The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress
Abstract
1. Introduction
2. Results
2.1. Morphological Changes in Wheat Plants Under Drought Stress
2.2. Drought Conditions Result in Significant Proteome Changes
2.3. Extracellular Peptides in Root Secretome Under Drought Conditions
3. Discussion
4. Materials and Methods
4.1. Plant Growth Conditions and Treatments
4.2. Protein Extraction
4.3. iTRAQ Labeling and Cation Exchange Fractionation
4.4. LC-MS/MS Analysis
4.5. Extracellular Peptides Extraction
4.6. Peptide and Protein Identification
4.7. Statistical Analysis
4.8. Analysis of Transcriptomic Data
4.9. Annotation Methods and Functional Enrichment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ABA | Abscisic acid |
CAPE | Cap-derived peptide |
CAT | Catalase |
DAPs | Differentially abundant proteins |
DAPgroups | Differentially abundant protein groups |
DHN | Dehydrin |
DIR | Dirigent protein |
iTRAQ | Isobaric tag for relative and absolute quantitation |
IDA | Inflorescence deficient in abscission |
JA | Jasmonic acid |
LC/MS | Liquid chromatography–mass spectrometry |
LEA | Late embryogenesis abundant |
ME | Malic enzyme |
NodGRP | Nodule-specific glycine-rich protein |
nsLTP | Non-specific lipid-transfer protein |
ORF | Open reading frame |
PEG | Polyethylene glycol |
POD | Peroxidase |
PSK | Phytosulfokine |
RuBisCO | Ribulose-1,5-bisphosphatecarboxylase/oxygenase |
ROS | Reactive oxygen species |
SA | Salicylic acid |
SOD | Superoxide dismutase |
SOT | Sulfotransferase |
SSP | Small secreted peptide |
SubIn | Subtilisin inhibitor |
TCA | Tricarboxylic acid cycle |
TCEP | Tris(2-carboxyethyl)phosphine |
TFA | Trifluoroacetic acid |
CAA | Chloroacetamide |
References
- Notaguchi, M.; Okamoto, S. Dynamics of Long-Distance Signaling via Plant Vascular Tissues. Front. Plant Sci. 2015, 6, 161. [Google Scholar] [CrossRef] [PubMed]
- Gebremeskel Haile, G.; Tang, Q.; Sun, S.; Huang, Z.; Zhang, X.; Liu, X. Droughts in East Africa: Causes, Impacts and Resilience. Earth-Sci. Rev. 2019, 193, 146–161. [Google Scholar] [CrossRef]
- Raza, A.; Mubarik, M.S.; Sharif, R.; Habib, M.; Jabeen, W.; Zhang, C.; Chen, H.; Chen, Z.-H.; Siddique, K.H.M.; Zhuang, W.; et al. Developing Drought-Smart, Ready-to-Grow Future Crops. Plant Genome 2023, 16, e20279. [Google Scholar] [CrossRef] [PubMed]
- Oguz, M.C.; Aycan, M.; Oguz, E.; Poyraz, I.; Yildiz, M. Drought Stress Tolerance in Plants: Interplay of Molecular, Biochemical and Physiological Responses in Important Development Stages. Physiologia 2022, 2, 180–197. [Google Scholar] [CrossRef]
- Hasan, H.; Uzma; Gul, A.; Amir, R.; Ali, M.; Kubra, G.; tuz Zahra Khan, F.; Yousaf, S.; Ajmal, K.B.; Naseer, H.; et al. Chapter 13—Role of Osmoprotectants and Drought Tolerance in Wheat. In Climate Change and Food Security with Emphasis on Wheat; Ozturk, M., Gul, A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 207–216. ISBN 978-0-12-819527-7. [Google Scholar]
- Samanta, S.; Seth, C.S.; Roychoudhury, A. The Molecular Paradigm of Reactive Oxygen Species (ROS) and Reactive Nitrogen Species (RNS) with Different Phytohormone Signaling Pathways During Drought Stress in Plants. Plant Physiol. Biochem. 2024, 206, 108259. [Google Scholar] [CrossRef]
- Reactive Oxygen Species and Antioxidant Defense in Plants Under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Available online: https://www.mdpi.com/2076-3921/9/8/681 (accessed on 2 July 2025).
- Hara, M. The Multifunctionality of Dehydrins: An Overview. Plant Signal. Behav. 2010, 5, 503–508. [Google Scholar] [CrossRef]
- Fang, Y.; Xiong, L. General Mechanisms of Drought Response and Their Application in Drought Resistance Improvement in Plants. Cell. Mol. Life Sci. 2015, 72, 673–689. [Google Scholar] [CrossRef] [PubMed]
- Wheat Drought Tolerance: Unveiling a Synergistic Future with Conventional and Molecular Breeding Strategies. Available online: https://www.mdpi.com/2223-7747/14/7/1053 (accessed on 2 July 2025).
