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Abstract: The present study aimed to produce bio-active packaging materials made of whey proteins
(WPs) and essential oil (EO) extracted from Thymbra (Satureja capitata, L.), one of the most popular
Palestinian wild plants. In this study, two different Thymbra leaves from Nablus and Qabatiya
in Palestine were collected and analyzed for EOs by gas chromatography and mass spectrometry.
Based on the analysis, two EOs, namely, TEO1 and TEO2, were extracted, and it was found that both
samples primarily contain y-terpinene and carvacrol, whereas p-cymene was detected only in TEO1.
The antimicrobial activity of TEO1 and TEO2 was evaluated by microbroth microdilution assays
against pathogenic bacteria and yeast. Based on the results, TEO1 exhibited potent antimicrobial
activity against the test strains. Besides, TEO1 was chosen to functionalize WP-based films at different
concentrations (0.1%, 0.4%, and 0.8% v/v of Film Forming Solutions). Film mechanical property
investigation showed a marked reduction in the tensile strength and Young’s modulus at 0.8% TEOL.
In contrast, its elongation at break value was significantly (p < 0.05) increased due to the plasticizing
effect of the EO. Moreover, the film transparency was found to be significantly (p < 0.05) reduced by
increasing TEO1 concentrations. Finally, microbiological investigations indicated that film antimicro-
bial activity against both gram-positive and gram-negative bacteria increased dose-dependently. The
overall results open interesting perspectives for employing these films as preservative materials in
food packaging.

Keywords: antimicrobial film; active packaging; food coating; whey proteins; essential oil

1. Introduction

Food packaging has a crucial role in protecting food products from the risk of pathogen
growth, leading to an extension of food product shelf life [1,2]. So far, polyethylene tereph-
thalate, polyethylene, and polyvinylchloride are the most common petrol-derived plastics,
commonly used due to their availability at a relatively low cost [2], and because they pos-
sess excellent technical properties such as hardness, formability, rigidity, elasticity, heat, and
chemical resistance [3]. Meanwhile, these conventional plastics are not biodegradable, and
are thus considered today as being the most polluting materials on our planet [4]. Hence,
scientists have started developing new strategies and production of alternative materials,
such as bio-based polymers obtained from agricultural or food wastes. In this context,
whey from the cheese industry is considered one of the most interesting and valuable food
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wastes to be recycled. Whey is the liquid that is formed following casein coagulation in
the dairy industries, possessing a high organic content and a high percentage of proteins.
As whey is rich in several nutrients important for the obtainment of further bioproducts,
it would be advisable to recycle whey-containing liquid waste through an eco-friendly
method. However, as a huge amount of whey goes unused, or is even disposed of illegally,
researchers should develop innovative methods to get the maximum benefits from its
use. In fact, whey proteins (WPs) derived from the cheese industry waste stream possess
a high nutritional value and properties such as solubility in water and the ability to act
as emulsifiers, which have been exploited for the manufacturing of transparent, flexible,
colorless, and odorless bioplastics with poor moisture and O, barrier properties. [5]. In the
year 2017, the production of milk in the EU totaled 170 billion kg, 93% of which resulted in
dairy products, which includes cheese (37%), butter (30%), cream (13%), fresh milk (11%),
acidified milk (4%), milk powder (2%), and other minor products. Each liter of processed
milk results, on an average, in 2.5 L of whey-containing wastewater, while about 9-10 L of
whey is produced per kg of cheese [6]. Whey contains two main proteins, 3-lactoglobulin,
and o-lactalbumin, endowed with important properties such as solubility, foaming, and
gelling [7], making them of great interest for different biotechnological applications. In
particular, WPs can give rise to edible bioplastic materials [8-12].

Aiming to improve food packaging features, many studies have exploited natural ad-
ditives with antimicrobial and antioxidant activity to produce bio-active materials [13-15].
Interestingly, essential oils (EOs) extracted from different plants and edible herbs are con-
sidered potential additives for food packaging applications because of their biological
features [1,13,16,17].

