Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (844)

Search Parameters:
Keywords = Triticum plants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

18 pages, 1602 KiB  
Article
Interacting Effects of Heat and Nanoplastics Affect Wheat (Triticum turgidum L.) Seedling Growth and Physiology
by Debora Fontanini, Stefania Bottega, Monica Ruffini Castiglione and Carmelina Spanò
Plants 2025, 14(15), 2426; https://doi.org/10.3390/plants14152426 - 5 Aug 2025
Abstract
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that [...] Read more.
Nano- and microplastic pollution, together with the ongoing rise in global temperatures driven by climate change, represent increasingly critical environmental challenges. Although these stressors often co-occur in the environment, their combined effects on plant systems remain largely unexplored. To test the hypothesis that their interaction may exacerbate the effects observed under each stressor individually, we investigated the response of seedlings of Triticum turgidum to treatments with fluorescent polystyrene nanoplastics under optimal (25 °C) and elevated (35 °C) temperature conditions. We evaluated seedling growth, photosynthetic pigment content, and oxidative stress markers using both biochemical and histochemical techniques. In addition, we assessed enzymatic and non-enzymatic antioxidant responses. The use of fluorescently labeled nanoplastics enabled the visualization of their uptake and translocation within plant tissues. Elevated temperatures negatively affect plant growth, increasing the production of proline, a key protective molecule, and weakly activating secondary defense mechanisms. Nanoplastics disturbed wheat seedling physiology, with these effects being amplified under high temperature conditions. Combined stress enhances nanoplastic uptake in roots, increases oxidative damage, and alters antioxidant responses, reducing defense capacity in leaves while triggering compensatory mechanisms in roots. These findings underscore a concerning interaction between plastic pollution and climate warming in crop plants. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

11 pages, 855 KiB  
Article
A Water Solution from the Seeds, Seedlings and Young Plants of the Corn Cockle (Agrostemma githago) Showed Plant-Growth Regulator Efficiency
by Jana Ambrožič-Dolinšek, Vid Golič, Víctor Rouco Saco, Petra Peranić, Veno Jaša Grujić and Terezija Ciringer
Plants 2025, 14(15), 2349; https://doi.org/10.3390/plants14152349 - 30 Jul 2025
Viewed by 243
Abstract
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material [...] Read more.
Corn cockle (Agrostemma githago L. (Lychnis githago (L.) Scop.)) is the main ingredient in some plant preparations for biostimulation in agriculture, and it elicits many positive responses. In our study, we attempted to determine if the fresh and dry plant material of A. githago contained auxin-like and cytokinin-like growth regulators (PGRs). Cucumis and mung bean bioassays were used to determine the presence of auxin-like PGRs and Cucumis and Triticum bioassays were used to determine the presence of cytokinin-like PGRs. A water solution derived from the crushed, homogenized and extracted seeds, fresh and dry seedlings, and fresh and dry young plants showed auxin-like activity in both bioassays. The activity in the Cucumis bioassay corresponded to 0.5 to 2 mg L−1 of Indole-3-butyric acid (IBA), and in the mung bean bioassay, the activity corresponded to 0.5 to 4 mg L−1 of IBA. While the same water solutions showed weak or no cytokinin-like activity in the Cucumis cotyledon expansion bioassay, and they showed an activity of approximately 0.5 to 1 mg L−1 of 6-Benzylaminopurine (BAP) in the Triticum bioassay. An LC-MS analysis confirmed the presence of free auxins, low levels of or no auxin analogues, a small amount of free cytokinins and a higher level of their cytokinin analogues in the samples, seeds, dry seedlings and young plants of A. githago, which was likely related to the fine-tuning between the free and analogue forms of the PGRs in the water solutions used in the experiments. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

