Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,223)

Search Parameters:
Keywords = Ti alloys

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 24020 KB  
Article
Effect of TiB2 Content on Microstructure and Mechanical Properties of TiB2/Al-Zn-Mg-Cu Composites with High Zn Content
by Wenchao Sun, Zhilei Xiang, Jihao Li, Zian Yang, Yang Han and Ziyong Chen
Materials 2025, 18(22), 5191; https://doi.org/10.3390/ma18225191 (registering DOI) - 15 Nov 2025
Abstract
The addition of reinforcement particles can considerably improve the mechanical properties of 7xxx series aluminum alloy. In this work, the effects of TiB2 reinforcement particles on the microstructure, mechanical properties, strengthening mechanisms, and aging precipitation of TiB2/Al-Zn-Mg-Cu composites were systematically [...] Read more.
The addition of reinforcement particles can considerably improve the mechanical properties of 7xxx series aluminum alloy. In this work, the effects of TiB2 reinforcement particles on the microstructure, mechanical properties, strengthening mechanisms, and aging precipitation of TiB2/Al-Zn-Mg-Cu composites were systematically investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tensile testing machine. The results indicate that when the TiB2 content is 1 wt.%, the composite achieves a tensile strength of 831 MPa while maintaining an elongation of 6.7%, meeting the research objectives of this experiment. When the aging heat treatment temperature is set at 120 °C, the peak aging time is shortened to 20 h. The interfacial phase composed of solute elements preferentially nucleates near the TiB2 particles during the cooling process. With the increase in TiB2 content, clustering in localized regions slows down the diffusion rate of interfacial phases into the matrix, thereby increasing the required duration of the solution treatment. Excellent interfacial relationships exist between TiB2 particles and both the aluminum matrix and the MgZn2 phase. It is also found that with the increase in TiB2 content, the aging-hardness response of TiB2/Al-Zn-Mg-Cu composites is accelerated and the work hardening rate is reduced. In addition, a multi-component strengthening model for the yield strength of the composite was established based on various strengthening mechanisms, including second-phase strengthening, dislocation strengthening, age-precipitation strengthening, and fine-grain strengthening. The results indicate that age-precipitation strengthening and dislocation strengthening are the most significant contributors to strength in the composite. Full article
Show Figures

Figure 1

14 pages, 8489 KB  
Article
Effects of Rare Earth Elements on the Isothermal Oxidation of the Alumina-Scale-Forming NbSiTiAlHf Alloys
by Chang Jiang, Hui Zhao, Dan Wu, Song Zen, Youxing He, Xuebin Yang, Linwei Zhang, Jiuming Yu, Lei Lu and Wenfu Chen
Materials 2025, 18(22), 5182; https://doi.org/10.3390/ma18225182 - 14 Nov 2025
Abstract
The microstructures and oxidation behavior of the NbSiTiAlHf alloys doped with rare earth elements at 1300 °C were investigated. The nominal compositions of the selected alloys are Nb-13.5Si-23Ti-37Al-5Hf-0.5X (at.%), where X = Y, Dy, and La, respectively. It was shown that the whole [...] Read more.
The microstructures and oxidation behavior of the NbSiTiAlHf alloys doped with rare earth elements at 1300 °C were investigated. The nominal compositions of the selected alloys are Nb-13.5Si-23Ti-37Al-5Hf-0.5X (at.%), where X = Y, Dy, and La, respectively. It was shown that the whole scales were mainly composed of the major phases of Al2O3 and the minor phases of TiO2, where the TiO2 formed on the surface or in the upper layer of scales, for the undoped, Y, and Dy-doped alloy. But, for the 0.5 at.% La-doped alloys, the whole scales were constituted with the major phases of both Al2O3 and TiO2, and contained plenty of large voids. The 0.5 at.% Dy-doped alloys exhibited the lowest scale growth rate with the value of 1.87 × 10−11 cm2/s, and the benefits of Y on the oxidation rates were short-term, while 0.5 at.% La-doped alloys had the highest scale growth rate of 4.55 × 10−10 cm2/s compared with those of all the selected alloys. Then, the effects of Y, Dy, and La on the oxidation behavior of the alumina-scale-forming NbSiTiAlHf alloys were discussed. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