Satureja capitata, an aromatic plant of the Lamiaceae family, commonly named “Thym-
bra” (Figure 1) and also known in Arabic as “za’atar rumi”, “za’atar franji” and “za’atar
farsi” [18] (meaning “Roman hyssop”, “European hyssop”, and “Persian hyssop”, respec-
tively), attracted our attention since it possesses some interesting features.

Figure 1. Palestinian Satureja capitata (Thymbra).

Thymbra has been used for more than 100 years by the Palestinians as a spice in some
food, as well as an alternative medicine to treat tonsillitis. In fact, many scientific studies
proved that this plant has powerful antibacterial, antifungal, and antiviral activities, while
further investigations have shown that the extract from this plant can protect against cough-
ing, respiratory infections, diarrhea, and digestive problems [19,20]. Therefore, this study
has been addressed to extract Thymbra EOs (TEOs), to determine their composition, and
to produce bioactive materials by incorporating the extracted TEOs into WP-based films.
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2. Materials and Methods
2.1. Materials

WP isolates (~90% dry basis protein) were purchased from BioLine (London, UK).
Clevenger apparatus (Esel International, Haryana, India) was used to extract EOs from
Palestinian Thymbra; two different samples were used: one (TEO1) was obtained from
a local shop in Nablus city, and the second sample (TEO2) was harvested from Qabatia
mountain in the Jenin region, Palestine. Glycerol (GLY) and all other reagents were from
Merck KGaA (Darmstadt, Germany). Different microorganisms were used to evaluate
the antimicrobial activity of the different samples. In particular, the gram positive strains
Staphylococcus aureus ATCC 25923, Enterococcus faecium ATCC 700221, Staphylococcus au-
reus ATCC 29213 and Enterococcus faecalis ATCC 29212 as well as the gram negative ones
Klebsiella pneumoniae ATCC 13883, Escherichia coli ATCC 25922, Proteus vulgaris ATCC 8427,
Pseudomonas aeruginosa ATCC 9027, Salmonella enterica subsp. enterica serovar Typhimurium
(ATCC® 14028) and the yeast Candida albicans ATCC 90028 were tested. In addition, the
clinical pathogen methicillin-resistant Staphylococcus aureus (MRSA) and Salmonella enteridi-
tis 706 RIVM were also used to evaluate TEO antimicrobial activity. FFSs and films were
analyzed for their antimicrobial activity on the selected foodborne spoilage microorganisms
(Salmonella enterica subsp. enterica serovar Typhimurium, Salmonella enteriditis 706 RIVM,
Staphylococcus aureus and Enterococcus faecalis) by using Mueller Hinton Broth (Becton Dick-
inson Difco, Franklin Lakes, NJ, USA) or Tryptic Soy Agar (TSA) plates (Sigma Aldrich,
Milan, Italy).

2.2. Thymbra Essential Oil Extraction

Thymbra leaves were obtained both from a local shop in Nablus and directly collected
from Qabatiya mountains in Palestine. The first ones were already dry, whereas the second
ones were previously dried in the oven (Huanghua Faithful Instrument Co., Ltd., Tianjin,
China) at 30 °C for 24 h before EO extraction. Then, TEOs were extracted from both dried
leaf samples by steam-distillation for 3 h using a Clevenger type apparatus, according to a
previously described method [21], and respectively named TEO1 and TEO2. CaCl, was
finally added to remove the remaining water, and both TEO samples were kept in a dark
glass bottle at 4 °C before their characterization and use.

2.3. Determination of Thymbra Essential Oil Composition

Yields (%) of extracted TEOs were calculated by dividing the TEO weight by the
weight of Thymbra leaves. TEOs were then analyzed with a gas chromatography-mass
spectrometry (Shimadzu QP-5000 GC-MS, Kyoto, Japan). The GC apparatus was equipped
with a Rtx-5 MS column (30 m long, 0.25 um thickness, and 0.250 mm inner diameter),
whereas helium was utilized as a carrier gas at a flow rate of 1 mL/min, and the injector
temperature was 220 °C. The oven temperature started from 50 °C (1 min hold) to 130 °C
(5 °C/min), then to 250 °C (10 °C/min) and, finally, it was kept isothermally for 15 min
(the transfer line temperature was 290 °C). For GC-MS detection, an electron ionization
system, with detector volts of 1.7 KV, was used. A scan rate of 0.5 s, and a scan speed
of 1000 amu/s was applied, covering a mass range from 38 to 450 M/Z. The chemical
ingredients of the volatile oil were identified by correlating their mass spectra with the
reference ones present of the mass spectrometry data center of the National Institute of
Standards and Technology (NIST) [22].