19 pages, 2764 KiB  
Article
Reducing Nitrogen Fertilization Rate in Spring Wheat–Pea Rotation Sustains Spring Wheat Yield and Quality
by Upendra M. Sainju and Gautam P. Pradhan
Agronomy 2025, 15(8), 1806; https://doi.org/10.3390/agronomy15081806 - 26 Jul 2025
Viewed by 357
Abstract
The reduced N fertilization rate and N supplied by pea (Pisum sativum L.) residue may sustain subsequent spring wheat (Triticum aestivum L.) growth, yield, and quality. We examined the response of spring wheat growth, yield, and quality to cropping systems and [...] Read more.
The reduced N fertilization rate and N supplied by pea (Pisum sativum L.) residue may sustain subsequent spring wheat (Triticum aestivum L.) growth, yield, and quality. We examined the response of spring wheat growth, yield, and quality to cropping systems and N fertilization rates from 2012 to 2019 in the US northern Great Plains. Cropping systems were conventional till spring wheat–fallow (CTWF), no-till spring wheat–fallow (NTWF), no-till spring wheat–pea (NTWP), and no-till continuous wheat (NTCW), and N fertilization rates to spring wheat were 0, 50, 100, and 150 kg N ha−1. Wheat plant density and straw yield were 13–100% greater for CTWF and NTWF than NTWP and NTCW in most years. Wheat grain yield and protein concentration were also 15–115% greater for CTWF and NTWF than other cropping systems at most N fertilization rates and years. In contrast, wheat grain test weight was 1–2% lower for CTWF and NTWF at most N fertilization rates and years. Increasing N fertilization rate mostly increased grain yield and protein concentration but reduced grain test weight for most cropping systems and years. Although CTWF and NTWF with or without N fertilization increased wheat yield and quality, these practices are not sustainable due to reduced annualized yield, soil health, and environmental quality. Because of similar or greater grain yields and test weights among NTWP with 50 kg N ha−1 and NTWP and NTCW with other N rates, NTWP with reduced N rates may sustain spring wheat yield and grain size but not grain protein in the northern Great Plains. Full article
Show Figures

Figure 1

14 pages, 1410 KiB  
Article
Uptake, Distribution, and Activity of Pluronic F68 Adjuvant in Wheat and Its Endophytic Bacillus Isolate
by Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Astrid Jacobson, Joan E. McLean, Anne J. Anderson and David W. Britt
Agrochemicals 2025, 4(3), 12; https://doi.org/10.3390/agrochemicals4030012 - 23 Jul 2025
Viewed by 256
Abstract
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for [...] Read more.
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for direct biological activity in wheat. F68 binds to and inserts into lipid membranes, which may benefit crops under abiotic stress. F68’s interactions with Triticum aestivum (var Juniper) seedlings and a seed-borne Bacillus spp. endophyte are presented. At concentrations below 10 g/L, F68-primed wheat seeds exhibited unchanged emergence. Root-applied fluorescein-F68 (fF68) was internalized in root epidermal cells and concentrated in highly mobile endosomes. The potential benefit of F68 in droughted wheat was examined and contrasted with wheat treated with the osmolyte, glycine betaine (GB). Photosystem II activity of droughted plants dropped significantly below non-droughted controls, and no clear benefit of F68 (or GB) during drought or rehydration was observed. However, F68-treated wheat exhibited increased transpiration values (for watered plants only) and enhanced shoot dry mass (for watered and droughted plants), not observed for GB-treated or untreated plants. The release of seed-borne bacterial endophytes into the spermosphere of germinating seeds was not affected by F68 (for F68-primed seeds as well as F68 applied to roots), and the planktonic growth of a purified Bacillus spp. seed endophyte was not reduced by F68 applied below the critical micelle concentration. These studies demonstrated that F68 entered wheat root cells, concentrated in endosomes involved in transport, significantly promoted shoot growth, and showed no adverse effects to plant-associated bacteria. Full article
Show Figures