- Okamoto, S.; Shinohara, H.; Mori, T.; Matsubayashi, Y.; Kawaguchi, M. Root-Derived CLE Glycopeptides Control Nodulation by Direct Binding to HAR1 Receptor Kinase. Nat. Commun. 2013, 4, 2191. [Google Scholar] [CrossRef]
- Imin, N.; Mohd-Radzman, N.A.; Ogilvie, H.A.; Djordjevic, M.A. The Peptide-Encoding CEP1 Gene Modulates Lateral Root and Nodule Numbers in Medicago Truncatula. J. Exp. Bot. 2013, 64, 5395–5409. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Lee, C.-Y.; Cheng, K.-T.; Chang, W.-H.; Huang, R.-N.; Nam, H.G.; Chen, Y.-R. Quantitative Peptidomics Study Reveals that a Wound-Induced Peptide from PR-1 Regulates Immune Signaling in Tomato. Plant Cell 2014, 26, 4135–4148. [Google Scholar] [CrossRef]
- Doblas, V.G.; Smakowska-Luzan, E.; Fujita, S.; Alassimone, J.; Barberon, M.; Madalinski, M.; Belkhadir, Y.; Geldner, N. Root Diffusion Barrier Control by a Vasculature-Derived Peptide Binding to the SGN3 Receptor. Science 2017, 355, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Haruta, M.; Sabat, G.; Stecker, K.; Minkoff, B.B.; Sussman, M.R. A Peptide Hormone and Its Receptor Protein Kinase Regulate Plant Cell Expansion. Science 2014, 343, 408–411. [Google Scholar] [CrossRef]
- Kumpf, R.P.; Shi, C.-L.; Larrieu, A.; Stø, I.M.; Butenko, M.A.; Péret, B.; Riiser, E.S.; Bennett, M.J.; Aalen, R.B. Floral Organ Abscission Peptide IDA and Its HAE/HSL2 Receptors Control Cell Separation During Lateral Root Emergence. Proc. Natl. Acad. Sci. USA 2013, 110, 5235–5240. [Google Scholar] [CrossRef]
- Stahl, Y.; Wink, R.H.; Ingram, G.C.; Simon, R. A Signaling Module Controlling the Stem Cell Niche in Arabidopsis Root Meristems. Curr. Biol. 2009, 19, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Tian, D.; Wang, T.; Zhang, A.; Elsadek, M.A.Y.; Liu, W.; Chen, L.; Guo, Y. Small Secreted Peptides (SSPs) in Tomato and Their Potential Roles in Drought Stress Response. Mol. Hortic. 2023, 3, 17. [Google Scholar] [CrossRef]
- Marshall, E.; Costa, L.M.; Gutierrez-Marcos, J. Cysteine-Rich Peptides (CRPs) Mediate Diverse Aspects of Cell–Cell Communication in Plant Reproduction and Development. J. Exp. Bot. 2011, 62, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.; Smith, S.; De Smet, I. Small Signaling Peptides in Arabidopsis Development: How Cells Communicate Over a Short Distance. Plant Cell 2012, 24, 3198–3217. [Google Scholar] [CrossRef]
- Takahashi, F.; Suzuki, T.; Osakabe, Y.; Betsuyaku, S.; Kondo, Y.; Dohmae, N.; Fukuda, H.; Yamaguchi-Shinozaki, K.; Shinozaki, K. A Small Peptide Modulates Stomatal Control via Abscisic Acid in Long-Distance Signalling. Nature 2018, 556, 235–238. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, X.; Zhang, Y.; Wang, J.; Yang, J.; Ishida, T.; Jiang, W.; Han, X.; Kang, J.; Wang, X.; et al. CLE9 Peptide-Induced Stomatal Closure Is Mediated by Abscisic Acid, Hydrogen Peroxide, and Nitric Oxide in Arabidopsis Thaliana. Plant Cell Environ. 2019, 42, 1033–1044. [Google Scholar] [CrossRef]
- Smith, S.; Zhu, S.; Joos, L.; Roberts, I.; Nikonorova, N.; Vu, L.D.; Stes, E.; Cho, H.; Larrieu, A.; Xuan, W.; et al. The CEP5 Peptide Promotes Abiotic Stress Tolerance, As Revealed by Quantitative Proteomics, and Attenuates the AUX/IAA Equilibrium in Arabidopsis. Mol. Cell. Proteom. 2020, 19, 1248–1262. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Lilley, C.J.; Urwin, P.E. Identification of Genes Involved in the Response of Arabidopsis to Simultaneous Biotic and Abiotic Stresses. Plant Physiol. 2013, 162, 2028–2041. [Google Scholar] [CrossRef] [PubMed]
- Reichardt, S.; Piepho, H.-P.; Stintzi, A.; Schaller, A. Peptide Signaling for Drought-Induced Tomato Flower Drop. Science 2020, 367, 1482–1485. [Google Scholar] [CrossRef]
- Patharkar, O.R.; Walker, J.C. Core Mechanisms Regulating Developmentally Timed and Environmentally Triggered Abscission. Plant Physiol. 2016, 172, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Yang, J.; Wang, Q.; Zhou, K.; Mao, K.; Ma, F. Overexpression of MdEPF2 Improves Water Use Efficiency and Reduces Oxidative Stress in Tomato. Environ. Exp. Bot. 2019, 162, 321–332. [Google Scholar] [CrossRef]
- Genome-Wide Identification of Epidermal Pattern Factor (EPF) Gene Family in Potato and Functional Characterization of StEPF4 in Regulating Drought Stress. Available online: https://www.mdpi.com/2073-4395/14/12/2948 (accessed on 2 July 2025).