22 pages, 7928 KB  
Article
Oxidation-Resistant Ni-AlSi12 Composite Coating with Strong Adhesion on Ti-6Al-4V Alloy Substrate via Mechanical Alloying and Subsequent Laser Cladding
by Huanjian Xie, Luyan Xu, Jian Jiang, Haoge Shou, Hongzhang Hao and Ruizhi Feng
Coatings 2025, 15(11), 1329; https://doi.org/10.3390/coatings15111329 - 14 Nov 2025
Abstract
Two Ni-AlSi12 coatings were prepared using mechanical alloying (MA) and mechanical alloying followed by laser cladding (LC), respectively. Phase composition and microstructure variations caused by powder weight ratio and laser-specific energy were thoroughly analyzed in this study. Mechanical properties and oxidation behavior are [...] Read more.
Two Ni-AlSi12 coatings were prepared using mechanical alloying (MA) and mechanical alloying followed by laser cladding (LC), respectively. Phase composition and microstructure variations caused by powder weight ratio and laser-specific energy were thoroughly analyzed in this study. Mechanical properties and oxidation behavior are markedly improved by subsequent laser cladding. The MA-LC coating, characterized by high densification and crack-free properties, presents a homogeneous microstructure with refined features. Microhardness testing reveals a marked superiority of the MA-LC coating over the conventional MA coating. The nano-hardness of MA-LC coating is 9.79 GPa, exhibiting that it is 6.84 times the nano-hardness of the MA sample. Owing to metallurgical bonding, the MA-LC coating possesses excellent scratch bonding performance. The MA-LC coating shows favorable oxidation behavior, due to the following three reasons: Firstly, oxygen diffusion can be effectively blocked by the compact Al2O3 oxide layer developed on the MA-LC coating surface, which reduces the oxidation velocity. Secondly, the coating’s mean grain dimensions demonstrate an increasing tendency after oxidation, which reduces the grain boundary serving as the oxygen diffusion channel. This enhancement significantly improves the coating’s oxidation resistance. Thirdly, analysis of the coating’s respective kernel average misorientation (KAM) map revealed a significant release of internal stress following 100 h oxidation, which can improve the coating’s resistance to spallation. Full article
(This article belongs to the Special Issue Advances in Surface Welding Techniques for Metallic Materials)
Show Figures

Figure 1

14 pages, 3043 KB  
Article
First-Principles Study of AlCrFeMoTi High-Entropy Alloys
by Xiao Hu, Yilong Liu, Yunyun Wu, Shuliang Zou, Weiwei Xiao and Jinghao Huang
Symmetry 2025, 17(11), 1965; https://doi.org/10.3390/sym17111965 - 14 Nov 2025
Abstract
The AlCrFeMoTi high-entropy alloy exhibits promising application potential as a corrosion-resistant structural material in advanced nuclear energy systems, particularly in lead–bismuth fast reactors. In this present study, first-principles calculation based on the density functional theory was employed to investigate the phase and electronic [...] Read more.
The AlCrFeMoTi high-entropy alloy exhibits promising application potential as a corrosion-resistant structural material in advanced nuclear energy systems, particularly in lead–bismuth fast reactors. In this present study, first-principles calculation based on the density functional theory was employed to investigate the phase and electronic structure of AlCrFeMoTi HEA. The Gibbs free energy calculation results and XRD experimental results both indicate that the BCC phase is more stable for AlCrFeMoTi HEA. The atom distribution model was constructed according to the site preference of atoms occupying sublattices. The results indicate that alloying atoms have an obvious site preference. For example, Fe, Mo, and Cr atoms always prefer the 1a sublattice, while Al and Ti atoms tend to favor the 1b sublattice. And the atom site preference is temperature-sensitive. At 973 K, the site occupancy configuration is (Al5Cr16Fe26Mo17Ti0)1a(Al21Cr9Fe0Mo9Ti25)1b. Based on the steady-state phase structure, the band structure, density of states, and charge density were calculated. The electronic structure results show that metal bonds are formed between alloying elements in AlCrFeMoTi HEA, exhibiting strong metallic properties. Full article
(This article belongs to the Special Issue Feature Papers in Section "Engineering and Materials" 2025)
Show Figures