Figure 1

21 pages, 7180 KiB  
Article
Characteristics and Expression Profiles of Identified WRKY Genes in Barley Landraces Under Cold Stress
by Yuancheng Zhou, Yiling Wang, Ting Gao, Yongli Cao, Yong Yao, Yukun Zhao and Zhen Wang
Int. J. Mol. Sci. 2025, 26(14), 6948; https://doi.org/10.3390/ijms26146948 - 19 Jul 2025
Viewed by 239
Abstract
The WRKY gene family comprises important transcription factors widely distributed in plants and plays significant roles in the growth and development, diverse (biotic and abiotic) stress responses, and various biological processes. In the current study, 96 identified HvLWRKY genes were classified into three [...] Read more.
The WRKY gene family comprises important transcription factors widely distributed in plants and plays significant roles in the growth and development, diverse (biotic and abiotic) stress responses, and various biological processes. In the current study, 96 identified HvLWRKY genes were classified into three groups and seven subgroups. Among these, 89 genes possessed the conserved domain WRKYGQK. A total of ten motifs were harbored in HvLWRKY genes with two to four introns. Fragmental duplication was suggested to be the prime force that drove the evolution of HvLWRKY genes. A high degree of collinearity was observed between barley and Triticum spelta. Cis-elements of HvLWRKYs were closely associated with abiotic stress, light response, and hormone response; however, there were differences in the numbers among groups. HvLWRKY genes, even the paralogous gene pairs, from different clades were differentially regulated under cold treatments in two landraces. HvLWRKY33, 43, 44, 57, 65, and 77 were homologous with the relative AtWRKY genes in Arabidopsis thaliana. They are suggested to regulate abiotic and pathogen resistance of two barley landraces via SA and JA pathways. Meanwhile, some genes (for example, HvLWRKY1 and HvLWRKY32) were specifically expressed in either cold-tolerant or cold-sensitive landraces. Under cold stress, different cold-responsive patterns occurred in different barley landraces. These findings provide a foundation for further studies on cold resistance in barley landraces and offer new insights for application of WRKY genes in barley breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

23 pages, 4894 KiB  
Article
Evaluating Copper-Induced Oxidative Stress in Germinating Wheat Seeds Using Laser Photoacoustic Spectroscopy and EPR Techniques
by Mioara Petrus, Cristina Popa, Ana-Maria Bratu, Alexandra Camelia Joita and Vasile Bercu
Toxics 2025, 13(7), 604; https://doi.org/10.3390/toxics13070604 - 18 Jul 2025
Viewed by 389
Abstract
Copper is an essential micronutrient for plants, but excessive levels can induce toxicity and impair physiological functions. This study evaluates the toxic effects of copper sulfate (CuSO4) on the germination of common wheat (Triticum aestivum), with emphasis on the [...] Read more.
Copper is an essential micronutrient for plants, but excessive levels can induce toxicity and impair physiological functions. This study evaluates the toxic effects of copper sulfate (CuSO4) on the germination of common wheat (Triticum aestivum), with emphasis on the gas emission dynamics and oxidative stress biomarkers. Seeds were germinated in agar and exposed to CuSO4 at concentrations of 1 µM, 100 µM, 1 mM, and 10 mM; distilled water served as the control. Ethylene and ammonia emissions were quantified using CO2 laser photoacoustic spectroscopy, while electron paramagnetic resonance (EPR) spectroscopy was employed to detect free radicals and Cu2+ complexes. Exposure to Cu concentrations ≥ 1 mM significantly inhibited germination and biomass accumulation. Enhanced ethylene and ammonia emissions, particularly at 10 mM, indicated stress-related metabolic responses. The EPR spectra confirmed the presence of semiquinone radicals and Cu2+ complexes under higher Cu levels. These results demonstrate that photoacoustic and EPR techniques are effective tools for the early detection of metal-induced phytotoxicity and offer a non-invasive approach to environmental toxicity screening and plant stress assessment. Full article
Show Figures