2.4. Antimicrobial Activity of Essential Oils Extracted from Thymbra Leaves

Minimal inhibitory concentration (MIC) values of TEO were evaluated by using the
method previously described [23] against different microorganisms such as S. aureus, E.
coli, K. pneumoniae, P. vulgaris, E. faecium, P. aeruginosa, and C. albicans. In addition, the
clinical pathogen MRSA was used to evaluate TEO antimicrobial activity. Briefly, TEOs
were two-fold serially diluted in the freshly prepared sterile MHB medium and dispensed
into a 96-well micro-titration plate. After that, each well was inoculated with bacterial
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inoculums, which were prepared from adjusted 0.5 McFarland microbial suspensions.
Regarding the C. albicans, the same procedure was used by using RPMI media instead of
Mueller-Hinton. After mixing, the 96-well micro-titration plates were incubated at 37 °C for
24 h for those plates inoculated with the test bacterial strains, and for about 48 h for those
plates inoculated with C. albicans. MIC values were determined as the lowest antimicrobial
agent concentration that prevents the visible microorganism growth. The experiment was
carried out in triplicates and against each tested microbe, three controls were included.
Two of them were negative controls, one consisting of the used MHB medium alone, and
the other one consisting of MHB medium with the diluted TEOs to check the sterility of
these materials. The third control used was a positive control consisting of antibiotics with
known antimicrobial activity: ampicillin, ciprofloxacin, or fluconazole.

2.5. Zeta Potential and Particle Size Measurements of Whey Protein Film-Forming Solutions (FFSs)

To determine the FFS particle size and stability, 1.0 mL of each FFS was analyzed by a
Zetasizer Nano-ZSP (Malvern®, Worcestershire, UK) as reported in Abdalrazeq et al. [8].
Three measurements of each replicate were carried out.

2.6. Antimicrobial Activity of Whey Protein Film-Forming Solutions

S. enteriditis 706 RIVM, S. enterica ATCC® 14028, S. aureus ATCC 29213, and E. faecalis
ATCC 29212 were grown in MHB or on TSA plates. All the strains were grown overnight
at 37 °C. Afterward, the bacteria were diluted in fresh media as described below. To
test the antimicrobial activity of the FFS, microbroth microdilution assay [24,25] followed
by a colony count assay were carried out. Briefly, 50 puL of bacterial cells at the final
concentration of 2 x 10° CFU/mL were plated into 96-well plates. After that, 50 uL of
2-fold serial dilution of the FFSs were added and, upon 24 h of incubation, 100 uL of each
sample were plated on TSA Petri dishes. The plates were incubated at 37 °C for 24 h and,
at the end of the incubation, colony counting was performed. FFSs in the absence of TEQ,
as well as the bacterial cells alone, were used as control samples. Experiments were carried
out in triplicate.

2.7. Whey Protein-Based Film Preparation

For film preparation, FFSs were prepared as reported in Abdalrazeq et al. [8] by
dissolving WP isolate (5%, w/v) in distilled water and by adding 50% GLY (w/w of WPs)
to the FFS. Hence, different concentrations of TEO1 (0.1%, 0.4% or 0.8% v/v) were added or
not to FFS aliquots. The films were prepared by casting the FFS samples (25 mL) onto 8 cm
diameter polyethylene Petri dishes and by incubating the solutions in a climatic chamber
set up at 25 °C and 45% relative humidity for 24 h.

2.8. Film Opacity Determination

Film opacity was performed following the method of Shevkani et al. [26]. More in
detail, 1 cm x 4 cm film strips were let to adhere perfectly to a cuvette wall. Absorbance
was detected at 600 nm and the opacity was obtained as,

Opacity = Agoonm /X, 1)

where Agponm and X were the absorbance recorded at 600 nm and the film thickness
(mm), respectively.