Figure 1

18 pages, 8857 KB  
Article
Biomimetic Porous Coatings on a Biocompatible Ti-15Mo Alloy as a Platform for Local Delivery of Anticancer Drugs to Patient Tissues
by Svetlana Gatina, Ruzil Farrakhov, Alfiz Gareev, Azat Sabitov, Nariman A. Enikeev, Natalia Anisimova and Mikhail Kiselevskiy
Biomedicines 2025, 13(11), 2779; https://doi.org/10.3390/biomedicines13112779 - 14 Nov 2025
Abstract
Background and Objectives: Currently, the development of local drug delivery systems for the treatment of cancer patients is a pressing issue. Such systems allow for the targeted delivery of anticancer drugs directly to the tumor site, ensuring prolonged drug release or reducing the [...] Read more.
Background and Objectives: Currently, the development of local drug delivery systems for the treatment of cancer patients is a pressing issue. Such systems allow for the targeted delivery of anticancer drugs directly to the tumor site, ensuring prolonged drug release or reducing the risk of recurrence after tumor removal, minimizing the impact on healthy tissues and thereby reducing the overall toxic load on the body. This work is devoted to evaluating the prospects of using scaffolds based on low-modulus titanium Ti-15Mo alloy with a biomimetic coating as a platform for the local administration of the cytostatic drug cisplatin into the patient’s body. Methods: Porous coatings were obtained by plasma electrolytic oxidation in an aqueous solution of sodium phosphate and calcium acetate with the addition of various components. The influence of coating parameters on the corrosion resistance of samples and on the antiproliferative effect of cisplatin-loaded scaffolds was evaluated. Human K562 hemoblastosis, HT116 intestinal cancer, and SKOV3 ovarian cancer cell lines were used as cell models. Results: It was shown that the addition of sodium phosphate (the PS type electrolyte) provides the formation of a coating with a developed system of interconnected pores characterized by an attractive combination of parameters: high porosity (17%), high pore size (3.9 μm), and considerable thickness (17.4 μm). This coating demonstrated the best corrosion resistance in a Ringer solution as compared to the other tested states. In addition, the PS coating loaded with cisplatin exhibited a pronounced cytotoxic effect on cancer cells. This effect was attributed to its ability to fix cisplatin on the surface, which slows down its release into the extracellular environment, increasing the time of its action, thereby contributing to a more effective (by more than 3 times) suppression of tumor cell proliferation compared to the action of the standard form of the drug in the form of a solution when changing the growth medium and subsequent incubation for 48 h. Conclusions: PS scaffolds made of low-modulus titanium alloy Ti-15Mo with a biomimetic surface in an electrolyte based on an aqueous solution of sodium phosphate and calcium acetate with the addition of sodium silicate can be used as an advanced platform for the local delivery of the cytostatic drug cisplatin, which makes them promising for application in orthopedic oncology. Full article
Show Figures

Figure 1

15 pages, 3120 KB  
Article
Towards Sustainable Manufacturing: Particle Emissions in Milling Post-Processing of 3D-Printed Titanium Alloy
by Fahad M. Alqahtani, Mustafa Saleh, Abdelaty E. Abdelgawad, Ibrahim A. Almuhaidib and Faisal Alessa
Machines 2025, 13(11), 1051; https://doi.org/10.3390/machines13111051 - 13 Nov 2025
Abstract
Electron beam melting (EBM) is an additive manufacturing method that enables the manufacturing of metallic parts. EBM-printed parts require post-processing to meet the surface quality and dimensional accuracy requirements. Machining is one approach that is beneficial for achieving these requirements. However, during machining, [...] Read more.
Electron beam melting (EBM) is an additive manufacturing method that enables the manufacturing of metallic parts. EBM-printed parts require post-processing to meet the surface quality and dimensional accuracy requirements. Machining is one approach that is beneficial for achieving these requirements. However, during machining, particles are emitted and can affect the environment and the operator’s health. This study aims to investigate the concentration of particles emitted during the milling of 3D-printed Ti6Al4V alloy produced by EBM. First, the influence of machining speed and cutting fluids, namely flood and minimum quantity lubricant (MQL), on particle emissions was statistically investigated. Then, the standby time required for the operator to safely open the machine door and interact with the machine within the machining area was studied. In this regard, two scenarios were proposed. In the first scenario, the machine door is open immediately after machining, and the operator waits until the particle concentration is acceptable. In the second, the machine door will be opened only when the particle concentration is acceptable. Statistical findings revealed that cutting fluids have a significant impact on particle emissions, exhibiting distinct patterns for both fine and coarse particles. Irrespective of the scenario, MQL results in higher particle concentration peaks and larger particle sizes, and the operator needs a longer standby time before interacting with the machine. For instance, the standby time in MQL is 328% more than that of the flood system. This study provides insight into sustainable manufacturing by taking into account social factors such as worker health and safety. Full article
(This article belongs to the Section Industrial Systems)
Show Figures

