Cynthichlorine Extracted from Ascidian Cynthia savignyi from Djibouti: Optimization of Extraction, In Vitro Anticancer Profiling, and In Silico Approach
Abstract
:1. Introduction
2. Result
2.1. Study of the Improvement of the Extraction Method
2.2. Optimization of Factors Influencing Extraction by Maceration
2.3. Evaluation of Cytotoxic Activities
2.4. Computational Analyses
2.4.1. Bioinformatics of Quantum Descriptors of Cynthichlorine
2.4.2. Molecular Docking
3. Discussion
4. Material and Methods
4.1. Marin Material
4.2. Extraction and Isolation of Cynthichlorine
4.3. Analytical Techniques
4.4. In Vitro Cytotoxicity Assay
4.5. Computational Analysis
4.6. Statistical Approach
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Qin, Y.; Wu, Y.; Liu, L.; Zhang, W.; Ding, L.; Wang, Y. Morphological Characteristics, Mitochondrial Genome, and Evolutionary Insights into a New Sea Squirt from the Beibu Gulf. Ecol. Evol. 2025, 15, e70639. [Google Scholar] [CrossRef] [PubMed]
- Moura, C.J.; Wirtz, P.; Nhanquê, F.T.; Barbosa, C.; Serrão, E. Hotspot of Exotic Benthic Marine Invertebrates Discovered in the Tropical East Atlantic: DNA Barcoding Insights from the Bijagós Archipelago, Guinea-Bissau. Ecol. Evol. 2025, 15, e70964. [Google Scholar] [CrossRef]
- Legrand, E.; Svensen, Ø.; Husa, V.; Lelièvre, Y.; Svensen, R. In situ Growth Dynamics of the Invasive Ascidian Didemnum vexillum in Norway: Insights from a Two-Year Monitoring Study. Mar. Pollut. Bull. 2025, 211, 117440. [Google Scholar] [CrossRef] [PubMed]
- Bauermeister, A.; Furtado, L.C.; Ferreira, E.G.; Moreira, E.A.; Jimenez, P.C.; Lopes, N.P.; Costa-Lotufo, L.V. Chemical and Microbial Diversity of a Tropical Intertidal Ascidian Holobiont. Mar. Environ. Res. 2024, 194, 106303. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Sohail, A.; Akash, M.S.H.; Iqbal, S.; Rehman, K.; Imran, M.; Rasool, M. Marine Life as a Source of Anti-Prostate Cancer Agents: An Updated Overview (2003–2023). Naunyn-Schmiedeberg’s Arch. Pharmacol. 2025, 1–104. [Google Scholar] [CrossRef]
- Arumugam, V.; Venkatesan, M.; Ramachandran, K.; Sundaresan, U.; Ramachandran, S. Ascidians: A Potential Resource for Pharmaceutical Development. Encycl. Mar. Biotechnol. 2020, 4, 2487–2508. [Google Scholar]
- Raymond, M.J.; Rakotondraibe, H.L. Recent Updates on Terpenoids and Other Bioactive Constituents of Marine Sponges. Molecules 2025, 30, 1112. [Google Scholar] [CrossRef]
- Kathirvel, I.; Gnanakkan, A.; Ganesan, N.G. Bioactive Antimicrobial Peptides from Didemnum Albidum: An MALDI-TOF MS Analysis. J. Mol. Struct. 2025, 1323, 140618. [Google Scholar] [CrossRef]
- Du, Y.; Semghouli, A.; Wang, Q.; Mei, H.; Kiss, L.; Baecker, D.; Han, J. FDA-Approved Drugs Featuring Macrocycles or Medium-Sized Rings. Arch. Pharm. 2025, 358, e2400890. [Google Scholar] [CrossRef]
