB  
Article
Curcumin-Induced Molecular Mechanisms in U-87 MG Glioblastoma Cells: Insights from Global Gene Expression Profiling
by Nicole Tendayi Mashozhera, Chinreddy Subramanyam Reddy, Yevin Nenuka Ranasinghe, Purushothaman Natarajan, Umesh K. Reddy and Gerald Hankins
Molecules 2025, 30(10), 2108; https://doi.org/10.3390/molecules30102108 - 9 May 2025
Viewed by 947
Abstract
Curcumin, a major phytochemical derived from Curcuma longa, has been shown to enhance the efficacy of chemotherapeutic agents such as doxorubicin, 5-fluorouracil, and cisplatin by overcoming drug resistance, making it a promising adjunct in the treatment of glioblastoma. However, the global gene-expression changes [...] Read more.
Curcumin, a major phytochemical derived from Curcuma longa, has been shown to enhance the efficacy of chemotherapeutic agents such as doxorubicin, 5-fluorouracil, and cisplatin by overcoming drug resistance, making it a promising adjunct in the treatment of glioblastoma. However, the global gene-expression changes triggered by curcumin in glioblastoma remain underexplored. In this study, we investigated the effects of curcumin on human glioblastoma (U87 MG) cells, where it significantly reduced cell viability and proliferation in a dose- and time-dependent manner and induced apoptosis without affecting senescence. Transcriptomic analysis revealed 5036 differentially expressed genes, with pathway enrichment identifying 13 dysregulated cancer-associated pathways. Notably, curcumin modulated several key regulators involved in MAPK, Ras, TGF-β, Wnt, Cytokine, and TNF signaling pathways. Several apoptosis and cell cycle-associated genes, including PRKCG, GDF7, GDF9, GDF15, GDF5, FZD1, FZD2, FZD8, AIFM3, TP53AIP1, CRD14, NIBAN3, BOK, BCL2L10, BCL2L14, BNIPL, FASLG, GZMM, TNFSF10, TNFSF11, and TNFSF4, were significantly altered. Several pro-apoptotic and anti-BCL, cell-cycle-regulated genes were modulated following curcumin treatment, emphasizing its potential role in curcumin-mediated anti-tumor effects. This study provides insight into the molecular mechanisms underlying curcumin’s action against glioblastoma. Full article
(This article belongs to the Special Issue Natural Products in Anticancer Activity: 2nd Edition)
Show Figures

Figure 1

22 pages, 5623 KiB  
Article
Lanthanides-Based Nanoparticles Conjugated with Rose Bengal for FRET-Mediated X-Ray-Induced PDT
by Batoul Dhaini, Joël Daouk, Hervé Schohn, Philippe Arnoux, Valérie Jouan-Hureaux, Albert Moussaron, Agnès Hagege, Mathilde Achard, Samir Acherar, Tayssir Hamieh and Céline Frochot
Pharmaceuticals 2025, 18(5), 672; https://doi.org/10.3390/ph18050672 - 1 May 2025
Viewed by 703
Abstract
In order to find a good candidate for Förster Resonance Energy Transfer (FRET)-mediated X-ray-induced photodynamic therapy (X-PDT) for the treatment of cancer, lanthanide (Ln)-based AGuIX nanoparticles (NPs) conjugated with Rose Bengal (RB) as a photosensitizer (PS) were synthesized. X-PDT overcomes the problem of [...] Read more.
In order to find a good candidate for Förster Resonance Energy Transfer (FRET)-mediated X-ray-induced photodynamic therapy (X-PDT) for the treatment of cancer, lanthanide (Ln)-based AGuIX nanoparticles (NPs) conjugated with Rose Bengal (RB) as a photosensitizer (PS) were synthesized. X-PDT overcomes the problem of the poor penetration of visible light into tissues, which limits the efficacy of PDT in the treatment of deep-seated tumors. It is essential to optimize FRET efficiency by maximizing the overlap integral between donor emission and acceptor absorption and lengthening the duration of the donor emission. In this study, we optimized energy transfer between a scintillator (Sc) as a donor and a PS as an acceptor. Terbium (Tb) and Gadolinium (Gd) as Scs and Rose RB as a PS were chosen. The study of energy transfer between Tb, Gd and RB in solution and chelated on AGuIX NPs proved to be FRET-like. RB was conjugated directly onto AGuIX NPs (i.e., AGuIX Ln@RB), and the use of a spacer arm (i.e., AGuIX Ln@spacer arm-RB) increased FRET efficiency. Singlet oxygen production by these NPs was observed under UV–visible illumination and X-ray irradiation. The in vitro bioassay demonstrated 52% cell death of U-251MG derived from human malignant glioblastoma multiforme at a concentration of 1 μM RB after illumination and irradiation (2 Gy, 320 kV, 10 mA, 3 Gy/min at 47 cm). In addition, the RB-coupled NRP-1-targeting peptide (i.e., K(RB)DKPPR) was conjugated onto AGuIX NPs by a thiol-maleimide click chemistry reaction, and an affinity in the nM range was observed. Full article
(This article belongs to the Special Issue Photodynamic Therapy: 3rd Edition)
Show Figures

