Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Thymbra capitata essential oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 770 KiB  
Article
Essential Oils from Wild Albanian Lamiaceae: GC-MS Profiling, Biological Activity, and Enhanced Delivery via Nanoencapsulation
by Elton Basha, Erjon Mamoçi, Aniket Sharma, Entela Hodaj-Çeliku, Sanije Zejnelhoxha, Mădălina L. Medeleanu, Sonia A. Socaci and Bledar Bisha
Molecules 2025, 30(16), 3329; https://doi.org/10.3390/molecules30163329 - 9 Aug 2025
Viewed by 350
Abstract
The growing demand for natural preservatives has driven interest in essential oils (EOs) from medicinal and aromatic plants. This study examines the potential of EOs from six wild populations of Albanian Lamiaceae, specifically Origanum vulgare subsp. hirtum, Thymbra capitata, and [...] Read more.
The growing demand for natural preservatives has driven interest in essential oils (EOs) from medicinal and aromatic plants. This study examines the potential of EOs from six wild populations of Albanian Lamiaceae, specifically Origanum vulgare subsp. hirtum, Thymbra capitata, and Satureja montana species, to be utilized for food conservation, among other possible uses. The EOs were extracted by hydrodistillation, and their chemical profiles were analyzed through GC-MS. DPPH and ABTS assays were performed to evaluate antioxidant activity. The antimicrobial efficacy of the oils was assessed using the broth microdilution method against six common foodborne pathogens: Salmonella enterica serovar Enteritidis, Escherichia coli, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Micrococcus luteus, and one fungus, Candida albicans. The most potent EOs in terms of yield and biological activity, resulting from O. vulgare subsp. hirtum and T. capitata, were encapsulated in oil-in-water emulsions, which were characterized for particle size and zeta potential. The results show that the populations of O.vulgare subsp. hirtum and T. capitata taken in the study belong to carvacrol chemotypes, and their EOs show strong antioxidant activity and are effective against all tested microorganisms. Nanoemulsions prepared with these EOs showed promising stability, indicating their potential as natural preservatives in food applications. Full article
(This article belongs to the Special Issue Natural Products: Extraction, Analysis and Biological Activities)
Show Figures

Graphical abstract

14 pages, 1796 KiB  
Article
In Vitro Efficacy of Thymbra capitata (L.) Cav. Essential Oil Against Olive Phytopathogenic Fungi
by Gabriele Simone, Margherita Campo, Silvia Urciuoli, Lorenzo Moncini, Maider Giorgini, Francesca Ieri and Pamela Vignolini
Microorganisms 2025, 13(7), 1503; https://doi.org/10.3390/microorganisms13071503 - 27 Jun 2025
Viewed by 416
Abstract
In recent years, the excessive use of pesticides has raised environmental and health concerns, which has led to research into natural alternatives. Essential oils may represent a sustainable solution to this problem. In this study, essential oils from Thymbra capitata (L.) Cav., Eucalyptus [...] Read more.
In recent years, the excessive use of pesticides has raised environmental and health concerns, which has led to research into natural alternatives. Essential oils may represent a sustainable solution to this problem. In this study, essential oils from Thymbra capitata (L.) Cav., Eucalyptus globulus Labill, and Mentha piperita L. were analyzed by GC–MS and tested in vitro using the poisoned food technique against six olive pathogen fungi: Alternaria sp., Arthrinium marii, Colletotrichum acutatum, Fomitiporia mediterranea, Fusarium solani, and Verticillium dahliae. T. capitata essential oil (0.1 g/L) showed the highest antifungal activity when compared to E. globulus and M. piperita essential oils, which exhibited significantly lower efficacy against the tested olive phytopathogenic fungi. GC–MS analysis revealed that carvacrol is the main compound (76.1%) in T. capitata essential oil. A comparison of the inhibitory effect of T. capitata essential oil (0.1 g/L) and carvacrol (0.07 g/L) on selected fungal strains showed similar results, with carvacrol slightly more effective, although the differences were mostly statistically insignificant, except for C. acutatum. To the authors knowledge, this is the first study demonstrating the inhibitory effect of Thymbra capitata essential oil against A. marii and F. mediterranea. The results of this study represent a basis for the development of new biochemical biopesticides based on T. capitata essential oil as a useful tool for the contrast of some fungal olive tree diseases. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