- Liu, S.; Wang, C.; Jia, F.; An, Y.; Liu, C.; Xia, X.; Yin, W. Secretory Peptide PdEPF2 Enhances Drought Tolerance by Modulating Stomatal Density and Regulates ABA Response in Transgenic Arabidopsis thaliana. Plant Cell Tissue Organ Cult. 2016, 125, 419–431. Available online: https://link.springer.com/article/10.1007/s11240-016-0957-x (accessed on 2 July 2025). [CrossRef]
- Mamaeva, A.; Taliansky, M.; Filippova, A.; Love, A.J.; Golub, N.; Fesenko, I. The Role of Chloroplast Protein Remodeling in Stress Responses and Shaping of the Plant Peptidome. New Phytol. 2024, 227, 1326–1334. [Google Scholar] [CrossRef]
- Fesenko, I.; Azarkina, R.; Kirov, I.; Kniazev, A.; Filippova, A.; Grafskaia, E.; Lazarev, V.; Zgoda, V.; Butenko, I.; Bukato, O.; et al. Phytohormone Treatment Induces Generation of Cryptic Peptides with Antimicrobial Activity in the Moss Physcomitrella Patens. BMC Plant Biol. 2019, 19, 9. [Google Scholar] [CrossRef] [PubMed]
- Fesenko, I.A.; Arapidi, G.P.; Skripnikov, A.Y.; Alexeev, D.G.; Kostryukova, E.S.; Manolov, A.I.; Altukhov, I.A.; Khazigaleeva, R.A.; Seredina, A.V.; Kovalchuk, S.I.; et al. Specific Pools of Endogenous Peptides Are Present in Gametophore, Protonema, and Protoplast Cells of the Moss Physcomitrella Patens. BMC Plant Biol. 2015, 15, 87. [Google Scholar] [CrossRef]
- Filippova, A.; Lyapina, I.; Kirov, I.; Zgoda, V.; Belogurov, A.; Kudriaeva, A.; Ivanov, V.; Fesenko, I. Salicylic Acid Influences the Protease Activity and Posttranslation Modifications of the Secreted Peptides in the Moss Physcomitrella Patens. J. Pept. Sci. 2024, 25, e3138. [Google Scholar] [CrossRef]
- Khazigaleeva, R.A.; Vinogradova, S.V.; Petrova, V.L.; Fesenko, I.A.; Arapidi, G.P.; Kamionskaya, A.M.; Govorun, V.M.; Ivanov, V.T. Antimicrobial Activity of Endogenous Peptides of the Moss Physcomitrella Patens. Russ. J. Bioorg. Chem. 2017, 43, 248–254. [Google Scholar] [CrossRef]
- Lyapina, I.; Filippova, A.; Fesenko, I. The Role of Peptide Signals Hidden in the Structure of Functional Proteins in Plant Immune Responses. Int. J. Mol. Sci. 2019, 20, 4343. [Google Scholar] [CrossRef]
- Patel, N.; Mohd-Radzman, N.A.; Corcilius, L.; Crossett, B.; Connolly, A.; Cordwell, S.J.; Ivanovici, A.; Taylor, K.; Williams, J.; Binos, S.; et al. Diverse Peptide Hormones Affecting Root Growth Identified in the Medicago Truncatula Secreted Peptidome. Mol. Cell. Proteom. 2018, 17, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Meena, R.; Ramadas, S.; Tripathi, S.; Chander, S.; Chhokar, R.; Sharma, R. Hydro-Priming of Seed Improves the Water Use Efficiency, Grain Yield and Net Economic Return of Wheat Under Different Moisture Regimes. SAARC J. Agric. 2013, 11, 149–159. [Google Scholar] [CrossRef]
- Ghatak, A.; Chaturvedi, P.; Weckwerth, W. Cereal Crop Proteomics: Systemic Analysis of Crop Drought Stress Responses Towards Marker-Assisted Selection Breeding. Front. Plant Sci. 2017, 8, 757. [Google Scholar] [CrossRef]
- Yu, Y.; Zhu, D.; Ma, C.; Cao, H.; Wang, Y.; Xu, Y.; Zhang, W.; Yan, Y. Transcriptome Analysis Reveals Key Differentially Expressed Genes Involved in Wheat Grain Development. Crop J. 2016, 4, 92–106. [Google Scholar] [CrossRef]
- Iquebal, M.A.; Sharma, P.; Jasrotia, R.S.; Jaiswal, S.; Kaur, A.; Saroha, M.; Angadi, U.B.; Sheoran, S.; Singh, R.; Singh, G.P.; et al. RNAseq Analysis Reveals Drought-Responsive Molecular Pathways with Candidate Genes and Putative Molecular Markers in Root Tissue of Wheat. Sci. Rep. 2019, 9, 13917. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Hao, C.; Li, T.; Wang, H.; Zhang, X. Transcriptome Analysis of Roots from Wheat (Triticum Aestivum L.) Varieties in Response to Drought Stress. Int. J. Mol. Sci. 2023, 24, 7245. [Google Scholar] [CrossRef]