2.9. Film Thickness and Mechanical Properties

WP-based film strips with a dimension of 1 cm x 8 cm were obtained with a sharp
scissor and then equilibrated for 48 h at 25 °C and 50% relative humidity into a glass
chamber containing a saturated solution of Mg(NO3), before the characterization. Film
thickness was measured by means of a micrometer (Electronic digital micrometer, DC-516,
sensitivity 0.001 mm, Metrology Co., Pontoglio, Italy) at six different points of each film,
whereas the determination of film tensile strength (TS), elongation at break (EB), and
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Young’s modulus (YM) were performed on five specimens of each sample (5 cm gage
length, 1 kN load and 5 mm/min speed) with an Instron universal testing instrument
model no. 5543A (Instron Engineering Corp., Norwood, MA, USA).

2.10. Film Moisture Content and Uptake

Samples of each film (2 cm x 2 cm) were weighed and dried at 105 °C in an oven for
24 h. Analyses in triplicate were made and film moisture content was obtained as:

Film moisture content (%) = ((W1WW2)> x 100 (2)
1
where W is the initial weight of the film and W is the film weight after drying at 105 °C.
Moisture uptake was measured gravimetrically in triplicate following the methodol-
ogy described by Sartori and Menegalli [27]. Briefly, 20 mm-sided square film samples were
dried at 105 °C for 24 h, conditioned at 23 + 2 °C into a desiccator containing a saturated
Mg(NO3); solution, and weighed. The moisture uptake was obtained as:

Film moisture uptake (%) = (W) x 100 (©)]
s

where Ws and Wd are the weight of swollen and dried films, respectively.

2.11. Antimicrobial Properties of Whey Protein Films

Bacterial cells were grown in Muller Hinton Broth (MHB, Becton Dickinson Difco,
Franklin Lakes, NJ, USA)and on TSA. In all the experiments, bacteria were inoculated
and grown overnight in MHB at 37 °C. The next day, bacteria were transferred to a
fresh medium and grown to the mid-logarithmic phase. The antimicrobial activity of
the WP-based films derived from FFSs, containing or not containing TEO1, was tested
by the previously described method [25]. Briefly, bacterial cells were diluted into tryptic
soy broth till 2 x 107 CFU/mL and spread onto TSA plates. A 1.5 cm? square of the
edible film was placed into an inoculated plate to allow full contact with the agar surface.
Following incubation at 37 °C for 24 h, the microorganism growth underneath the film
was investigated.

2.12. Statistical Analysis

Statistical analyses were carried out utilizing JMP software 5.0 (SAS Institute, Cary,
NC, USA, version 10.0). The analysis of variance was performed, and the means were
compared with the Tukey-Kramer HSD test. Differences were considered significant at
p < 0.05. Significant differences highlighted by Student’s t-Test were indicated as * p < 0.05
or **p <0.01.

3. Results and Discussion
3.1. Chemical Composition of Thymbra Essential Oils

It is well known that several parameters affect the percentage yield of plant EO ex-
traction, including soil, genetics, geographic origin, maturity degree, different organs,
temperature, and relative humidity conditions, extract distillation time, and, finally, pres-
sure and temperature of distillation [21,23,28]. In the present study, the TEO1 percentage
yield was found to be 2.36%, whereas the TEO2 yield was 3.07%. In addition, notable
quantitative and qualitative differences were observed in the components identified by
analyzing with GC-MS the two different extracted TEOs. In fact, as shown in Table 1,
the major identified volatile compounds detected in TEO1 were y-terpinene, carvacrol,
and p-cymene with the following percentages, 38.95%, 22.96%, and 19.53%, respectively,
whereas in TEO2 samples the y-terpinene content was higher, with a percentage of 57.81%,
and no p-cymene was detected.
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Table 1. Chemical composition of Thymbra essential oils.