Graphical abstract

15 pages, 1491 KiB  
Article
Impact of Plant Developmental Stage on Photosynthetic Acclimation to Elevated [CO2] in Durum Wheat
by Fernando Torralbo, Sergi Munné-Bosch, Carmen González-Murua and Iker Aranjuelo
Plants 2025, 14(14), 2224; https://doi.org/10.3390/plants14142224 - 18 Jul 2025
Viewed by 323
Abstract
The response of plants to elevated atmospheric [CO2] is highly dynamic and influenced by developmental stage, yet its role in photosynthetic acclimation remains underexplored. This study examines the physiological and molecular responses of wheat (Triticum durum, var. Amilcar) to [...] Read more.
The response of plants to elevated atmospheric [CO2] is highly dynamic and influenced by developmental stage, yet its role in photosynthetic acclimation remains underexplored. This study examines the physiological and molecular responses of wheat (Triticum durum, var. Amilcar) to elevated [CO2] (700 ppm vs. 400 ppm) at two distinct developmental stages: the vegetative stage at the end of the elongation stage and the reproductive stage at the beginning of ear emergence (Z39 and Z51, respectively). Wheat plants at the developmental stage Z39, cultivated under elevated [CO2], maintained photosynthetic rates despite a carbohydrate build-up. However, at Z51, photosynthetic acclimation became more evident as the decline in Rubisco carboxylation capacity (Vcmax) persisted, but also stomatal conductance and diffusion were decreased. This was accompanied by the up-regulation of the CA1 and CA2 genes, likely as a compensatory mechanism to maintain CO2 supply. Additionally, hormonal adjustments under elevated [CO2], including increased auxin and bioactive cytokinins (zeatin and isopentenyl adenine), may have contributed to delayed senescence and nitrogen remobilization, sustaining carbon assimilation despite biochemical constraints. These findings highlight the developmental regulation of photosynthetic acclimation, emphasizing the need for the stage-specific assessments of crop responses to future atmospheric conditions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

16 pages, 2780 KiB  
Article
Impact of Wheat Resistance Genes on Wheat Curl Mite Fitness and Wheat Streak Mosaic Dynamics Under Single and Mixed Infections
by Saurabh Gautam and Kiran R. Gadhave
Viruses 2025, 17(7), 1010; https://doi.org/10.3390/v17071010 - 18 Jul 2025
Viewed by 378
Abstract
The wheat curl mite (WCM, Aceria tosichella Keifer), a complex of eriophyid mite species, transmits wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), which in single or mixed infections cause wheat streak mosaic (WSM) disease—a major threat to wheat production across [...] Read more.
The wheat curl mite (WCM, Aceria tosichella Keifer), a complex of eriophyid mite species, transmits wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), which in single or mixed infections cause wheat streak mosaic (WSM) disease—a major threat to wheat production across the U.S. Great Plains. Resistant wheat cultivars bearing Cmc3 and Cmc4 (targeting WCM), Wsm1 and Wsm2 (targeting WSMV), and Wsm1 (targeting TriMV) are widely used to manage this pest–pathogen complex. However, comprehensive studies investigating how these resistance mechanisms influence both vector biology and virus transmission remain scarce. To address this gap, we evaluated disease development and WCM fitness across nine wheat cultivars with differential resistance profiles under single and mixed infections of WSMV and TriMV. We found strong viral synergy in co-infected plants, with TriMV accumulation markedly enhanced during mixed infections, irrespective of host genotype. Symptom severity and virus titers (both WSMV and TriMV) were highest in the cultivars carrying Wsm2, suggesting a potential trade-off in resistance effectiveness under mixed infection pressure. While mite development time (egg to adult) was unaffected by host genotype or infection status, mite fecundity was significantly reduced on infected plants carrying Wsm1 or Wsm2, but not on those with Cmc3 and Cmc4. Notably, virus accumulation in mites was reduced on the cultivars with Cmc3 and Cmc4, correlating with virus titers in the host tissues. Our findings highlight the complex interplay between host resistance, virus dynamics, and vector performance. Cultivars harboring Cmc3 and Cmc4 may offer robust field-level protection by simultaneously suppressing mite reproduction and limiting virus accumulation in both plant and vector. Full article
(This article belongs to the Special Issue Molecular and Biological Virus-Plant-Insect Vector Interactions)
Show Figures