16 pages, 1432 KiB  
Article
Modulation of Antimicrobial Resistance in Listeria monocytogenes via Synergistic Interactions Between Thymbra capitata L. (Cav.) Essential Oil and Conventional Antibiotics
by Francesca Maggio, Francesco Buccioni, Stefania Garzoli, Antonello Paparella and Annalisa Serio
Antibiotics 2025, 14(6), 623; https://doi.org/10.3390/antibiotics14060623 - 19 Jun 2025
Viewed by 825
Abstract
Background/Objectives: Antimicrobial resistance (AMR) poses a significant global health challenge, contributing to foodborne infections and diminishing the effectiveness of conventional antibiotics. In the quest for alternative strategies to mitigate resistance, this study has assessed the potential of T. capitata L. (Cav.) essential oil [...] Read more.
Background/Objectives: Antimicrobial resistance (AMR) poses a significant global health challenge, contributing to foodborne infections and diminishing the effectiveness of conventional antibiotics. In the quest for alternative strategies to mitigate resistance, this study has assessed the potential of T. capitata L. (Cav.) essential oil (TEO) to boost the antibiotic efficacy on L. monocytogenes. Methods: Five L. monocytogenes strains of different origins were tested with TEO alone and in combination with gentamicin, ampicillin, and penicillin G. Moreover, the cells were exposed to sublethal concentrations of TEO for 1 h to evaluate the effects on the antibiotic effectiveness. The antimicrobial activity was assessed by determining the Minimum Inhibitory (MICs) and Bactericidal Concentrations (MBCs), while potential interactions were evaluated using the Fractional Inhibitory Concentration Index and by studying the cell growth dynamics. Results: TEO demonstrated inhibitory activity against L. monocytogenes strains, both alone, in pre-exposure, and in combination with antibiotics, causing up to a seven-fold reduction in MIC and MBC values (from 8 to 1 µg/mL) and restoring susceptibility to the antimicrobial treatments. Positive interactions between TEO and antibiotics were observed, particularly for clinical isolates. Conclusions: TEO could be a promising antibiotic adjuvant in antimicrobial treatments, offering a natural and effective strategy to enhance antibiotic efficacy and to counteract resistance in L. monocytogenes. Full article
(This article belongs to the Special Issue The Search for Antimicrobial Agents from Natural Products)
Show Figures

Figure 1

16 pages, 1278 KiB  
Article
Effect of Different Parameters (Treatment Administration Mode, Concentration and Phenological Weed Stage) on Thymbra capitata L. Essential Oil Herbicidal Activity
by Natalia Torres-Pagán, Amira Jouini, Nieves Melero-Carnero, Rosa Peiró, Adela Sánchez-Moreiras, Alessandra Carrubba and Mercedes Verdeguer
Agronomy 2023, 13(12), 2938; https://doi.org/10.3390/agronomy13122938 - 29 Nov 2023
Viewed by 1487
Abstract
The essential oil (EO) of Thymbra capitata has been demonstrated to possess herbicidal activity and could be used as an alternative to synthetic herbicides with reduced persistence in soil and new mode of action. Nevertheless, it is necessary to determine the adequate doses [...] Read more.
The essential oil (EO) of Thymbra capitata has been demonstrated to possess herbicidal activity and could be used as an alternative to synthetic herbicides with reduced persistence in soil and new mode of action. Nevertheless, it is necessary to determine the adequate doses for its use, the proper way for its application and the best phenological stage of weeds and crops in which the EO should be applied to obtain maximum efficacy against weeds without compromising crop production. In this work, T. capitata EO was tested at three different concentrations against weeds grown from a citrus orchard soil seedbank untreated with herbicides and against three important weed species grown in substrate to determine the efficacy of the concentrations on different weed species. All experiments were carried out under greenhouse conditions. To find out the best way for applying the EO, it was applied by irrigation and by spraying on the targeted weeds, and to verify the influence of timing, it was tested on Lolium rigidum at two different phenological stages and on wheat at a later phenological stage than weeds. The highest concentration tested (12 µL·mL−1) showed the best performance to control weeds. The more effective mode of application was by spraying on dicotyledons and by irrigation on monocotyledons at the earliest phenological stage. T. capitata EO was phytotoxic for wheat. More trials in different crops are needed to determine the best conditions for its use. Full article
(This article belongs to the Special Issue Integrated Weed Management in the Agroecosystem)
Show Figures