- Mao, H.; Li, S.; Wang, Z.; Cheng, X.; Li, F.; Mei, F.; Chen, N.; Kang, Z. Regulatory Changes in TaSNAC8-6A Are Associated with Drought Tolerance in Wheat Seedlings. Plant Biotechnol. J. 2024, 18, 1078–1092. [Google Scholar] [CrossRef]
- Niu, Y.; Li, J.; Sun, F.; Song, T.; Han, B.; Liu, Z.; Su, P. Comparative Transcriptome Analysis Reveals the Key Genes and Pathways Involved in Drought Stress Response of Two Wheat (Triticum aestivum L.) Varieties. Genomics 2023, 115, 110688. [Google Scholar] [CrossRef]
- Halder, T.; Choudhary, M.; Liu, H.; Chen, Y.; Yan, G.; Siddique, K.H.M. Wheat Proteomics for Abiotic Stress Tolerance and Root System Architecture: Current Status and Future Prospects. Proteomes 2022, 10, 17. [Google Scholar] [CrossRef]
- Ford, K.L.; Cassin, A.; Bacic, A. Quantitative Proteomic Analysis of Wheat Cultivars with Differing Drought Stress Tolerance. Front. Plant Sci. 2011, 2, 44. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, X.; Wang, L.; Wei, L.; Wu, Z.; You, M.; Li, B. Proteomic Analysis of Wheat Seed in Response to Drought Stress. J. Integr. Agric. 2014, 13, 919–925. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; He, Q.; Li, H.; Zhang, X.; Zhang, F. Comparative Proteomics Illustrates the Complexity of Drought Resistance Mechanisms in Two Wheat (Triticum aestivum L.) Cultivars under Dehydration and Rehydration. BMC Plant Biol. 2016, 16, 188. [Google Scholar] [CrossRef]
- Deng, X.; Liu, Y.; Xu, X.; Liu, D.; Zhu, G.; Yan, X.; Wang, Z.; Yan, Y. Comparative Proteome Analysis of Wheat Flag Leaves and Developing Grains Under Water Deficit. Front. Plant Sci. 2018, 9, 425. [Google Scholar] [CrossRef]
- Hao, P.; Zhu, J.; Gu, A.; Lv, D.; Ge, P.; Chen, G.; Li, X.; Yan, Y. An Integrative Proteome Analysis of Different Seedling Organs in Tolerant and Sensitive Wheat Cultivars Under Drought Stress and Recovery. Proteomics 2015, 15, 1544–1563. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, M.; Li, F.; Lv, H.; Li, C.; Xia, G. A Proteomic Study of the Response to Salinity and Drought Stress in an Introgression Strain of Bread Wheat. Mol. Cell. Proteom. 2009, 8, 2676–2686. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Sultan, M.A.R.F.; Liu, X.L.; Zhang, J.; Yu, F.; Zhao, H.X. Physiological and Comparative Proteomic Analysis Reveals Different Drought Responses in Roots and Leaves of Drought-Tolerant Wild Wheat (Triticum boeoticum). PLoS ONE 2015, 10, e0121852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lou, H.; Guo, D.; Zhang, R.; Su, M.; Hou, Z.; Zhou, H.; Liang, R.; Xie, C.; You, M.; et al. Identifying Changes in the Wheat Kernel Proteome Under Heat Stress Using iTRAQ. Crop J. 2018, 6, 600–610. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Lv, H.; Yu, Z.; Zhang, D.; Zhu, W. Identification of Changes in Triticum aestivum L. Leaf Proteome in Response to Drought Stress by 2D-PAGE and MALDI-TOF/TOF Mass Spectrometry. Acta Physiol. Plant 2014, 36, 1385–1398. [Google Scholar] [CrossRef]
- Faghani, E.; Gharechahi, J.; Komatsu, S.; Mirzaei, M.; Khavarinejad, R.A.; Najafi, F.; Farsad, L.K.; Salekdeh, G.H. Comparative Physiology and Proteomic Analysis of Two Wheat Genotypes Contrasting in Drought Tolerance. J. Proteom. 2015, 114, 1–15. [Google Scholar] [CrossRef]