- Rafieezadeh, D.; Abbaspour, M. Exploring the Seas for Cancer Cures: The Promise of Marine-Derived Bioactive Peptide. Int. J. Biochem. Mol. Biol. 2024, 15, 100. [Google Scholar] [CrossRef]
- Smith, K.L. Studies Towards the Synthesis of Cytotoxic Marine Alkaloids and Pyrimidoazepine-Based Folates as Potential Antitumor Agents. Ph.D. Thesis, The University of Memphis, Memphis, TN, USA, 1999. [Google Scholar]
- Yu, J.; Wang, X.; Du, P.; Shi, H. The Therapeutic Potential and Application of Marine Alkaloids in Treating Breast Cancer. Front. Mar. Sci. 2024, 11, 1440928. [Google Scholar] [CrossRef]
- Saputri, L.O.; Harahap, H.S.; Rivarti, A.W.; Zubaidi, F.F. Prospecting Marine Natural Products as Disease-Modifying Treatment for Alzheimer’s Disease. Biol. Med. Nat. Prod. Chem. 2024, 13, 433–441. [Google Scholar] [CrossRef]
- Xu, M.; Bai, Z.; Xie, B.; Peng, R.; Du, Z.; Liu, Y.; Qin, S. Marine-Derived Bisindoles for Potent Selective Cancer Drug Discovery and Development. Molecules 2024, 29, 933. [Google Scholar] [CrossRef] [PubMed]
- Abourriche, A.; Charrouf, M.; Bennamara, A.; Berrada, M.; Chaib, N.; Boudouma, M.; Francisco, C. Investigation of Bioactivity of Extracts from Moroccan Solitary Tunicate Cynthia savignyi. J. Ethnopharmacol. 1999, 68, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Abourriche, A.; Abboud, Y.; Maoufoud, S.; Mohou, H.; Seffaj, T.; Charrouf, M.; Francisco, C. Cynthichlorine: A Bioactive Alkaloid from the Tunicate Cynthia savignyi. Il Farmaco 2003, 58, 1351–1354. [Google Scholar] [CrossRef]
- Puzovic, A.; Mikulic-Petkovsek, M. Comparative Evaluation of Conventional and Emerging Maceration Techniques for Enhancing Bioactive Compounds in Aronia Juice. Foods 2024, 13, 3255. [Google Scholar] [CrossRef]
- Cardoso, C.E.; Almeida, J.C.; Rocha, J.; Pereira, E. Application of Box-Behnken Design to Optimize the Phosphorus Removal from Industrial Wastewaters Using Magnetic Nanoparticles. Environ. Sci. Pollut. Res. 2025, 32, 6804–6816. [Google Scholar] [CrossRef]
- Souadia, A.; Djemoui, A.; Souli, L.; Haiouani, K.; Atoki, A.V.; Djemoui, D.; Barhoum, A. Ultrasound-Assisted Extraction for Maximizing Total Phenolics, Flavonoid Content, and Antioxidant Activity in Thymus algeriensis: Box-Behnken Experimental Design. Biomass Convers. Biorefinery 2025, 1–16. [Google Scholar] [CrossRef]
- Liu, X.; Su, Y.X.; Yang, Y.M.; Li, R.T.; Zhang, Z.J. The Small Molecules of Plant Origin with Anti-Glioma Activity. Int. J. Mol. Sci. 2025, 26, 1942. [Google Scholar] [CrossRef]
- Naveed, M.; Hussain, M.; Aziz, T.; Hanif, N.; Kanwal, N.; Arshad, A.; Alharbi, M. Computational Biology Assisted Exploration of Phytochemicals Derived Natural Inhibitors to Block BZLF1 Gene Activation of Epstein–Barr Virus in Host. Sci. Rep. 2024, 14, 31664. [Google Scholar] [CrossRef]