Figure 1

15 pages, 5937 KB  
Article
Effect of Mn Content and Heat Treatment on Microstructure and Properties of Laser Cladding of FeCoNiCrTi High-Entropy Alloy Coating
by Shibang Ma, Yicheng Zhou, Congzheng Zhang, Zhengchun Xu and Chengguo Fu
Materials 2025, 18(22), 5160; https://doi.org/10.3390/ma18225160 - 13 Nov 2025
Abstract
In this study, the effects of different Mn content and heat treatment on the microstructure and properties of CoCrFeNiTi coatings by laser cladding technology were investigated. Scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction were used to analyze the structure and composition. The [...] Read more.
In this study, the effects of different Mn content and heat treatment on the microstructure and properties of CoCrFeNiTi coatings by laser cladding technology were investigated. Scanning electron microscopy, energy-dispersive spectrometry, and X-ray diffraction were used to analyze the structure and composition. The hardness and wear resistance were tested by a microhardness tester and a friction-wear tester. The results show that there are many intermetallic compounds rich in Ti and Ni between the grains. As the Mn content increases, the coating gradually transitions from a dual-phase structure of BCC and FCC to a single FCC structure. The hardness of the coating decreases gradually with the increase in Mn content due to the change in the phase structure, while the friction coefficient decreases slightly at first and then increases significantly. The main wear mechanisms of the coating are adhesive wear and abrasive wear. After heat treatment at 600 °C, petal-like Laves precipitates appear. The average microhardness of CoCrFeNiTi coatings after heat treatment is lower than before treatment, and the friction coefficient is higher than before treatment. The average microhardness of the coating increases slightly with the increase in the treatment temperature. The average friction coefficient of the coating obtained after heat treatment at 600 °C is only 0.5941 because of its uniform microstructure. Therefore, it is reduced by approximately 15% compared with the base metal. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

10 pages, 2450 KB  
Article
Change in the Morphology of Alloy Corrosion Products Based on the FeAl Intermetallic Phase After Oxidation in Water Vapor at a Temperature of 700 °C for up to 2000 h
by Janusz Cebulski, Dorota Pasek, Maria Sozańska, Magdalena Popczyk, Jadwiga Gabor, Andrzej Swinarew and Jakub Wieczorek
Materials 2025, 18(22), 5150; https://doi.org/10.3390/ma18225150 - 12 Nov 2025
Viewed by 95
Abstract
The surface of the Fe40Al5Cr0.2TiB alloy, after oxidation in steam at 700 °C, showed a varied morphology dependent on oxidation time. Initially, a fine, acicular oxide layer formed, which over time transformed into a more compact, lumpy structure corresponding to the α-Al2 [...] Read more.
The surface of the Fe40Al5Cr0.2TiB alloy, after oxidation in steam at 700 °C, showed a varied morphology dependent on oxidation time. Initially, a fine, acicular oxide layer formed, which over time transformed into a more compact, lumpy structure corresponding to the α-Al2O3 phase. EDS analysis confirmed the dominance of aluminum and oxygen in the oxidation products, and XRD studies revealed the presence of the α-alumina phase. Optical profilometry revealed a significant increase in roughness parameters (Ra and Rz) after long-term exposure (2000 h), which correlates with the thickening and sinterization of the oxide layer. The obtained results indicate that in a water vapor environment, a stable α-Al2O3 phase can already be formed at a temperature of 700 °C, and its development leads to increased roughness. Full article
(This article belongs to the Special Issue Achievements in Foundry Materials and Technologies)
Show Figures