- Yan, M.; Xue, C.; Xiong, Y.; Meng, X.; Li, B.; Shen, R.; Lan, P. Proteomic Dissection of the Similar and Different Responses of Wheat to Drought, Salinity and Submergence During Seed Germination. J. Proteom. 2020, 220, 103756. [Google Scholar] [CrossRef]
- Alvarez, S.; Hicks, L.M.; Pandey, S. ABA-Dependent and -Independent G-Protein Signaling in Arabidopsis Roots Revealed Through an iTRAQ Proteomics Approach. J. Proteome Res. 2011, 10, 3107–3122. [Google Scholar] [CrossRef] [PubMed]
- Tian, D.; Xie, Q.; Deng, Z.; Xue, J.; Li, W.; Zhang, Z.; Dai, Y.; Zheng, B.; Lu, T.; De Smet, I.; et al. Small Secreted Peptides Encoded on the Wheat (Triticum Aestivum L.) Genome and Their Potential Roles in Stress Responses. Front. Plant Sci. 2022, 13, 1000297. [Google Scholar] [CrossRef]
- Tokbaeva, A.A.; Satsyuk, K.A.; Cheng, X.; Ustinova, A.S.; Barakova, N.V. The Prospects of Application of Leningradskaya 6 Wheat in Ethyl Alcohol Technology. Process. Food Prod. Equip. 2019, 4, 95–101. [Google Scholar] [CrossRef]
- Mirskaya, G.V.; Khomyakov, Y.V.; Rushina, N.A.; Vertebny, V.E.; Chizhevskaya, E.P.; Chebotar, V.K.; Chesnokov, Y.V.; Pishchik, V.N. Plant Development of Early-Maturing Spring Wheat (Triticum aestivum L.) Under Inoculation with Bacillus sp. V2026. Plants 2022, 11, 1817. [Google Scholar] [CrossRef]
- Osmolovskaya, N.; Shumilina, J.; Kim, A.; Didio, A.; Grishina, T.; Bilova, T.; Keltsieva, O.A.; Zhukov, V.; Tikhonovich, I.; Tarakhovskaya, E.; et al. Methodology of Drought Stress Research: Experimental Setup and Physiological Characterization. Int. J. Mol. Sci. 2018, 19, 4089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, C.; Lu, W.; Wang, X.; Ma, B.; Fu, K.; Li, C.; Li, C. Comparative Analysis of Combined Phosphorus and Drought Stress-Responses in Two Winter Wheat. PeerJ 2022, 10, e13887. [Google Scholar] [CrossRef]
- Ge, S.X.; Jung, D.; Yao, R. ShinyGO: A Graphical Gene-Set Enrichment Tool for Animals and Plants. Bioinformatics 2020, 36, 2628–2629. [Google Scholar] [CrossRef]
- Kuromori, T.; Fujita, M.; Takahashi, F.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Inter-Tissue and Inter-Organ Signaling in Drought Stress Response and Phenotyping of Drought Tolerance. Plant J. 2022, 109, 342–358. [Google Scholar] [CrossRef]
- Stührwohldt, N.; Bühler, E.; Sauter, M.; Schaller, A. Phytosulfokine (PSK) Precursor Processing by Subtilase SBT3.8 and PSK Signaling Improve Drought Stress Tolerance in Arabidopsis. J. Exp. Bot. 2021, 72, 3427–3440. [Google Scholar] [CrossRef]
- Ohyama, K.; Ogawa, M.; Matsubayashi, Y. Identification of a Biologically Active, Small, Secreted Peptide in Arabidopsis by in Silico Gene Screening, Followed by LC-MS-Based Structure Analysis. Plant J. 2008, 55, 152–160. [Google Scholar] [CrossRef]
- Sauter, M. Phytosulfokine Peptide Signalling. J. Exp. Bot. 2015, 66, 5161–5169. [Google Scholar] [CrossRef]
- Nakayama, T.; Shinohara, H.; Tanaka, M.; Baba, K.; Ogawa-Ohnishi, M.; Matsubayashi, Y. A Peptide Hormone Required for Casparian Strip Diffusion Barrier Formation in Arabidopsis Roots. Science 2017, 355, 284–286. [Google Scholar] [CrossRef]
- Boschiero, C.; Dai, X.; Lundquist, P.K.; Roy, S.; Christian de Bang, T.; Zhang, S.; Zhuang, Z.; Torres-Jerez, I.; Udvardi, M.K.; Scheible, W.-R.; et al. MtSSPdb: The Medicago Truncatula Small Secreted Peptide Database1. Plant Physiol. 2020, 183, 399–413. [Google Scholar] [CrossRef]