Figure 1

24 pages, 836 KiB  
Article
Effect of Farming System and Irrigation on Physicochemical and Biological Properties of Soil Under Spring Wheat Crops
by Elżbieta Harasim and Cezary A. Kwiatkowski
Sustainability 2025, 17(14), 6473; https://doi.org/10.3390/su17146473 - 15 Jul 2025
Viewed by 321
Abstract
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: [...] Read more.
A field experiment in growing spring wheat (Triticum aestivum L.—cv. ‘Monsun’) under organic, integrated and conventional farming systems was conducted over the period of 2020–2022 at the Czesławice Experimental Farm (Lubelskie Voivodeship, Poland). The first experimental factor analyzed was the farming system: A. organic system (control)—without the use of chemical plant protection products and NPK mineral fertilization; B. conventional system—the use of plant protection products and NPK fertilization in the range and doses recommended for spring wheat; C. integrated system—use of plant protection products and NPK fertilization in an “economical” way—doses reduced by 50%. The second experimental factor was irrigation strategy: 1. no irrigation—control; 2. double irrigation; 3. multiple irrigation The aim of the research was to determine the physical, chemical, and enzymatic properties of loess soil under spring wheat crops as influenced by the factors listed above. The highest organic C content of the soil (1.11%) was determined in the integrated system with multiple irrigation of spring wheat, whereas the lowest one (0.77%)—in the conventional system without irrigation. In the conventional system, the highest contents of total N (0.15%), P (131.4 mg kg−1), and K (269.6 mg kg−1) in the soil were determined under conditions of multiple irrigation. In turn, the organic system facilitated the highest contents of Mg, B, Cu, Mn, and Zn in the soil, especially upon multiple irrigation of crops. It also had the most beneficial effect on the evaluated physical parameters of the soil. In each farming system, the multiple irrigation of spring wheat significantly increased moisture content, density, and compaction of the soil and also improved its total sorption capacity (particularly in the integrated system). The highest count of beneficial fungi, the lowest population number of pathogenic fungi, and the highest count of actinobacteria were recorded in the soil from the organic system. Activity of soil enzymes was the highest in the integrated system, followed by the organic system—particularly upon multiple irrigation of crops. Summing up, the present study results demonstrate varied effects of the farming systems on the quality and health of loess soil. From a scientific point of view, the integrated farming system ensures the most stable and balanced physicochemical and biological parameters of the soil due to the sufficient amount of nutrients supplied to the soil and the minimized impact of chemical plant protection products on the soil. The multiple irrigation of crops resulting from indications of soil moisture sensors mounted on plots (indicating the real need for irrigation) contributed to the improvement of almost all analyzed soil quality indices. Multiple irrigation generated high costs, but in combination with fertilization and chemical crop protection (conventional and integrated system), it influenced the high productivity of spring wheat and compensated for the incurred costs (the greatest profit). Full article
(This article belongs to the Special Issue Soil Fertility and Plant Nutrition for Sustainable Cropping Systems)
Show Figures