Figure 1

29 pages, 5981 KB  
Article
Determination of Annealing Temperature of Thin-Walled Samples from Al-Mn-Mg-Ti-Zr Alloys for Mechanical Properties Restoration of Defective Parts After SLM
by Nikita Nikitin, Roman Khmyrov, Pavel A. Podrabinnik, Nestor Washington Solis Pinargote, Anton Smirnov, Idarmachev Idarmach, Tatiana V. Tarasova and Sergey N. Grigoriev
J. Manuf. Mater. Process. 2025, 9(11), 371; https://doi.org/10.3390/jmmp9110371 - 12 Nov 2025
Viewed by 103
Abstract
The aim of this work is to investigate the effect of annealing (at temperatures ranging from 260 °C to 530 °C) of thin-walled Al-Mn-Mg-Ti-Zr samples manufactured by selective laser melting (SLM) on their tensile mechanical properties, hardness, and surface roughness. The results of [...] Read more.
The aim of this work is to investigate the effect of annealing (at temperatures ranging from 260 °C to 530 °C) of thin-walled Al-Mn-Mg-Ti-Zr samples manufactured by selective laser melting (SLM) on their tensile mechanical properties, hardness, and surface roughness. The results of this study may contribute to the development of post-processing modes for thin-walled products made of corrosion-resistant aluminum alloys with increased strength, manufactured using SLM technology. Hierarchical clustering methods allowed us to identify three groups of thin-walled samples with different strain-hardening mechanisms depending on the annealing temperature. The greatest hardening is achieved in the first group of samples annealed at 530 °C. Metallographic analysis showed that at this heat treatment temperature, there are practically no micropores (macrodefects) and microcracks. X-ray phase analysis showed the precipitation of Ti and Zr, as well as the formation of an intermetallic phase with a composition of Mg8Al16. At lower heat treatment temperatures, from 260 °C to 500 °C, the observed hardening is statistically significantly lower than at 530 °C. This phenomenon, combined with the formation of intermetallic phases and the precipitation of titanium/zirconium, contributes to the hardening of thin-walled Al-Mn-Mg-Ti-Zr alloy samples manufactured by SLM. The main results of this study show that the optimal strain hardening of thin-walled Al-Mn-Mg-Ti-Zr alloy samples manufactured by SLM is achieved by heat treatment at 530 °C for 1 h. The strengthening mechanism has two characteristics: (1) dispersion strengthening due to the formation of precipitates and (2) reduction in macrodefects at high temperatures. Full article
Show Figures

Figure 1

19 pages, 4975 KB  
Article
Low-Cost and High-Strength Titanium–Zirconium–Oxygen Alloy Prepared by Spark Plasma Sintering
by Hongliang Xiang, Qinchang Wu, Weixuan You, Xiaoqiang Cai, Wei Zhao, Ye Huang, Xiangkai Zhang and Chaochao Wu
Materials 2025, 18(22), 5138; https://doi.org/10.3390/ma18225138 - 12 Nov 2025
Viewed by 164
Abstract
Ti-Zr alloys are widely used in medical implants owing to their excellent biocompatibility. However, conventional alloying strategies to improve their performance often increase costs or introduce toxic elements. In this study, oxygen (O), a lightweight, cost-effective, and non-toxic element, was employed to strengthen [...] Read more.
Ti-Zr alloys are widely used in medical implants owing to their excellent biocompatibility. However, conventional alloying strategies to improve their performance often increase costs or introduce toxic elements. In this study, oxygen (O), a lightweight, cost-effective, and non-toxic element, was employed to strengthen Ti-Zr alloys. A novel Ti-Zr-O alloy was fabricated via spark plasma sintering (SPS), where the oxygen content was precisely controlled by incorporating TiO2 powder into the Ti-15Zr base powder. The sintered samples achieved a relative density above 99%, indicating nearly full densification under the optimized SPS conditions. Oxygen addition significantly refined the grain structure, while all O-containing samples maintained a uniform α-Ti phase with random crystal orientation. With increasing oxygen content, the compressive yield strength of the Ti-15Zr alloy increased from 619.24 MPa to 1634.18 MPa, accompanied by a decrease in compressive strain from 50.03% to 31.10%. These results demonstrate that the designed alloy combines superior yield strength with favorable ductility. Furthermore, quantitative analysis of the strengthening mechanisms revealed that oxygen atoms mainly occupy octahedral interstitial sites within the Ti-15Zr matrix, and solid-solution strengthening contributes more significantly than grain refinement. This work provides a promising route for the development of low-cost, high-performance Ti-Zr alloys for biomedical applications. Full article
Show Figures