- Kamaraj, R.; Ghosh, S.; Das, S.; Sen, S.; Kumar, P.; Majumdar, M.; Anand, K. Targeted Protein Degradation (TPD) for Immunotherapy: Understanding Proteolysis Targeting Chimera-Driven Ubiquitin-Proteasome Interactions. Bioconjug. Chem. 2024, 35, 1089–1115. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, A.R.; Jaiswal, S.; Kukkar, D.; Kumar, R.; Singh, T.G.; Singh, M.P.; Kumar, B. A Decade of Pyridine-Containing Heterocycles in US FDA Approved Drugs: A Medicinal Chemistry-Based Analysis. RSC Med. Chem. 2025, 1, 108134. [Google Scholar] [CrossRef]
- Doreswamy, S.; Santhosh, C.; Lohith, T.N.; Neetha, S.; Sharath, K.; Sridhar, M.A.; Sadashiva, M.P. The Study of the Role of Non-Covalent Interactions (CH⋯N, CH⋯π, CO⋯CO, and π⋯π) Towards Crystal Packing of Benzyl 4-(4-Fluorophenyl) Thiazole-2-Carboxylate: A Combined Experimental and Computational Approach. J. Mol. Struct. 2025, 1329, 141323. [Google Scholar] [CrossRef]
- Bhatia, M. An Overview of Conceptual-DFT-Based Insights into Global Chemical Reactivity of Volatile Sulfur Compounds (VSCs). Comput. Toxicol. 2024, 29, 100295. [Google Scholar] [CrossRef]
- Nada, H.; Choi, Y.; Kim, S.; Jeong, K.S.; Meanwell, N.A.; Lee, K. New Insights into Protein–Protein Interaction Modulators in Drug Discovery and Therapeutic Advances. Signal Transduct. Target. Ther. 2024, 9, 341. [Google Scholar] [CrossRef]
- Gu, M.; Ren, B.; Fang, Y.; Ren, J.; Liu, X.; Wang, X.; Zhao, Y. Epigenetic Regulation in Cancer. MedComm 2024, 5, e495. [Google Scholar] [CrossRef]
- Biersack, B.; Höpfner, M. Emerging Role of MYB Transcription Factors in Cancer Drug Resistance. Cancer Drug Resist. 2024, 7, 15. [Google Scholar] [CrossRef]
- Zhong, L.T.; Yuan, J.M.; Fu, W.L.; Zhang, Z.L.; Li, X.; Ou, T.M.; Chen, S.B. Identification of Sanguinarine as c-MYC Transcription Inhibitor through Enhancing the G-Quadruplex-NM23-H2 Interactions. Bioorg. Chem. 2024, 153, 107842. [Google Scholar] [CrossRef]
- Xiaochang, L.I.; Mingyue, L.I.; Ming, L.E.I.; Jian, W.U. Conservation of Protein Interaction Between SAGE1 and INTS3 Identified in 3 Different Types of Primates. J. Shanghai Jiao Tong Univ. (Med. Sci.) 2024, 44, 444. [Google Scholar]
- Chagaleti, B.K.; Kumar, B.S.; Rajagopal, R.; Alfarhan, A.; Arockiaraj, J.; Kumaradoss, K.M.; Namasivayam, S.K.R. Targeting Cyclin-Dependent Kinase 2 (CDK2): Insights from Molecular Docking and Dynamics Simulation—A Systematic Computational Approach to Discover Novel Cancer Therapeutics. Comput. Biol. Chem. 2024, 112, 108134. [Google Scholar] [CrossRef]
- Gallo, A.; Penna, Y.M.; Russo, M.; Rosapane, M.; Tosti, E.; Russo, G.L. An Organic Extract from Ascidian Ciona robusta Induces Cytotoxic Autophagy in Human Malignant Cell Lines. Front. Chem. 2024, 12, 1322558. [Google Scholar] [CrossRef] [PubMed]
- Bisanti, L.; La Corte, C.; Dara, M.; Bertini, F.; Vizioli, J.; Parisi, M.G.; Parrinello, D. The Interplay of TLR-NFκB Signalling Pathway and Functional Immune-Related Enzymes in the Inflammatory Response of Ciona robusta. Animals 2024, 14, 2169. [Google Scholar] [CrossRef] [PubMed]