Figure 1

12 pages, 1376 KiB  
Article
A Mixture of Essential Oils from Three Cretan Aromatic Plants Inhibits SARS-CoV-2 Proliferation: A Proof-of-Concept Intervention Study in Ambulatory Patients
by Christos Lionis, Elena Petelos, Manolis Linardakis, Athanasios Diamantakis, Emmanouil Symvoulakis, Maria-Nefeli Karkana, Marilena Kampa, Stergios A. Pirintsos, George Sourvinos and Elias Castanas
Diseases 2023, 11(3), 105; https://doi.org/10.3390/diseases11030105 - 9 Aug 2023
Cited by 2 | Viewed by 2756
Abstract
Introduction: The need for effective therapeutic regimens for non-critically ill patients during the COVID-19 pandemic remained largely unmet. Previous work has shown that a combination of three aromatic plants’ essential oils (CAPeo) (Thymbra capitata (L.) Cav., Origanum dictamnus L., Salvia fruticose Mill.) [...] Read more.
Introduction: The need for effective therapeutic regimens for non-critically ill patients during the COVID-19 pandemic remained largely unmet. Previous work has shown that a combination of three aromatic plants’ essential oils (CAPeo) (Thymbra capitata (L.) Cav., Origanum dictamnus L., Salvia fruticose Mill.) has remarkable in vitro antiviral activity. Given its properties, it was urgent to explore its potential in treating mild COVID-19 patients in primary care settings. Methods: A total of 69 adult patients were included in a clinical proof-of-concept (PoC) intervention study. Family physicians implemented the observational study in two arms (intervention group and control group) during three study periods (IG2020, n=13, IG2021/22, n=25, and CG2021/22, n=31). The SARS-CoV-2 infection was confirmed by real-time PCR. The CAPeo mixture was administered daily for 14 days per os in the intervention group, while the control group received usual care. Results: The PoC study found that the number and frequency of general symptoms, including general fatigue, weakness, fever, and myalgia, decreased following CAPeo administration. By Day 7, the average presence (number) of symptoms decreased in comparison with Day 1 in IG (4.7 to 1.4) as well as in CG (4.0 to 3.1), representing a significant decrease in the cumulative presence in IC (−3.3 vs. −0.9, p < 0.001; η2 = 0.20) on Day 7 and on Day 14 (−4.2 vs. −2.9, p = 0.027; η2 = 0.08). Discussion/Conclusions: Our findings suggest that CAPeo possesses potent antiviral activity against SARS-CoV-2 in addition tο its effect against influenza A and B and human rhinovirus HRV14 strains. The early and effective impact on alleviating key symptoms of COVID-19 may suggest this mixture can act as a complementary natural agent for patients with mild COVID-19. Full article
Show Figures

Figure 1

26 pages, 3131 KiB  
Article
Effect of Thymbra capitata (L.) Cav. on Inflammation, Senescence and Cell Migration
by Jorge M. Alves-Silva, Sónia Pedreiro, Carlos Cavaleiro, Maria Teresa Cruz, Artur Figueirinha and Lígia Salgueiro
Nutrients 2023, 15(8), 1930; https://doi.org/10.3390/nu15081930 - 17 Apr 2023
Cited by 9 | Viewed by 2996
Abstract
Aromatic plants are reported to display pharmacological properties, including anti-aging. This work aims to disclose the anti-aging effect of the essential oil (EO) of Thymbra capitata (L.) Cav., an aromatic and medicinal plant widely used as a spice, as well as of the [...] Read more.
Aromatic plants are reported to display pharmacological properties, including anti-aging. This work aims to disclose the anti-aging effect of the essential oil (EO) of Thymbra capitata (L.) Cav., an aromatic and medicinal plant widely used as a spice, as well as of the hydrodistillation residual water (HRW), a discarded by-product of EO hydrodistillation. The phytochemical characterization of EO and HRW was assessed by GC-MS and HPLC-PDA-ESI-MSn, respectively. The DPPH, ABTS, and FRAP assays were used to disclose the antioxidant properties. The anti-inflammatory potential was evaluated using lipopolysaccharide-stimulated macrophages by assessing NO production, iNOS, and pro-IL-1β protein levels. Cell migration was evaluated using the scratch wound assay, and the etoposide-induced senescence was used to assess the modulation of senescence. The EO is mainly characterized by carvacrol, while the HRW is predominantly characterized by rosmarinic acid. The HRW exerts a stronger antioxidant effect in the DPPH and FRAP assays, whereas the EO was the most active sample in the ABTS assay. Both extracts reduce NO, iNOS, and pro-IL-1β. The EO has no effect on cell migration and presents anti-senescence effects. In opposition, HRW reduces cell migration and induces cellular senescence. Overall, our study highlights interesting pharmacological properties for both extracts, EO being of interest as an anti-aging ingredient and HRW relevant in cancer therapy. Full article
(This article belongs to the Special Issue Aromatic Herbs, Spices and Human Health)
Show Figures