Figure 1

21 pages, 3921 KB  
Article
Symmetry-Based Evaluation of Tool Coating Effects on the Machining Behavior of Ti-6Al-4V Using Micro-EDM
by Shailesh Shirguppikar, Vaibhav Ganachari, Marko Vulović, Andreja Stefanović, Pankaj B. Gavali, Nguyen Huu-Phan and Aleksandar Ašonja
Symmetry 2025, 17(11), 1935; https://doi.org/10.3390/sym17111935 - 11 Nov 2025
Viewed by 196
Abstract
Titanium alloy Ti-6Al-4V possesses excellent mechanical and corrosion-resistant properties; therefore, it is widely employed in aerospace, automotive, and biomedical fields. However, its poor machinability restricts traditional processing methods. To overcome this limitation, the current work presents a symmetry analysis approach to evaluate the [...] Read more.
Titanium alloy Ti-6Al-4V possesses excellent mechanical and corrosion-resistant properties; therefore, it is widely employed in aerospace, automotive, and biomedical fields. However, its poor machinability restricts traditional processing methods. To overcome this limitation, the current work presents a symmetry analysis approach to evaluate the effects of tool coating on the micro-electric discharge machining (micro-EDM) characteristics of Ti-6Al-4V. Tungsten carbide (WC) microelectrodes were fabricated in three forms: uncoated, copper-coated, and carbon-coated. The chemical vapor deposition (CVD) method was used to coat the carbon layer, and the integrity of the coating was confirmed by Energy-Dispersive X-ray Spectroscopy/Analysis (EDS/EDX). The effect of input variables—namely, voltage, capacitance, and spindle rotational speed—on two responses was studied—the machining depth (Z-axis displacement) and tool wear rate (TWR)—using a Taguchi L9 orthogonal array. Analysis conducted using Minitab statistical software 17 revealed that both voltage and capacitance contributed to the response parameters as optimized variables. The comparative study showed that the copper- and carbon-coated WC microtool could obtain a better Z coordinate and lower tool wear ratio compared with those of the uncoated tool. The findings confirm that applying thin conductive coatings to WC tools can significantly improve the stability, precision, and overall symmetry of the micro-EDM process when machining difficult-to-cut titanium alloys. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Smart Manufacturing)
Show Figures