Component TEO1 TEO2
o-Phellandrene 1.65 3.16
5-3-Carene 1.48 1.44
Camphene 0.36 0.36
3-Pinene 0.41 0.36
o-Pinene 1.10 -
a-Terpinolene 7.19 0.26
p-Cymene 19.53 -
Ortho-Cymene - 0.48
v-Terpinene 38.95 57.81
1-Limonene 0.69 -
a-Terpinenol 0.05 431
Anisole 0.67 -
Thymol 1.07 0.95
Carvacrol 22.96 23.2
Caryophyllene 2.63 4.40
Linalool - 1.06
Endo-Borneol - 0.20
o-Humulene - 0.14
v-Elemene - 0.10
Total identified 98.74 98.26
Others 1.26 1.74

3.2. Antimicrobial Activity of Thymbra Essential Oil Samples

As reported in Table 2, TEO antimicrobial activity was investigated against gram-
negative bacteria (E. coli ATCC 25922, K. pneumoniae ATCC 13883, P. vulgaris ATCC 8427,
and P. aeruginosa ATCC 9027), and gram-positive bacteria (E. faecium ATCC 700221, S. aureus
ATCC 25923, and the clinical pathogen S. aureus MRSA). Besides, TEO antimicrobial activity
was also tested against C. albicans ATCC 90028. MIC; values of both TEO samples revealed
a powerful antimicrobial property towards both gram-positive and gram-negative bacteria,
as well as against the fungal strain, even though TEO1 showed a stronger inhibitory
effect than TEO2 against all the studied microorganismes. it is also possible to see that the
investigated Palestinian TEOs exhibited stronger antimicrobial activity in comparison with
that exerted by TEOs extracted from Turkish Thymbra previously analyzed by Baydar
et al. [19]. In fact, the Turkish Thymbra EOs inhibited the microorganism growth at
concentrations <1/100 (v/v), whereas the Palestinian TEOs showed antimicrobial effects at
concentrations <1/800 (TEO1) or <1/400 (TEO2) (v/v).

Table 2. MICy values were determined for Thymbra essential oils against different microorganisms.

ATCC # 25923 25922 13883 8427 700221 9027 Clinical Strain 90028
Methicillin-
Strains Staphylococcus  Escherichia Klebsiella Proteus Enterococcus  Pseudomonas Resistant Candida
name aureus coli pneumoniae vulgaris faecium aeruginosa Staphylococcus albicans
aureus (MRSA)
1\%3%1%0 1/1600 1/800 1/800 1/1600 1/800 1/1600 1/800 1/800
1\%3%1%0 1/800 1/800 1/400 1/800 1/400 1/800 1/400 1/400
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3.3. Characterization of the Film-Forming Solution Containing Thymbra Essential Oil

The particle size and zeta potential values of WP-based FFSs containing 0.8% TEO1
indicate a notable reduction in the particle size, most likely due to the formation of emul-
sions in the presence of EO, and that FFS stability slightly decreased by increasing TEO1
concentration (Figure 2).

A) B)
TEO1 concentration (%)
800 0
555 s 0.2 0.4 0.6 0.8 1
g 600 ;40
2 500 €15
9 =
@ 400 220
— [
2 300 g-zs
O Q
o< 200 =30 »/("'/""/{
100 -35
0 —40
o 0.2 0.4 0.6 0.8 1

TEO1 concentration (%)

Figure 2. Particle size and zeta potential of WP-based FFSs prepared in the presence of different
concentrations of TEO1 (v/v). Values are the mean =+ SD. (A) particle size, (B) zeta potential.

To determine the ability of WP-containing FFSs to inhibit microbial growth, MICg
values were calculated by carrying out dose-response experiments. WP FFSs prepared in
the absence of TEO1 showed a slight antimicrobial activity towards all the strains tested.
Conversely, the FFSs containing the lowest concentration tested (0.1%) of TEO1 were able to
totally suppress the bacterial growth in the case of the gram-negative bacteria S. enteriditis
706 RIVM, S. enterica subsp. enterica serovar Typhimurium (ATCC® 14028) and the gram-
positive S. aureus ATCC 29213 (Figure 3A-C, respectively). Moreover, in the case of E.
faecalis ATCC 29212, FFS containing 0.1% TEO was found to inhibit the bacterial growth
by about 50%, whereas complete inhibition was observed in the presence of 0.4% TEO1
(Figure 3D).