Graphical abstract

26 pages, 1870 KiB  
Article
Vaginal Sheets with Thymbra capitata Essential Oil for the Treatment of Bacterial Vaginosis: Design, Characterization and In Vitro Evaluation of Efficacy and Safety
by Mariana Tomás, Lúcia G. V. Sousa, Ana Sofia Oliveira, Carolina P. Gomes, Ana Palmeira-de-Oliveira, Carlos Cavaleiro, Lígia Salgueiro, Nuno Cerca, José Martinez-de-Oliveira and Rita Palmeira-de-Oliveira
Gels 2023, 9(4), 293; https://doi.org/10.3390/gels9040293 - 2 Apr 2023
Cited by 1 | Viewed by 4192
Abstract
We aimed to incorporate Thymbra capitata essential oil (TCEO), a potent antimicrobial natural product against bacterial vaginosis (BV)-related bacteria, in a suitable drug delivery system. We used vaginal sheets as dosage form to promote immediate relief of the typical abundant vaginal discharge with [...] Read more.
We aimed to incorporate Thymbra capitata essential oil (TCEO), a potent antimicrobial natural product against bacterial vaginosis (BV)-related bacteria, in a suitable drug delivery system. We used vaginal sheets as dosage form to promote immediate relief of the typical abundant vaginal discharge with unpleasant odour. Excipients were selected to promote the healthy vaginal environment reestablishment and bioadhesion of formulations, while the TCEO acts directly on BV pathogens. We characterized vaginal sheets with TCEO in regard to technological characterization, predictable in vivo performance, in vitro efficacy and safety. Vaginal sheet D.O (acid lactic buffer, gelatine, glycerine, chitosan coated with TCEO 1% w/w) presented a higher buffer capacity and ability to absorb vaginal fluid simulant (VFS) among all vaginal sheets with EO, showing one of the most promising bioadhesive profiles, an excellent flexibility and structure that allow it to be easily rolled for application. Vaginal sheet D.O with 0.32 µL/mL TCEO was able to significantly reduce the bacterial load of all in vitro tested Gardnerella species. Although vaginal sheet D.O presented toxicity at some concentrations, this product was developed for a short time period of treatment, so this toxicity can probably be limited or even reversed when the treatment ends. Full article
Show Figures

Graphical abstract

17 pages, 628 KiB  
Article
Phytotoxic Effects of Essential Oils from Six Lamiaceae Species
by Francesca Casella, Maurizio Vurro, Francesca Valerio, Enrico Vito Perrino, Giuseppe N. Mezzapesa and Angela Boari
Agronomy 2023, 13(1), 257; https://doi.org/10.3390/agronomy13010257 - 14 Jan 2023
Cited by 38 | Viewed by 3593
Abstract
Essential oils produced by plants, and their components, could be sources of new natural herbicidal compounds. Thirteen oils extracted from six wild Lamiaceae species (namely Clinopodium suaveolens (Sm.) Kuntze, Satureja montana L. subsp. montana, Thymbra capitata (L.) Cav., Salvia fruticosa Mill. subsp. [...] Read more.
Essential oils produced by plants, and their components, could be sources of new natural herbicidal compounds. Thirteen oils extracted from six wild Lamiaceae species (namely Clinopodium suaveolens (Sm.) Kuntze, Satureja montana L. subsp. montana, Thymbra capitata (L.) Cav., Salvia fruticosa Mill. subsp. thomasii (Lacaita) Brullo, Guglielmo, Pavone & Terrasi, Satureja cuneifolia Ten., and Thymus spinulosus Ten.) from South Italy were tested in vitro for the phytotoxic activity to cress and branched broomrape seeds, tomato radicles, and lambsquarters leaf disks. Moreover, the possible correlation between oil composition and biological activity was evaluated. One of the oils from T. capitata inhibited cress germination by 96.4% at the lowest tested concentration (100 ppm) and reduced both chlorophyll and carotenoid content in lambsquarters leaf disks by around 50%. Some oils, particularly those from T. spinulosus, inhibited tomato radicle elongation by 85% at 1000 ppm. Many oils inhibited broomrape seed germination up to 100% when tested in solution at 1000 ppm or released as vapors. Among the oil components, α-terpinene, p-cymene, β-cis-ocimene, cis-sabinene hydrate, carvacrol methyl ether, and thymol were mostly correlated to the inhibition of cress seeds germination and tomato radicle elongation. The presence of thymol and p-cymene was also correlated to the inhibition of broomrape seed germination. Some of the tested essential oils or their components could have potential as pre-emergence herbicides and could be useful in the development of new weed control strategies. Full article
Show Figures