Figure 1

19 pages, 12800 KB  
Article
Fatigue Behavior and Life Prediction of L-PBF Ti64 with Critical Plane Based Small Building Direction Variations Under Non-Proportional and Multiaxial Loading
by Tian-Hao Ma, Yu-Xin Wang, Le Chang, Wei Zhang, Jian-Ping Zhao and Chang-Yu Zhou
Materials 2025, 18(22), 5122; https://doi.org/10.3390/ma18225122 - 11 Nov 2025
Viewed by 130
Abstract
Multiaxial low-cycle fatigue (MLCF) behavior of laser powder bed fused (L-PBF) Ti-6Al-4V was systematically investigated with four building direction (BD) in this paper. Proportional and non-proportional strain-controlled MLCF tests characterized cyclic softening and fracture mechanisms. L-PBF Ti-6Al-4V exhibits three-stage cyclic softening with occasional [...] Read more.
Multiaxial low-cycle fatigue (MLCF) behavior of laser powder bed fused (L-PBF) Ti-6Al-4V was systematically investigated with four building direction (BD) in this paper. Proportional and non-proportional strain-controlled MLCF tests characterized cyclic softening and fracture mechanisms. L-PBF Ti-6Al-4V exhibits three-stage cyclic softening with occasional initial hardening, while non-proportional softening predominates, contrasting with conventional titanium alloys. Macro-micro characterization reveals that defect density and cleavage morphology strongly influence fatigue performance across BD. Fatigue life was predicted using analytical models (FS and KBMP) and a hybrid physics- and data-driven VAE-ANN model. While the KBMP model improves predictions over FS, both fail to fully account for BD effects. Incorporating macro-micro features, the VAE-ANN model achieves highly accurate MLCF life predictions within 10% error. These results highlight the critical roles of BD and microstructural characteristics in governing the MLCF behavior of L-PBF Ti-6Al-4V. Full article
Show Figures

Figure 1

18 pages, 4490 KB  
Article
Influence of Layer Configuration on the Mechanical, Tribological and Corrosion Performance of Ti/TiN Multilayer Coatings
by Zarina Aringozhina, Nurtoleu Magazov, Bauyrzhan Rakhadilov, Yelaman Batanov, Ainur Serikbaikyzy and Arystanbek Kussainov
Coatings 2025, 15(11), 1313; https://doi.org/10.3390/coatings15111313 - 11 Nov 2025
Viewed by 187
Abstract
This study investigates the influence of multilayer architecture on the mechanical, corrosion, and tribological properties of Ti/TiN coatings deposited on biomedical Ti-6Al-4V alloy. Nine multilayer configurations were prepared by DC/RF magnetron sputtering using metallic Ti and ceramic TiN targets, with a fixed TiN/Ti [...] Read more.
This study investigates the influence of multilayer architecture on the mechanical, corrosion, and tribological properties of Ti/TiN coatings deposited on biomedical Ti-6Al-4V alloy. Nine multilayer configurations were prepared by DC/RF magnetron sputtering using metallic Ti and ceramic TiN targets, with a fixed TiN/Ti ratio of 3:1 and varying total numbers of layers (3, 5, and 7) and deposition times (30, 60, and 120 min). A strict application of the 10% indentation depth rule was implemented to eliminate substrate effects, which revealed significantly higher intrinsic hardness values (540–740 HV) and indentation moduli (124–143 GPa) compared to the substrate (353 HV; 114 GPa). In contrast, conventional higher-load testing underestimated coating performance due to substrate dominance. Among the investigated architectures, the Ti/TiN-7 configuration exhibited the best balance of properties, combining high hardness (~690 HV), modulus (~137 GPa), improved corrosion resistance (Ecorr up to −0.13 V, Icorr reduced by an order of magnitude), and stable abrasive wear behavior. These findings demonstrate that both bilayer number and deposition time critically determine the mechanical and functional response of Ti/TiN multilayers. The results provide practical guidelines for the reliable characterization and design of multilayer coatings for biomedical and aerospace applications. Full article
(This article belongs to the Section Tribology)
Show Figures