- Albella, B.; Faircloth, G.; Lopez-Lazaro, L.; Guzman, C.; Jimeno, J.; Bueren, J.A. In Vitro Toxicity of ET-743 and Aplidine, Two Marine-Derived Antineoplastics, on Human Bone Marrow Haematopoietic Progenitors: Comparison with the Clinical Results. Eur. J. Cancer 2002, 38, 1395–1404. [Google Scholar] [CrossRef]
- Gori, A.; Boucherle, B.; Rey, A.; Rome, M.; Fuzzati, N.; Peuchmaur, M. Development of an Innovative Maceration Technique to Optimize Extraction and Phase Partition of Natural Products. Fitoterapia 2021, 148, 104798. [Google Scholar] [CrossRef] [PubMed]
- Mohamed Abdoul-Latif, F.; Ainane, A.; Aboubaker, I.H.; Houssein Kidar, B.; Mohamed, J.; Lemrani, M.; Ainane, T. Ericaria amentacea Algae Extracts: A Sustainable Approach for the Green Synthesis of Silver Oxide Nanoparticles and Their Effectiveness Against Leishmaniasis. Processes 2023, 11, 3227. [Google Scholar] [CrossRef]
- Nessiem, M.A.; Safa’a, M.R.; Fayed, A.S.; Arafa, R.M. Comparative Study for Chiral Separation of Atracurium Besylate Isomers: Eco-friendly HPLC Using Lux Cellulose-3 Chiral Column, and TLC-Densitometry Approaches. Sustain. Chem. Pharm. 2024, 37, 101358. [Google Scholar] [CrossRef]
- Pretsch, E.; Bühlmann, P.; Affolter, C. Structure Determination of Organic Compounds; Springer: Berlin/Heidelberg, Germany, 2000; p. 108. [Google Scholar]
- Džodić, J.; Milenković, D.; Marković, M.; Marković, Z.; Dimić, D. Application of Quantum–Chemical Methods in the Forensic Prediction of Psychedelic Drugs’ Spectra (IR, NMR, UV–VIS, and MS): A Case Study of LSD and Its Analogs. Appl. Sci. 2023, 13, 2984. [Google Scholar] [CrossRef]
- Punyamurtula, U.; Brown, T.W.; Zhang, S.; George, A.; El-Deiry, W.S. Cancer Cell Seeding Density as a Mechanism of Chemotherapy Resistance: A Novel Cancer Cell Density Index Based on IC50-Seeding Density Slope (ISDS) to Assess Chemosensitivity. Am. J. Cancer Res. 2023, 13, 5914. [Google Scholar]
- Mohamed Abdoul-Latif, F.; Elmi, A.; Merito, A.; Nour, M.; Risler, A.; Ainane, A.; Ainane, T. Chemical Analysis of Essential Oils of Cymbopogon schoenanthus (L.) Spreng. and Nepeta azurea R. Br. ex Benth from Djibouti, In-Vitro Cytotoxicity Against Cancer Cell Lines and Antibacterial Activities. Appl. Sci. 2022, 12, 8699. [Google Scholar] [CrossRef]
- Gasteiger, J.; Becker, F.; Günnemann, S. GemNet: Universal Directional Graph Neural Networks for Molecules. Adv. Neural Inf. Process. Syst. 2021, 34, 6790–6802. [Google Scholar]
- Tokalı, F.S.; Şenol, H.; Ateşoğlu, Ş.; Tokalı, P.; Akbaş, F. Exploring Highly Selective Polymethoxy Fenamate Isosteres as Novel Anti-Prostate Cancer Agents: Synthesis, Biological Activity, Molecular Docking, Molecular Dynamics, and ADME Studies. J. Mol. Struct. 2025, 1319, 139519. [Google Scholar] [CrossRef]