Figure 1

22 pages, 8359 KiB  
Article
Essential Oils of Three Aromatic Plant Species as Natural Herbicides for Environmentally Friendly Agriculture
by Manel Bellache, Natalia Torres-Pagan, Mercedes Verdeguer, Leila Allal Benfekih, Oscar Vicente, Radu E. Sestras, Adriana F. Sestras and Monica Boscaiu
Sustainability 2022, 14(6), 3596; https://doi.org/10.3390/su14063596 - 18 Mar 2022
Cited by 12 | Viewed by 4636
Abstract
Natural herbicides based on essential oils (EOs) extracted from aromatic plants are gaining relevance in contemporary agriculture. Due to their allelopathic properties, they have an inhibitory effect on the germination and growth of different species, having, in general, the advantage of high specificity. [...] Read more.
Natural herbicides based on essential oils (EOs) extracted from aromatic plants are gaining relevance in contemporary agriculture. Due to their allelopathic properties, they have an inhibitory effect on the germination and growth of different species, having, in general, the advantage of high specificity. For this reason, the analysis of the effects of these natural compounds on noxious weeds is continuously increasing. In the present study, three commercial EOs extracted from Mentha piperita L., Thymbra capitata (L.) Cav. and Santolina chamaecyparissus L. were tested on two invasive weeds with an increasing presence in southern Europe, Erigeron bonariensis L. and Araujia sericifera Brot. Five concentrations (0.125, 0.25, 0.50, 1 and 2 µL mL–1) were tested in a randomized manner for each essential oil and five replicates with 20 seeds each for E. bonariensis and 10 replicates with 10 seeds each for A. sericifera. Two higher concentrations of 4 and 8 μL mL–1 of the three EOs were applied with irrigation on the plants of the two species at the vegetative growth stage. The number of replicas for each treatment and species was 7. The results obtained confirmed the significant inhibitory effects on seed germination and early seedling development, especially in E. bonariensis; of the three EOs, peppermint had the strongest effect, completely preventing germination in both species. Multivariate analysis, performed on several morphological traits scored after one month of treatment in young plants, showed a different pattern: the highest inhibition was recorded in A. sericifera and the greatest reduction in growth in the treatment with the highest dose of Santolina EO. The results obtained revealed the efficacy of these natural compounds and the specificity of their toxicity according to the species and stage of development. Full article
Show Figures