Figure 1

12 pages, 4017 KB  
Article
Surface and Biocompatibility Outcomes of Chemical Decontamination in Peri-Implantitis Management
by Alexandru Mester, Simion Bran, Marioara Moldovan, Ioan Petean, Lucian Barbu Tudoran, Codruta Sarosi, Andra Piciu and Dragos Ene
Biomedicines 2025, 13(11), 2748; https://doi.org/10.3390/biomedicines13112748 - 10 Nov 2025
Viewed by 198
Abstract
Background and Objectives: Peri-implantitis is a biologically driven complication that jeopardizes dental implant longevity. While chemical decontamination is frequently employed as an adjunct to mechanical debridement, its impact on implant surface integrity and cellular compatibility remains insufficiently defined. This study aimed to evaluate [...] Read more.
Background and Objectives: Peri-implantitis is a biologically driven complication that jeopardizes dental implant longevity. While chemical decontamination is frequently employed as an adjunct to mechanical debridement, its impact on implant surface integrity and cellular compatibility remains insufficiently defined. This study aimed to evaluate the effects of several chemical agents used in peri-implantitis treatment on the surface morphology and potential biocompatibility of titanium dental implants. Materials and Methods: Twenty-five Ti6Al4V implants were exposed to one of the following agents: saline solution, 3% hydrogen peroxide, 40% citric acid, 17% EDTA, and a mixture (1:1) of citric (2%) and phosphoric (1N) acids. This in vitro study employed a 7-day immersion protocol to accentuate surface effects under controlled laboratory conditions, acknowledging that clinical exposures are substantially shorter. Surface topography was evaluated by Atomic Force Microscopy, while cellular response and corrosion products were assessed using Scanning Electron Microscopy. Surface roughness parameters were statistically analyzed. Results: Hydrogen peroxide induced selective corrosion of the β phase and formed a compact passivation layer that supported mesenchymal stem cell adhesion. Citric acid etched grain boundaries, producing localized roughness that also permitted cell proliferation. EDTA caused advanced grain dissolution and debris accumulation, increasing surface roughness but impairing cellular adhesion. The citric–phosphoric acid mixture led to the highest roughness values and visible corrosion debris. In all cases, macrostructural integrity of the implants was preserved. Conclusions: Chemical agents used in peri-implantitis treatment induce distinct surface alterations on titanium implants. Controlled use of hydrogen peroxide and citric acid may enhance surface biocompatibility, while aggressive protocols such as EDTA and acid combinations require caution due to their adverse effects on surface morphology and cellular response. These findings may inform the development of optimized decontamination protocols for clinical management of peri-implantitis. Full article
(This article belongs to the Special Issue Biomedicine in Dental and Oral Rehabilitation)
Show Figures

Figure 1

15 pages, 6894 KB  
Article
Parametric Finite Element Investigation of Hip Prosthesis Design: Influence of Trunnion Extension and Orientation Angles
by Mattia Concari, Gianfranco D’Avino and Michele Bertolini
Prosthesis 2025, 7(6), 144; https://doi.org/10.3390/prosthesis7060144 - 10 Nov 2025
Viewed by 185
Abstract
Purpose: This study investigates the static mechanical behavior of a non-modular metallic hip prosthesis through Finite Element Method (FEM) simulations, assessing compliance with ASTM F2996-13 standards. The analysis specifically evaluates how key geometric parameters, such as trunnion extension and orientation angles (adduction and [...] Read more.
Purpose: This study investigates the static mechanical behavior of a non-modular metallic hip prosthesis through Finite Element Method (FEM) simulations, assessing compliance with ASTM F2996-13 standards. The analysis specifically evaluates how key geometric parameters, such as trunnion extension and orientation angles (adduction and flexion), affect stress distributions within the prosthesis. Methodology: A three-dimensional finite element model of a Ti6Al4V alloy hip stem was developed. Boundary and loading conditions were defined according to the standard: the distal portion of the stem was fully constrained 90 mm below the head center, and a static load of 2300 N was applied at the head center along the directions defined by the adduction and flexion angles. A mesh sensitivity analysis was conducted to ensure convergence, and stresses were evaluated. Parametric analyses varying trunnion extension and orientation angles were performed to quantify their impact on local stress concentration. Results: The findings revealed that even minor deviations in the adduction and flexion angles significantly impact the stress distribution, with the potting-level region being particularly sensitive. Additionally, the extension of the trunnion led to notably increased stress concentrations, especially at the prosthesis neck, highlighting its critical influence in implant design. Conclusions: Comparison with existing literature and standard reference data exposed discrepancies primarily attributed to variations in FEM model setups and parameter selections. This emphasizes the necessity of clearly specifying trunnion extension and orientation angles in numerical analyses to ensure consistent stress predictions, supporting the development of safer and longer-lasting hip implants. Future research should extend these analyses to different prosthesis geometries, aiming to develop generalized predictive frameworks applicable to diverse biomechanical scenarios. Full article
(This article belongs to the Special Issue Finite Element Analysis in Prosthesis and Orthosis Research)
Show Figures

Figure 1

Back to TopTop