- Ainane, T.; Abdoul-Latif, F.M.; Ainane, A.; Kornaros, M.; Rania, A.B.B.I.; Achira, M.; Brulé, M. Optimization by Design of Experiments of the Preparation of Biochar from Olive Pomace and Its Physicochemical Characterizations. J. Anal. Sci. Appl. Biotechnol. 2023, 5, 1–10. [Google Scholar]
- Feng, Y.C.; Huang, Y.C.; Ma, X.M. The Application of Student’s t-Test in Internal Quality Control of Clinical Laboratory. Front. Lab. Med. 2017, 1, 125–128. [Google Scholar] [CrossRef]
- Mohamed Abdoul-Latif, F.; Ainane, A.; Eddabbeh, F.E.; Oumaskour, K.; Mohamed, J.; Abu Arra, A.; Ainane, T. Assessment and Optimization of the Insecticidal Properties of γ-Al2O3 Nanoparticles Derived from Mentha pulegium By-Products to Xylosandrus crassiusculus (Carob Beetle). Molecules 2024, 29, 1205. [Google Scholar] [CrossRef]
Parameter | Maceration | Soxhlet | Calculated Value |
---|---|---|---|
Sample Size | n1 = 11 | n2 = 11 | - |
Mean | 2.2 | 1.0 | - |
Standard Deviation | s1 = 0.2 | s2 = 0.2 | - |
Degrees of Freedom | - | - | ν = 20 |
Pooled Standard Deviation | - | - | s * = 0.2 |
Test Statistic | - | - | texp = 16.3 |
Critical t-Value | - | - | tth = 2.1 |
Test Decision | - | - | Reject H0 (Significant Difference) |
Level | Temperature (°C) | Time (h) | Alcohol (%) |
---|---|---|---|
−1 | 25 | 12 | 50 |
0 | 30 | 18 | 75 |
+1 | 35 | 24 | 100 |
Trial | Temperature (°C) | Time (h) | Alcohol (%) | Yield (%) |
---|---|---|---|---|
1 | 25 | 12 | 75 | 3.1 |
2 | 35 | 12 | 75 | 2.2 |
3 | 25 | 24 | 75 | 2.1 |
4 | 35 | 24 | 75 | 1.7 |
5 | 25 | 18 | 50 | 2.4 |
6 | 35 | 18 | 50 | 2.1 |
7 | 25 | 18 | 100 | 2.6 |
8 | 35 | 18 | 100 | 2.0 |
9 | 30 | 12 | 50 | 2.3 |
10 | 30 | 24 | 50 | 2.2 |
11 | 30 | 12 | 100 | 2.1 |
12 | 30 | 24 | 100 | 1.9 |
13 | 30 | 18 | 75 | 2.1 |
Factor | Coefficient Estimate | Standard Error | VIF |
---|---|---|---|
Mean Yield | 2.2 | 0.1 | - |
Temperature (A) | −0.3 | 0.1 | 1.0 |
Time (B) | −0.2 | 0.1 | 1.0 |
Alcohol (C) | −0.1 | 0.1 | 1.0 |
Interaction AB | 0.1 | 0.1 | 1.0 |
Interaction AC | −0.1 | 0.1 | 1.0 |
Interaction BC | −0.1 | 0.1 | 1.0 |
Effect | Sum of Squares | Df | Mean Square | f-Value | p-Value |
---|---|---|---|---|---|
Model | 1.1 | 6 | 0.18 | 3.50 | 0.07 |
Temperature | 0.60 | 1 | 0.60 | 11.36 | 0.01 |
Time | 0.40 | 1 | 0.40 | 7.61 | 0.03 |
Alcohol | 0.02 | 1 | 0.02 | 0.37 | 0.56 |
Interaction Temperature:Time | 0.06 | 1 | 0.06 | 1.17 | 0.32 |
Interaction Temperature:Alcohol | 0.02 | 1 | 0.02 | 0.42 | 0.53 |
Interaction Time:Alcohol | 0.00 | 1 | 0.00 | 0.04 | 0.83 |
Residual | 0.31 | 6 | 0.05 | - | - |
Total | 1.44 | 12 | - | - | - |
Parameter | Value |
---|---|
Residual Standard Deviation | 0.2 |
R2 | 0.78 |
Adjusted R2 | 0.56 |
Coefficient of Variation (%) | 10.41 |
Predicted R2 | −0.20 |
Adequate Precision | 6.05 |
Compounds | U87-MG | U2OS | NCI-N87 | HCT116 | A2780 |
---|---|---|---|---|---|
Cynthichlorine | 0.162 ± 0.020 | 0.373 ± 0.040 | 0.576 ± 0.060 | 0.505 ± 0.055 | 0.529 ± 0.055 |