Graphical abstract

23 pages, 5426 KiB  
Article
Influence of Exogenous Neuropeptides on the Astrocyte Response Under Conditions of Continuous and Cyclic Hypoxia and Red Blood Cell Lysate
by Klaudyna Kojder, Magdalena Gąssowska-Dobrowolska, Wojciech Żwierełło, Patrycja Kłos, Katarzyna Piotrowska, Agata Wszołek, Agnieszka Maruszewska, Izabela Gutowska, Dariusz Chlubek and Irena Baranowska-Bosiacka
Int. J. Mol. Sci. 2025, 26(9), 3953; https://doi.org/10.3390/ijms26093953 - 22 Apr 2025
Viewed by 993
Abstract
Acute brain injury includes different pathologies: stroke, traumatic injury, subarachnoidale haemorhhage. In the pathophysiology of acute brain injury, secondary injury with hyperactivation of glia plays a crucial role. Activated glial cells induce prolonged inflammation that impacts the recovery and further cognitive functions of [...] Read more.
Acute brain injury includes different pathologies: stroke, traumatic injury, subarachnoidale haemorhhage. In the pathophysiology of acute brain injury, secondary injury with hyperactivation of glia plays a crucial role. Activated glial cells induce prolonged inflammation that impacts the recovery and further cognitive functions of patients. In our study, we have examined the neuroprotective impact of exogenous neuropeptides—Cerebrolysin on astrocytes under different conditions. In a model that simulates central nervous system damage associated with brain injury, stroke, and subarachnoid hemorrhage, the U87MG human brain cancer (glioblastoma astrocytoma like) cells were treated with Cerebrolysin and exposed to conditions of continuous and cyclic hypoxia and red blood cell lysate overload. The activity and expression of cyclooxygenases COX-1 and COX-2 and on cytokines (IL-8, IL-1β, IL-6, IL-10) and chemokines (CCL5/RANTES, CXCL9/MIG, CCL2/MCP-1, and CXCL10/IP-10) concentration were assessed. Cerebrolysin lowers IL-1β and IL-6 and increases IL-10 under all conditions. Cerebrolysin may exhibit a neuroimmunotrophic function, reducing inflammation under conditions that replicate traumatic brain injury and hemorrhagic insults to the central nervous system. By modulating both pro-inflammatory and anti-inflammatory cytokines, Cerebrolysin can help create a more balanced immune response conducive to tissue repair and reduced secondary damage. Its ability to lower harmful mediators like IL-1β and IL-6 while enhancing protective factors such as IL-10 suggests a promising therapeutic strategy in stroke, traumatic brain injury, and subarachnoid hemorrhage. Alongside other mechanisms such as neurotrophic factor enhancement and glial cell regulation, this cytokine modulation underscores the therapeutic potential of Cerebrolysin in a variety of central nervous system disorders. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