- Casado-Vela, J.; Martínez-Esteso, M.J.; Rodriguez, E.; Borrás, E.; Elortza, F.; Bru-Martínez, R. iTRAQ-Based Quantitative Analysis of Protein Mixtures with Large Fold Change and Dynamic Range. Proteomics 2010, 10, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Riyazuddin, R.; Nisha, N.; Singh, K.; Verma, R.; Gupta, R. Involvement of Dehydrin Proteins in Mitigating the Negative Effects of Drought Stress in Plants. Plant Cell Rep. 2022, 41, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Huang, G.; Feng, F.; Liu, X.; Guo, R.; Gu, F.; Zhong, X.; Mei, X. iTRAQ-Based Quantitative Analysis of Responsive Proteins Under PEG-Induced Drought Stress in Wheat Leaves. Int. J. Mol. Sci. 2019, 20, 2621. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Gupta, S.K.; Majumder, B.; Maurya, V.K.; Deeba, F.; Alam, A.; Pandey, V. Salicylic Acid Mediated Growth, Physiological and Proteomic Responses in Two Wheat Varieties Under Drought Stress. J. Proteom. 2017, 163, 28–51. [Google Scholar] [CrossRef]
- Overexpression of the Wheat TaPsb28 Gene Enhances Drought Tolerance in Transgenic Arabidopsis. Available online: https://www.mdpi.com/1422-0067/24/6/5226 (accessed on 2 July 2025).
- Paniagua, C.; Bilkova, A.; Jackson, P.; Dabravolski, S.; Riber, W.; Didi, V.; Houser, J.; Gigli-Bisceglia, N.; Wimmerova, M.; Budínská, E.; et al. Dirigent Proteins in Plants: Modulating Cell Wall Metabolism During Abiotic and Biotic Stress Exposure. J. Exp. Bot. 2017, 68, 3287–3301. [Google Scholar] [CrossRef]
- Wang, S.; Wang, R.; Liang, D.; Ma, F.; Shu, H. Molecular Characterization and Expression Analysis of a Glycine-Rich RNA-Binding Protein Gene from Malus Hupehensis Rehd. Mol. Biol. Rep. 2012, 39, 4145–4153. [Google Scholar] [CrossRef]
- Gao, S.; Guo, W.; Feng, W.; Liu, L.; Song, X.; Chen, J.; Hou, W.; Zhu, H.; Tang, S.; Hu, J. LTP3 Contributes to Disease Susceptibility in Arabidopsis by Enhancing Abscisic Acid (ABA) Biosynthesis. Mol. Plant. Pathol. 2016, 17, 412–426. [Google Scholar] [CrossRef]
- Missaoui, K.; Gonzalez-Klein, Z.; Pazos-Castro, D.; Hernandez-Ramirez, G.; Garrido-Arandia, M.; Brini, F.; Diaz-Perales, A.; Tome-Amat, J. Plant Non-Specific Lipid Transfer Proteins: An Overview. Plant Physiol. Biochem. 2022, 171, 115–127. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, Y.; Gao, W.; Zhu, J.; Zhang, H.; Wang, Z.; Liu, C.; Li, X. Genome-Wide Characterization of Small Secreted Peptides in Nicotiana Tabacum and Functional Assessment of NtLTP25 in Plant Immunity. Physiol. Plant 2024, 176, e14436. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Xiao, C.; He, X.; Yang, X.; Tong, Z.; Wang, Z.; Sun, Z.; Qiu, W. A Novel Non-Specific Lipid Transfer Protein Gene, CmnsLTP6.9, Enhanced Osmotic and Drought Tolerance by Regulating ROS Scavenging and Remodeling Lipid Profiles in Chinese Chestnut (Castanea mollissima Blume). Plants 2023, 12, 3916. [Google Scholar] [CrossRef]
- Zhang, H.; Zeng, Y.; Seo, J.; Kim, Y.-J.; Kim, S.T.; Kwon, S.-W. Global Identification and Characterization of C2 Domain-Containing Proteins Associated with Abiotic Stress Response in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2022, 23, 2221. [Google Scholar] [CrossRef]
- Chen, J.; Gao, L.; Baek, D.; Liu, C.; Ruan, Y.; Shi, H. Detoxification Function of the Arabidopsis Sulphotransferase AtSOT12 by Sulphonation of Xenobiotics. Plant Cell Environ. 2015, 38, 1673–1682. Available online: https://onlinelibrary.wiley.com/doi/10.1111/pce.12525 (accessed on 28 November 2024). [CrossRef]