Figure 1

19 pages, 2405 KiB  
Article
Antifungal Activity of Quaternary Pyridinium Salts Against Fusarium culmorum in Wheat Seedlings
by Tamara Siber, Elena Petrović, Jasenka Ćosić, Valentina Bušić, Dajana Gašo-Sokač and Karolina Vrandečić
Appl. Sci. 2025, 15(14), 7889; https://doi.org/10.3390/app15147889 - 15 Jul 2025
Viewed by 233
Abstract
Wheat (Triticum aestivum L.) is a major cereal crop globally, but its production is increasingly threatened by fungal pathogens, particularly Fusarium culmorum (Wm. G. Sm.) Sacc., which causes seedling blight and root rot, leading to yield losses and mycotoxin contamination. Conventional control [...] Read more.
Wheat (Triticum aestivum L.) is a major cereal crop globally, but its production is increasingly threatened by fungal pathogens, particularly Fusarium culmorum (Wm. G. Sm.) Sacc., which causes seedling blight and root rot, leading to yield losses and mycotoxin contamination. Conventional control strategies, such as crop rotation and the use of fungicides, are often inadequate and contribute to the development of resistance, particularly with the overuse of similar modes of action. This study investigated quaternary pyridinium salts—nicotinamide and isonicotinamide derivatives—as potential sustainable antifungal agents. In vivo tests involved treating sterilized wheat seeds grown in sterile sand that had been inoculated with F. culmorum, using compounds previously confirmed to be active in vitro. Disease index, shoot and root length, and fresh and dry biomass were measured. Among the tested compounds, nicotinamide derivatives (2) and (3) showed the lowest disease index (0.9) at a concentration of 10 µg/mL. Most compounds promoted plant and root growth. Isonicotinamide derivatives (6) and (7) at 100 µg/mL increased root dry weight, while compound (6) at 10 µg/mL resulted in the most significant increase in plant length. These findings highlight the dual antifungal and growth-promoting potential of certain eco-friendly derivatives for managing F. culmorum and supporting wheat seedling development. Full article
Show Figures

Figure 1

20 pages, 2451 KiB  
Article
The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress
by Regina Azarkina, Arina Makeeva, Anna Mamaeva, Sergey Kovalchuk, Daria Ganaeva, Igor Tikhonovich and Igor Fesenko
Plants 2025, 14(14), 2168; https://doi.org/10.3390/plants14142168 - 14 Jul 2025
Viewed by 484
Abstract
Drought conditions impact plants at the morphological, physiological, and molecular levels. Plant tolerance to drought conditions is frequently associated with maintaining proteome stability, highlighting the significance of proteomic analysis in understanding the mechanisms underlying plant resilience. Here, we performed proteomic and peptidomic analysis [...] Read more.
Drought conditions impact plants at the morphological, physiological, and molecular levels. Plant tolerance to drought conditions is frequently associated with maintaining proteome stability, highlighting the significance of proteomic analysis in understanding the mechanisms underlying plant resilience. Here, we performed proteomic and peptidomic analysis of spring wheat (Triticum aestivum L.) under drought stress conditions. Using isobaric tags for relative and absolute quantitation (iTRAQ), we identified 497 and 157 differentially abundant protein (DAP) groups in leaves and roots, respectively. The upregulated DAP groups in leaves were primarily involved in stress responses, such as oxidative stress and heat response, whereas those in roots were associated with responses to water deprivation and sulfur compound metabolic processes. The analysis of the extracellular root peptidome revealed 2294 native peptides, including members of small secreted peptide (SSP) families. In the peptidomes of stress-induced plants, we identified 16 SSPs as well as peptides derived from proteins involved in cell wall catabolism, intercellular signaling, and stress response. These peptides represent potential candidates as regulators of drought responses. Our results help us to understand adaptation mechanisms and develop new agricultural technologies to increase productivity. Full article
Show Figures