Cisplatin | 0.185 ± 0.025 | 0.002 ± 0.001 | 0.004 ± 0.001 | 0.455 ± 0.060 | 0.788 ± 0.085 |
Temozolomide | 0.003 ± 0.001 | 0.840 ± 0.095 | 0.795 ± 0.085 | 0.889 ± 0.095 | 0.811 ± 0.095 |
Oxaliplatin | 0.387 ± 0.045 | 0.421 ± 0.045 | 0.344 ± 0.040 | 0.002 ± 0.001 | 0.293 ± 0.095 |
Paclitaxel | 0.235 ± 0.030 | 0.166 ± 0.020 | 0.358 ± 0.040 | 0.255 ± 0.030 | 0.003 ± 0.001 |
Descriptors | Symbol | Equation | Numerical Value |
---|---|---|---|
Energy of the lowest unoccupied molecular orbital | ELUMO | - | −0.619 eV |
Energy of the highest occupied molecular orbital | EHOMO | - | −9.441 eV |
Energy gap | EGAP | 8.822 eV | |
Chemical hardness | η | 4.411 eV | |
Electronegativity | χ | 5.030 eV | |
Electrophilicity index | ω | 2.868 eV | |
Molecular flexibility | S | 0.113 eV−1 |
Proteins | Binding Affinity (kcal.mol−1) | pKi | Ligand Efficiency (kcal.mol−1) |
---|---|---|---|
8JUY | −6.5 | 4.77 | 0.3611 |
3BBB | −7.0 | 5.13 | 0.3889 |
8HPP | −5.4 | 3.96 | 0.3000 |
Parameters | 8JUY | 3BBB | 8HPP |
---|---|---|---|
Coordinates | x = 168.430 Å | x = −0.142 Å | x = −32.792 Å |
y = 152.569 Å | y = 0.219 Å | y = −49.105 Å | |
z = 156.243 Å | z = 43.267 Å | z = 6.061 Å | |
Dimensions | x = 144 Å | x = 76 Å | x = 104 Å |
y = 161 Å | y = 93 Å | y = 90 Å | |
z = 142 Å | z = 86 Å | z = 118 Å |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdoul-Latif, F.M.; Mohamed, H.; Houmed Aboubaker, I.; Saoudi, O.; Ainane, A.; Ali, A.M.; Cacciatore, S.; Zerbini, L.F.; Abourriche, A.; Ainane, T. Cynthichlorine Extracted from Ascidian Cynthia savignyi from Djibouti: Optimization of Extraction, In Vitro Anticancer Profiling, and In Silico Approach. Mar. Drugs 2025, 23, 172. https://doi.org/10.3390/md23040172
Abdoul-Latif FM, Mohamed H, Houmed Aboubaker I, Saoudi O, Ainane A, Ali AM, Cacciatore S, Zerbini LF, Abourriche A, Ainane T. Cynthichlorine Extracted from Ascidian Cynthia savignyi from Djibouti: Optimization of Extraction, In Vitro Anticancer Profiling, and In Silico Approach. Marine Drugs. 2025; 23(4):172. https://doi.org/10.3390/md23040172
Chicago/Turabian StyleAbdoul-Latif, Fatouma Mohamed, Houda Mohamed, Ibrahim Houmed Aboubaker, Omaima Saoudi, Ayoub Ainane, Ali Merito Ali, Stefano Cacciatore, Luiz Fernando Zerbini, Abdelmjid Abourriche, and Tarik Ainane. 2025. "Cynthichlorine Extracted from Ascidian Cynthia savignyi from Djibouti: Optimization of Extraction, In Vitro Anticancer Profiling, and In Silico Approach" Marine Drugs 23, no. 4: 172. https://doi.org/10.3390/md23040172
APA StyleAbdoul-Latif, F. M., Mohamed, H., Houmed Aboubaker, I., Saoudi, O., Ainane, A., Ali, A. M., Cacciatore, S., Zerbini, L. F., Abourriche, A., & Ainane, T. (2025). Cynthichlorine Extracted from Ascidian Cynthia savignyi from Djibouti: Optimization of Extraction, In Vitro Anticancer Profiling, and In Silico Approach. Marine Drugs, 23(4), 172. https://doi.org/10.3390/md23040172