- Qi, J.; Song, C.P.; Wang, B.; Zhou, J.; Kangasjärvi, J.; Zhu, J.K.; Gong, Z. Reactive Oxygen Species Signaling and Stomatal Movement in Plant Responses to Drought Stress and Pathogen Attack. J. Integr. Plant Biol. 2018, 60, 805–826. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/JIPB.12654 (accessed on 28 November 2024). [CrossRef]
- Yang, Y.; Xu, L.; Hao, C.; Wan, M.; Tao, Y.; Zhuang, Y.; Su, Y.; Li, L. The microRNA408–Plantacyanin Module Balances Plant Growth and Drought Resistance by Regulating Reactive Oxygen Species Homeostasis in Guard Cells. Plant Cell 2024, 36, 4338–4355. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Kim, S.T.; Lord, E.M. Plantacyanin Plays a Role in Reproduction in Arabidopsis. Plant Physiol. 2005, 138, 778–789. [Google Scholar] [CrossRef]
- Kim, S.; Mollet, J.-C.; Dong, J.; Zhang, K.; Park, S.-Y.; Lord, E.M. Chemocyanin, a Small Basic Protein from the Lily Stigma, Induces Pollen Tube Chemotropism. Proc. Natl. Acad. Sci. USA 2003, 100, 16125–16130. [Google Scholar] [CrossRef]
- Jiang, A.; Guo, Z.; Pan, J.; Yang, Y.; Zhuang, Y.; Zuo, D.; Hao, C.; Gao, Z.; Xin, P.; Chu, J.; et al. The PIF1-miR408-PLANTACYANIN Repression Cascade Regulates Light-Dependent Seed Germination. Plant Cell 2021, 33, 1506–1529. [Google Scholar] [CrossRef] [PubMed]
- Moloi, S.J.; Ngara, R. The Roles of Plant Proteases and Protease Inhibitors in Drought Response: A Review. Front. Plant Sci. 2023, 14, 1165845. [Google Scholar] [CrossRef]
- Chojnacka, M.; Szewińska, J.; Mielecki, M.; Nykiel, M.; Imai, R.; Bielawski, W.; Orzechowski, S. A Triticale Water-Deficit-Inducible Phytocystatin Inhibits Endogenous Cysteine Proteinases In Vitro. J. Plant Physiol. 2015, 174, 161–165. [Google Scholar] [CrossRef] [PubMed]
- Groten, K.; Dutilleul, C.; van Heerden, P.D.; Vanacker, H.; Bernard, S.; Finkemeier, I.; Dietz, K.J.; Foyer, C.H. Redox Regulation of Peroxiredoxin and Proteinases by Ascorbate and Thiols during Pea Root Nodule Senescence. FEBS Lett. 2006, 580, 1269–1276. Available online: https://febs.onlinelibrary.wiley.com/doi/10.1016/j.febslet.2006.01.043 (accessed on 28 November 2024). [CrossRef]
- Quain, M.D.; Makgopa, M.E.; Márquez-García, B.; Comadira, G.; Fernandez-Garcia, N.; Olmos, E.; Schnaubelt, D.; Kunert, K.J.; Foyer, C.H. Ectopic Phytocystatin Expression Leads to Enhanced Drought Stress Tolerance in Soybean (Glycine max) and Arabidopsis Thaliana Through Effects on Strigolactone Pathways and Can Also Result in Improved Seed Traits. Plant Biotechnol. J. 2014, 12, 903–913. [Google Scholar] [CrossRef]
- Mangena, P. Phytocystatins and Their Potential Application in the Development of Drought Tolerance Plants in Soybeans (Glycine max L.). Protein Pept. Lett. 2020, 27, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Chien, P.-S.; Nam, H.G.; Chen, Y.-R. A Salt-Regulated Peptide Derived from the CAP Superfamily Protein Negatively Regulates Salt-Stress Tolerance in Arabidopsis. J. Exp. Bot. 2015, 66, 5301–5313. [Google Scholar] [CrossRef]
- Pishchik, V.N.; Filippova, P.S.; Mirskaya, G.V.; Khomyakov, Y.V.; Vertebny, V.E.; Dubovitskaya, V.I.; Ostankova, Y.V.; Semenov, A.V.; Chakrabarty, D.; Zuev, E.V.; et al. Epiphytic PGPB Bacillus Megaterium AFI1 and Paenibacillus Nicotianae AFI2 Improve Wheat Growth and Antioxidant Status Under Ni Stress. Plants 2021, 10, 2334. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil. 1950. Available online: https://openlibrary.org/books/OL25240089M/The_water-culture_method_for_growing_plants_without_soil (accessed on 1 July 2025).