19 pages, 11575 KiB  
Article
NID2 Affects Prognosis of Glioma via Activating the Akt Signaling Pathway
by Zhangzhang Lan, Yanlin Xiao, Youyou Liao, Xuan Li, Yi Zhang, Huajie Wang and Wenyong Zhang
Int. J. Mol. Sci. 2025, 26(8), 3859; https://doi.org/10.3390/ijms26083859 - 18 Apr 2025
Viewed by 594
Abstract
Nidogen-2 (NID2) is a critical component of the extracellular matrix (ECM), which plays a regulatory role in cell adhesion, migration, differentiation, and survival. Previous studies have shown that NID2 is deregulated in several types of cancer, but its role in glioma is unknown. [...] Read more.
Nidogen-2 (NID2) is a critical component of the extracellular matrix (ECM), which plays a regulatory role in cell adhesion, migration, differentiation, and survival. Previous studies have shown that NID2 is deregulated in several types of cancer, but its role in glioma is unknown. The present study investigated the prognostic value of NID2 in glioma and its associated molecular pathways and functional roles in malignant progression. The performed analyses included investigating the NID2 expression profile using the Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and tumor tissue microarray. The findings demonstrated that NID2 high expression predicts worse patient survival by both univariable and multivariable analyses. There is a strong correlation between NID2 upregulation and tumor grade. In stably NID2-overexpressed glioma cells, RNA-Seq analysis revealed coactivation of oncogenic functional pathways, including cell proliferation, survival, epithelial–mesenchymal transition, ECM organization, and migration. Overexpression of NID2 in U87MG and T98G cells promoted cell proliferation, migration, and invasion. TUNEL assay showed NID2 overexpression protected cells from apoptosis. Western blotting analysis showed activation of Akt and Bcl-xL in NID2-overexpressed cells. Our results show that NID2 is a promising prognostic marker in glioma. Full article
(This article belongs to the Special Issue Molecular Diagnostics and Genomics of Tumors)
Show Figures

Figure 1

26 pages, 5853 KiB  
Article
Kinin B1 Receptor Agonist Enhances Blood-Brain Barrier Permeability in Healthy and Glioblastoma Environments
by Carolina Batista, João Victor Roza Cruz, Michele Siqueira, João Bosco Pesquero, Joice Stipursky and Fabio de Almeida Mendes
Pharmaceuticals 2025, 18(4), 591; https://doi.org/10.3390/ph18040591 - 18 Apr 2025
Viewed by 767
Abstract
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical [...] Read more.
Background/Objectives: The low permeability of the blood-brain barrier (BBB) represents a significant challenge to effective systemic chemotherapy for primary and metastatic brain cancers. Kinin receptors play a crucial role in modulating BBB permeability, and their agonist analogs have been explored in preclinical animal models to enhance drug delivery to the brain. In this study, we investigated whether des-Arg9-bradykinin (DBK), a physiological agonist of kinin B1 receptor (B1R), acts as a brain drug delivery adjuvant by promoting the transient opening of the BBB. Methods: Human brain microvascular endothelial cells (HBMECs) were treated with DBK in the culture medium and in conditioned media from glioblastoma cell lines, namely T98G (CMT98G) and U87MG (CMU87). Immunofluorescence, RT-qPCR, in-cell Western assay, and proximity ligation assay (PLA) were performed to analyze BBB components, kinin receptors and TLR4, a receptor associated with the kinin pathway and inflammation. The effect of DBK on enhancing paracellular molecule transport was evaluated using Evans blue dye (EB) quantification in a cell culture insert assay and in an in vivo model, where mice with and without brain tumors were treated with DBK. To assess the functional impact of the transient BBB opening induced by DBK, the chemotherapeutic drug doxorubicin (DOX) was administered. Results: Treatment with DBK facilitates the presence of EB in the brain parenchyma by transiently disrupting the BBB, as further evidenced by the increased paracellular passage of the dye in an in vitro assay. B1R activation by DBK induces transient BBB opening lasting less than 48 h, enhancing the bioavailability of the DOX within the brain parenchyma and glioma tumor mass. The interaction between B1R and TLR4 is disrupted by the secreted factors released by glioblastoma cells, as conditioned media from T98G and U87 reduce TLR4 staining in endothelial cells without affecting B1R expression. Conclusions: These results further support the potential of B1R activation as a strategy to enhance targeted drug delivery to the brain. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