Figure 1

12 pages, 2918 KiB  
Article
Physicochemical and Antimicrobial Properties of Whey Protein-Based Films Functionalized with Palestinian Satureja capitata Essential Oil
by Manar Abdalrazeq, Nidal Jaradat, Mohammad Qadi, C. Valeria L. Giosafatto, Eliana Dell’Olmo, Rosa Gaglione, Angela Arciello and Raffaele Porta
Coatings 2021, 11(11), 1364; https://doi.org/10.3390/coatings11111364 - 6 Nov 2021
Cited by 15 | Viewed by 4254
Abstract
The present study aimed to produce bio-active packaging materials made of whey proteins (WPs) and essential oil (EO) extracted from Thymbra (Satureja capitata, L.), one of the most popular Palestinian wild plants. In this study, two different Thymbra leaves from Nablus [...] Read more.
The present study aimed to produce bio-active packaging materials made of whey proteins (WPs) and essential oil (EO) extracted from Thymbra (Satureja capitata, L.), one of the most popular Palestinian wild plants. In this study, two different Thymbra leaves from Nablus and Qabatiya in Palestine were collected and analyzed for EOs by gas chromatography and mass spectrometry. Based on the analysis, two EOs, namely, TEO1 and TEO2, were extracted, and it was found that both samples primarily contain γ-terpinene and carvacrol, whereas p-cymene was detected only in TEO1. The antimicrobial activity of TEO1 and TEO2 was evaluated by microbroth microdilution assays against pathogenic bacteria and yeast. Based on the results, TEO1 exhibited potent antimicrobial activity against the test strains. Besides, TEO1 was chosen to functionalize WP-based films at different concentrations (0.1%, 0.4%, and 0.8% v/v of Film Forming Solutions). Film mechanical property investigation showed a marked reduction in the tensile strength and Young’s modulus at 0.8% TEO1. In contrast, its elongation at break value was significantly (p < 0.05) increased due to the plasticizing effect of the EO. Moreover, the film transparency was found to be significantly (p < 0.05) reduced by increasing TEO1 concentrations. Finally, microbiological investigations indicated that film antimicrobial activity against both gram-positive and gram-negative bacteria increased dose-dependently. The overall results open interesting perspectives for employing these films as preservative materials in food packaging. Full article
(This article belongs to the Special Issue Bio-Based Active Packaging for Shelf Life Extension)
Show Figures

Figure 1

18 pages, 561 KiB  
Article
Characterization and Antimicrobial Properties of Essential Oils from Four Wild Taxa of Lamiaceae Family Growing in Apulia
by Francesca Valerio, Giuseppe N. Mezzapesa, Ahmed Ghannouchi, Donato Mondelli, Antonio F. Logrieco and Enrico V. Perrino
Agronomy 2021, 11(7), 1431; https://doi.org/10.3390/agronomy11071431 - 18 Jul 2021
Cited by 63 | Viewed by 6862
Abstract
Four taxa of the Lamiaceae family growing in Apulia (Clinopodium suaveolens, Satureja montana subsp. montana, Thymbra capitata, and Salvia fruticosa subsp. thomasii) that had not been previously studied for their potential use in the food sector, were analyzed for [...] Read more.
Four taxa of the Lamiaceae family growing in Apulia (Clinopodium suaveolens, Satureja montana subsp. montana, Thymbra capitata, and Salvia fruticosa subsp. thomasii) that had not been previously studied for their potential use in the food sector, were analyzed for their essential oils (EOs) composition and antioxidant and antimicrobial properties against some microorganisms, isolated from bread and bakery products, including molds (Aspergillus niger, Penicillium roqueforti) and spore-forming bacteria (Bacillus amyloliquefaciens and Bacillus subtilis). Two different sites were considered for each plant species, and the strongest antimicrobial EOs, which were active against all of the microorganisms tested, were those from one S. montana subsp. montana sample (Sm2) and both T. capitata EOs (Tc1 and Tc2) with Minimal Inhibitory Concentration (MIC) values ranging between 0.093% and 0.375% (v/v) against molds, while higher values were registered for bacteria (0.75–1%). In particular, the biological activity of EOs from T. capitata and S. montana subsp. montana was maybe due to the high amount of thymol and carvacrol, which were also responsible for the highest antioxidant activity. S. fruticosa subsp. thomasii EOs had different chemical profiles but showed only a slight antibacterial effect and no antifungal activity. C. suaveolens showed no significant changes between EOs with an interesting antifungal activity (MIC 0.093%÷0.187% v/v), which may be due to the presence of pulegone. These plant species can be considered as promising sources of bioactive compounds to be exploited as biopreservatives in bread and bakery products mainly considering the low concentration needed to inhibit microorganism’s growth. Full article
Show Figures