- Faurobert, M.; Pelpoir, E.; Chaïb, J. Phenol Extraction of Proteins for Proteomic Studies of Recalcitrant Plant Tissues. Methods Mol. Biol. 2007, 355, 9–14. [Google Scholar] [CrossRef]
- Kovalchuk, S.I.; Ziganshin, R.; Shelukhina, I. Simple In-House Ultra-High Performance Capillary Column Manufacturing with the FlashPack Approach. J. Vis. Exp. 2021, 178, e62522. [Google Scholar] [CrossRef]
- Lyapina, I.; Fesenko, I. Intracellular and Extracellular Peptidomes of the Model Plant, Physcomitrium Patens. Methods Mol. Biol. 2024, 2758, 375–385. [Google Scholar] [CrossRef]
- Kumari, M.; Kapoor, R.; Devanna, B.N.; Varshney, S.; Kamboj, R.; Rai, A.K.; Sharma, T.R. iTRAQ Based Proteomic Analysis of Rice Lines Having Single or Stacked Blast Resistance Genes: Pi54/Pi54rh During Incompatible Interaction with Magnaporthe Oryzae. Physiol. Mol. Biol. Plants 2023, 29, 871–887. [Google Scholar] [CrossRef]
- Yang, M.; Dong, J.; Zhao, W.; Gao, X. Characterization of Proteins Involved in Early Stage of Wheat Grain Development by iTRAQ. J. Proteom. 2016, 136, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Li, M.; Harrison, M.T.; Fahad, S.; Wei, M.; Li, X.; Yin, L.; Sha, A.; Zhou, M.; Liu, K.; et al. iTRAQ Proteomic Analysis of Wheat (Triticum aestivum L.) Genotypes Differing in Waterlogging Tolerance. Front. Plant Sci. 2022, 13, 890083. [Google Scholar] [CrossRef] [PubMed]
- Unwin, R.D.; Griffiths, J.R.; Whetton, A.D. Simultaneous Analysis of Relative Protein Expression Levels Across Multiple Samples Using iTRAQ Isobaric Tags with 2D Nano LC–MS/MS. Nat. Protoc. 2010, 5, 1574–1582. [Google Scholar] [CrossRef]
- Waskom, M.L. Seaborn: Statistical Data Visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
- LaMar, D. FastQC. 2015. Available online: https://qubeshub.org/resources/fastqc (accessed on 1 December 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Ensembl Plants. Available online: https://plants.ensembl.org/index.html (accessed on 2 July 2025).
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A Fast Spliced Aligner with Low Memory Requirements. Nat. Methods 2015, 12, 357–360. Available online: https://www.nature.com/articles/nmeth.3317 (accessed on 2 July 2025). [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie Enables Improved Reconstruction of a Transcriptome from RNA-Seq Reads. Nat. Biotechnol. 2015, 33, 290–295. Available online: https://www.nature.com/articles/nbt.3122 (accessed on 2 July 2025). [CrossRef]
- Singh, U.; Wurtele, E.S. Orfipy: A Fast and Flexible Tool for Extracting ORFs. Bioinformatics 2021, 37, 3019–3020. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 Update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azarkina, R.; Makeeva, A.; Mamaeva, A.; Kovalchuk, S.; Ganaeva, D.; Tikhonovich, I.; Fesenko, I. The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress. Plants 2025, 14, 2168. https://doi.org/10.3390/plants14142168
Azarkina R, Makeeva A, Mamaeva A, Kovalchuk S, Ganaeva D, Tikhonovich I, Fesenko I. The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress. Plants. 2025; 14(14):2168. https://doi.org/10.3390/plants14142168
Chicago/Turabian StyleAzarkina, Regina, Arina Makeeva, Anna Mamaeva, Sergey Kovalchuk, Daria Ganaeva, Igor Tikhonovich, and Igor Fesenko. 2025. "The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress" Plants 14, no. 14: 2168. https://doi.org/10.3390/plants14142168
APA StyleAzarkina, R., Makeeva, A., Mamaeva, A., Kovalchuk, S., Ganaeva, D., Tikhonovich, I., & Fesenko, I. (2025). The Proteomic and Peptidomic Response of Wheat (Triticum aestivum L.) to Drought Stress. Plants, 14(14), 2168. https://doi.org/10.3390/plants14142168