Figure 1

16 pages, 5576 KiB  
Article
Functional Identification Reveals That TaTGA16-2D Promotes Drought and Heat Tolerance
by Jingna Ru, Jiamin Hao, Xiaoqian Ji, Bingqing Hao, Jiale Yang, Hongtao Wang, Baoquan Quan, Pengyan Guo, Jiping Zhao, Chao Wang, Huawei Shi and Zhaoshi Xu
Plants 2025, 14(14), 2125; https://doi.org/10.3390/plants14142125 - 9 Jul 2025
Viewed by 398
Abstract
The TGACG motif-binding factor (TGA) family is an important group of basic region/leucine zipper (bZIP) transcription factors in plants, playing crucial roles in plant development and stress responses. This study conducted a comprehensive genome-wide analysis of the TGA transcription factor (TF) family in [...] Read more.
The TGACG motif-binding factor (TGA) family is an important group of basic region/leucine zipper (bZIP) transcription factors in plants, playing crucial roles in plant development and stress responses. This study conducted a comprehensive genome-wide analysis of the TGA transcription factor (TF) family in common wheat (Triticum aestivum L.). A total of 48 wheat TGAs were identified and classified into four subgroups. Collinearity analysis of the TGAs between wheat and other species identified multiple duplicated gene pairs and highlighted the presence of highly conserved TGAs in wheat. Whole-genome and segmental duplications were identified as the primary drivers of TaTGA expansion. Expression pattern analysis indicated that TaTGAs are involved in plant development and responses to abiotic stresses, including drought, heat, and cold treatment. Among these, TaTGA16-2D was significantly upregulated under both drought and heat stresses, showing more than a five-fold increase in expression. Subcellular localization confirmed its nucleus localization. Functional validation through ectopic expression in Arabidopsis demonstrated that transgenic lines overexpressing TaTGA16-2D exhibited significantly improved stress tolerance. Under heat stress, the survival rates of transgenic lines exceeded 34%, compared to less than 18% in wild-type plants. Overall, this study provides valuable insights into the evolution and functional roles of TaTGAs and identifies TaTGA16-2D as a promising candidate to enhance abiotic stress tolerance in wheat via molecular breeding. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

12 pages, 2388 KiB  
Article
Secondary Metabolites of Bacillus zhangzhouensis from Zygophyllum oxianum and Their Antifungal and Plant Growth-Regulating Properties
by Zokir O. Toshmatov, Fazliddin A. Melikuziev, Ilkham S. Aytenov, Ma’ruf Z. Isokulov, Gulnaz Kahar, Tohir A. Bozorov and Daoyuan Zhang
Plants 2025, 14(13), 2058; https://doi.org/10.3390/plants14132058 - 4 Jul 2025
Viewed by 461
Abstract
Plant species harbor diverse rhizospheric bacteria within their resilient root zones, serving as a valuable reservoir of bioactive microorganisms with strong potential for natural antifungal and plant growth-promoting applications. This study aimed to investigate the antagonistic potential of Bacillus zhangzhouensis, isolated from [...] Read more.
Plant species harbor diverse rhizospheric bacteria within their resilient root zones, serving as a valuable reservoir of bioactive microorganisms with strong potential for natural antifungal and plant growth-promoting applications. This study aimed to investigate the antagonistic potential of Bacillus zhangzhouensis, isolated from Zygophyllum oxianum in the Aral Sea region, Uzbekistan, against the fungal pathogen Cytospora mali. Due to its strong antifungal activity, B. zhangzhouensis was selected for bioactive compound profiling. Methanolic extracts were fractionated via silica and Sephadex gel chromatography, followed by antifungal screening using the agar diffusion method. A highly active fraction (dichloromethane/methanol, 9:1) underwent further purification, yielding twelve antifungal sub-fractions. Mass spectrometry analysis across positive and negative ion modes identified 2475 metabolites, with polar solvents—particularly methanol—enhancing compound recovery. Refinement using Bacillus-specific references identified six known antibiotics. Four pure compounds were isolated and structurally characterized using NMR: oleanolic acid, ursolic acid, cyclo-(Pro-Ser), and uracil. Their growth regulatory activity was assessed on Amaranthus retroflexus, Nicotiana benthamiana, triticale, and Triticum aestivum at concentrations of 5, 20, 100, and 500 mg L−1. All compounds negatively affected root growth in a concentration-dependent manner, especially in monocots. Interestingly, some treatments enhanced stem growth, particularly in N. benthamiana. These findings indicate that B. zhangzhouensis produces diverse bioactive compounds with dual antifungal and plant growth-modulatory effects, highlighting its potential as a biocontrol agent and a source of natural bioactive compounds. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

Back to TopTop