Graphical abstract

20 pages, 3168 KiB  
Article
Ecological and Plant Community Implication on Essential Oils Composition in Useful Wild Officinal Species: A Pilot Case Study in Apulia (Italy)
by Enrico V. Perrino, Francesca Valerio, Ahmed Gannouchi, Antonio Trani and Giuseppe Mezzapesa
Plants 2021, 10(3), 574; https://doi.org/10.3390/plants10030574 - 18 Mar 2021
Cited by 54 | Viewed by 5075
Abstract
The study focused on the effects of ecology (plant communities and topographical data) on composition of essential oils (EOs) of some officinal wild plant species (Lamiales): Clinopodium suaveolens, Salvia fruticosa subsp. thomasii, Satureja montana subsp. montana, and Thymbra capitata, in different [...] Read more.
The study focused on the effects of ecology (plant communities and topographical data) on composition of essential oils (EOs) of some officinal wild plant species (Lamiales): Clinopodium suaveolens, Salvia fruticosa subsp. thomasii, Satureja montana subsp. montana, and Thymbra capitata, in different environments of Apulia (Italy). C. suaveolens and S. fruticosa subsp. thomasii are rare species of conservation interest, while S. montana subsp. montana and T. capitata, have a wide distribution and are used in traditional medicine or as spices. Results showed that the ecological context (phytosociological and ecological features) may influence the composition of EOs of the studied species. High differences in the compound composition have been found in S. montana subsp. montana, whereas minor effects were observed in C. suaveolens, S. fruticosa subsp. thomasii, and T. capitata accessions. The understanding of such aspects is necessary for providing optimal conditions to produce EOs rich in compounds known for their biological activities. The results are of great interest also for EOs producers and at the same time to improve our knowledge and valorize wild officinal plants. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

16 pages, 353 KiB  
Article
Effect of Essential Oils on the Release of TNF-α and CCL2 by LPS-Stimulated THP‑1 Cells
by Maria Graça Miguel, Carina Isabel da Silva, Luana Farah, Fernão Castro Braga and Ana Cristina Figueiredo
Plants 2021, 10(1), 50; https://doi.org/10.3390/plants10010050 - 28 Dec 2020
Cited by 12 | Viewed by 4937
Abstract
Plants and their constituents have been used to treat diverse ailments since time immemorial. Many plants are used in diverse external and internal formulations (infusions, alcoholic extracts, essential oils (EOs), etc.) in the treatment of inflammation-associated diseases, such as those affecting the respiratory [...] Read more.
Plants and their constituents have been used to treat diverse ailments since time immemorial. Many plants are used in diverse external and internal formulations (infusions, alcoholic extracts, essential oils (EOs), etc.) in the treatment of inflammation-associated diseases, such as those affecting the respiratory tract or causing gastrointestinal or joint problems, among others. To support the traditional uses of plant extracts, EOs have been assessed for their alleged anti-inflammatory properties. However, the effect of EOs on the release of cytokines and chemokines has been much less reported. Considering their traditional use and commercial relevance in Portugal and Angola, this study evaluated the effect of EOs on the in vitro inhibition of the cytokine tumor necrosis factor-α (TNF-α) and the chemokine (C-C motif) ligand 2 (CCL2) by lipopolysaccharide (LPS)-stimulated human acute monocytic leukemia cells (THP-1 cells). Twenty EOs extracted from eighteen species from seven families, namely from Amaranthaceae (Dysphania ambrosioides), Apiaceae (Foeniculum vulgare), Asteraceae (Brachylaena huillensis, Solidago virgaurea), Euphorbiaceae (Spirostachys africana), Lamiaceae (Lavandula luisieri, Mentha cervina, Origanum majorana, Satureja montana, Thymbra capitata, Thymus mastichina, Thymus vulgaris, Thymus zygis subsp. zygis), Myrtaceae (Eucalyptus globulus subsp. maidenii, Eucalyptus radiata, Eucalyptus viminalis) and Pinaceae (Pinus pinaster) were assayed for the release of CCL2 and TNF-α by LPS-stimulated THP-1 cells. B. huillensis, S. africana, S. montana, Th. mastichina and Th. vulgaris EOs showed toxicity to THP-1 cells, at the lowest concentration tested (10 μg/mL), using the tetrazolium dye assay. The most active EOs in reducing TNF-α release by LPS-stimulated THP-1 cells were those of T. capitata (51% inhibition at 20 μg/mL) and L. luisieri (15–23% inhibition at 30 μg/mL and 78–83% inhibition at 90 μg/mL). L. luisieri EO induced a concentration-dependent inhibition of CCL2 release by LPS‑stimulated THP-1 cells (23%, 54% and 82% inhibition at 10, 30 and 90 μg/mL, respectively). These EOs are potentially useful in the management of inflammatory diseases mediated by CCL2 and TNF‑α, such as atherosclerosis and arthritis. Full article
Show Figures