20 pages, 3069 KiB  
Article
Cynthichlorine Extracted from Ascidian Cynthia savignyi from Djibouti: Optimization of Extraction, In Vitro Anticancer Profiling, and In Silico Approach
by Fatouma Mohamed Abdoul-Latif, Houda Mohamed, Ibrahim Houmed Aboubaker, Omaima Saoudi, Ayoub Ainane, Ali Merito Ali, Stefano Cacciatore, Luiz Fernando Zerbini, Abdelmjid Abourriche and Tarik Ainane
Mar. Drugs 2025, 23(4), 172; https://doi.org/10.3390/md23040172 - 16 Apr 2025
Viewed by 535
Abstract
This work focuses on the extraction of cynthichlorine from the ascidian Cynthia savignyi, a molecule that has potential promise as an anticancer agent. The main objective was to optimize the extraction conditions and evaluate the cytotoxic activity of cynthichlorine in tumor cell [...] Read more.
This work focuses on the extraction of cynthichlorine from the ascidian Cynthia savignyi, a molecule that has potential promise as an anticancer agent. The main objective was to optimize the extraction conditions and evaluate the cytotoxic activity of cynthichlorine in tumor cell lines. Two extraction methods, maceration and Soxhlet extraction, were compared, with maceration showing a significantly higher yield (2.2 ± 0.2%) compared to Soxhlet extraction (1.0 ± 0.2%). An optimization of the factors influencing the extraction was performed using the Box–Behnken method, showing that the extraction temperature and time have a negative impact on the yield, with the optimal conditions of temperature being below 25 °C and those of extraction time being below 12 h. Cytotoxic activity assessment revealed the marked inhibition of cell growth in all tested lines (U87-MG, U2OS, NCI-N87, HCT116, and A2780), with IC50 values ranging from 0.162 µg/mL in U87-MG to 0.576 µg/mL in NCI-N87. Finally, computational analysis showed that cynthichlorine exhibits high electronic stability and notable affinity for some biological targets, including NM23-H2, suggesting its potential as a targeted therapy in cancer treatment. These results pave the way for future studies on the therapeutic use of cynthichlorine. Full article
Show Figures

Figure 1

31 pages, 5710 KiB  
Article
Antitumor Activity, Mechanisms of Action and Phytochemical Profiling of Sub-Fractions Obtained from Ulex gallii Planch. (Fabaceae): A Medicinal Plant from Galicia (Spain)
by Lucía Bada, Hussain Shakeel Butt, Elías Quezada, Aitor Picos, Helle Wangensteen, Kari Tvete Inngjerdingen, José Gil-Longo and Dolores Viña
Molecules 2025, 30(4), 972; https://doi.org/10.3390/molecules30040972 - 19 Feb 2025
Cited by 1 | Viewed by 1074
Abstract
The plant kingdom serves as a valuable resource for cancer drug development. This study explored the antitumor activity of different sub-fractions (hexane, dichloromethane and methanol) of U. gallii (gorse) methanol extract in glioblastoma (U-87MG and U-373MG) and neuroblastoma (SH-SY5Y) cell lines, along with [...] Read more.
The plant kingdom serves as a valuable resource for cancer drug development. This study explored the antitumor activity of different sub-fractions (hexane, dichloromethane and methanol) of U. gallii (gorse) methanol extract in glioblastoma (U-87MG and U-373MG) and neuroblastoma (SH-SY5Y) cell lines, along with their phytochemical profiles. Cytotoxicity was evaluated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays, and cell cycle arrest and apoptosis were assessed through flow cytometry and by measuring reactive oxygen species (ROS) and protein expression levels. D7 and D8 dichloromethane sub-fractions significantly reduced cell viability, triggered early apoptosis in SH-SY5Y and U-87MG cells and specifically increased ROS levels in U-87MG cells. Western blot analyses showed that D7 increased p53, caspase-3, caspase-8 and γH2AX expression in SH-SY5Y and U-87MG cells, while D8 specifically elevated p53 in SH-SY5Y cells and caspase-3 in both cell lines. In U-373 cells, D7 and D8 markedly reduced cell viability, with D8 inducing necrosis. Morphological changes indicative of apoptosis were also observed in all cell lines. Bioinformatic analysis of UHPLC-MS and GC-MS data tentatively identified 20 metabolites in D7 and 15 in D8, primarily flavonoids. HPLC-DAD confirmed isoprunetin and genistein as the most abundant in D7 and D8, respectively, both isolated and identified by NMR spectroscopy. Most of the flavonoids identified have been reported as antitumor agents, suggesting that these compounds may be responsible for the observed pharmacological activity. Full article
Show Figures

Graphical abstract

Back to TopTop