Graphical abstract

24 pages, 2477 KiB  
Article
Potential Effects of Essential Oils Extracted from Mediterranean Aromatic Plants on Target Weeds and Soil Microorganisms
by Amira Jouini, Mercedes Verdeguer, Samuele Pinton, Fabrizio Araniti, Eristanna Palazzolo, Luigi Badalucco and Vito Armando Laudicina
Plants 2020, 9(10), 1289; https://doi.org/10.3390/plants9101289 - 29 Sep 2020
Cited by 37 | Viewed by 5332
Abstract
Essential oils (EOs), extracted from aromatic plants, have been proposed as candidates to develop natural herbicides. This study aimed to evaluate the herbicidal potential of Thymbra capitata (L.) Cav., Mentha × piperita L. and Santolina chamaecyparissus L. essential oils (EOs) on Avena fatua [...] Read more.
Essential oils (EOs), extracted from aromatic plants, have been proposed as candidates to develop natural herbicides. This study aimed to evaluate the herbicidal potential of Thymbra capitata (L.) Cav., Mentha × piperita L. and Santolina chamaecyparissus L. essential oils (EOs) on Avena fatua L., Echinochloa crus-galli (L.) P. Beauv, Portulaca oleracea L. and Amaranthus retroflexus L. and their effects on soil microorganisms. A pot experiment was set up and three EOs at three doses were applied by irrigation. Efficacy and effects of EOs on weed growth were determined. Soil microbial biomass carbon and nitrogen, microbial respiration, and the main microbial groups were determined at days 7, 28 and 56. EOs demonstrated herbicidal activity, increasing their toxicity with the dose. T. capitata was the most effective against all weeds at the maximum dose. P. oleracea was the most resistant weed. Soil microorganisms, after a transient upheaval period induced by the addition of EOs, recovered their initial function and biomass. T. capitata EO at the highest dose did not allow soil microorganisms to recover their initial functionality. EOs exhibited great potential as natural herbicides but the optimum dose of application must be identified to control weeds and not negatively affect soil microorganisms. Full article
Show Figures

Graphical abstract

31 pages, 5177 KiB  
Article
Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil
by Mercedes Verdeguer, Natalia Torres-Pagan, Marta Muñoz, Amira Jouini, Susana García-Plasencia, Pablo Chinchilla, Mónica Berbegal, Adele Salamone, Santo Agnello, Alessandra Carrubba, Luz Cabeiras-Freijanes, Lois Regueira-Marcos, Adela M. Sánchez-Moreiras and María Amparo Blázquez
Molecules 2020, 25(12), 2832; https://doi.org/10.3390/molecules25122832 - 19 Jun 2020
Cited by 26 | Viewed by 4982
Abstract
The bioherbicidal potential of Thymbra capitata (L.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth of Erigeron canadensis L., Sonchus oleraceus (L.) L., and Chenopodium album L. at [...] Read more.
The bioherbicidal potential of Thymbra capitata (L.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth of Erigeron canadensis L., Sonchus oleraceus (L.) L., and Chenopodium album L. at 0.125 µL/mL, of Setaria verticillata (L.) P.Beauv., Avena fatua L., and Solanum nigrum L. at 0.5 µL/mL, of Amaranthus retroflexus L. at 1 µL/mL and of Portulaca oleracea L., and Echinochloa crus-galli (L.) P.Beauv. at 2 µL/mL. Under greenhouse conditions, T. capitata EO was tested towards the emergent weeds from a soil seedbank in pre and post emergence, showing strong herbicidal potential in both assays at 4 µL/mL. In addition, T. capitata EO, applied by spraying, was tested against P. oleracea, A. fatua and E. crus-galli. The species showed different sensibility to the EO, being E. crus-galli the most resistant. Experiments were performed against A. fatua testing T. capitata EO and carvacrol applied by spraying or by irrigation. It was verified that the EO was more active at the same doses in monocotyledons applied by irrigation and in dicotyledons applied by spraying. Carvacrol effects on Arabidopsis root morphology were also studied. Full article
(This article belongs to the Special Issue Essential Oils in Weed Control and Food Preservation)
Show Figures

Graphical abstract

Back to TopTop