A B
. Salmonella enterica subsp enterica serovar
Salmonella enteriditis RIVM 706
i3 12 | Typhimurium ATCC 14028
10 b )
-
Es 5
Z 6 S
s ., =
=3
5 S
0} > I\
o
& & & & &
o o ;\o q§\°
AN Q o
c D
Enterococcus faecalis ATCC 29212
15 12
- 10
E10 " E s o
=) >
w o (TR
e [$) *s
2° . EN
<] *% % 3 2 > % **
0t 0}
N N N N N
N o O O O
& & & & & & & & & &L

Figure 3. Effects of whey protein (WP) FFSs containing increasing concentrations of Thymbra
essential oil 1 (TEO1) on the growth of different microorganisms. The effects on bacterial growth were
evaluated upon incubation at 37 °C overnight. Colony counting assays were carried out to determine
MICygg values. Data reported in the graphs represent the mean and the SD of the values collected in
three independent experiments. (A) is S. enteriditis RIVM 706, (B) is S. enterica subsp. enterica serovar
Typhimurium ATCC® 14028, (C) is S. aureus ATCC® 29213, (D) is E. faecalis ATCC® 29212.
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3.4. Opacity, Thickness, and Mechanical Properties of Films Functionalized with Thymbra
Essential Oil

The transparency of EO-containing films is affected by the oil volume fraction and
droplet size distribution in the FFS, as well as by the droplet rearrangement during FFS
drying [29,30]. Moreover, the solvent evaporation of the solvent during the FFS drying may
cause changes in the emulsion structure (i.e., creaming, aggregation, and/or coalescence),
influencing the film optical properties [31]. The results illustrated in Figure 4 show a
considerable decrease in the WP-based film transparency by increasing TEO1 concentration.

é

N

Opacity
Z

N W A~ O

WPs 0.1% TEO1 0.4% TEO1 0.8% TEOI

Figure 4. Opacity of WP (500 mg)-based films prepared either in the absence or presence of different
concentrations of Thymbra essential oil (TEO1) (%, v/v). Values are mean + SD and the different
letters indicate significant differences in the values (Tukey-Kramer test, p < 0.05).

These findings are very similar with those previously reported by Galus et al. [30], who
prepared and characterized WP-based films containing rapeseed oil. In addition, Figure 5
indicates that no differences were observed among the thickness of the WP-films prepared
in the absence or presence of different TEO1 concentrations, whereas the mechanical feature
investigation of TEO1-containing films demonstrated a progressive decrease in film TS by
increasing TEO1 concentrations. Conversely, a marked decrease in the film YM value and
an appreciable increase in the EB were observed only at the highest TEO1 concentration
tested. All these data clearly demonstrate an increased plasticizing effect triggered by TEO1
addition to the WP-based FFSs. It is worthy to note that the results obtained in this study
are close with those obtained on whey protein isolate-based films into which different
concentrations of tarragon oil were added [32]. In fact, an improvement of the technological
attitude of the films, e.g., enhanced mechanical properties and higher transparency were
found following the tarragon oil incorporation [32].
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Figure 5. Thickness and mechanical properties of WP (500 mg)-based films prepared either in the
absence or presence of different concentrations of Thymbra essential oil (TEO1) (%, v/v). Values are
the mean + SD and the different letters indicate significant differences in the values (Tukey-Kramer
test, p < 0.05). (A) tensile strength (TS), (B) elongation at break (EB), (C) Young’s modulus (YM),
(D) Thickness.

3.5. Moisture Content and Uptake of Whey Protein Films Containing Thymbra Essential Oil

Moisture content of WP-based films progressively decreased following the addition of
increasing concentrations of TEOL1 into the originating FFSs (Table 3). It is worthy to note
that even at very low concentrations (0.1%), TEO1 was effective to reduce the film moisture
content. These results reflected those from Galus et al. [30], who investigated WP-based
materials containing rapeseed oil. On the other hand, slight, even though not statistically
significant, increases of moisture uptake were also observed. Similar data were obtained
by Salarbashi et al. [33], who analyzed moisture uptake of soluble soybean/polysaccharide
films incorporated with Zataria multiflora Boiss (Shirazi thyme).

Table 3. Moisture content and uptake of WP (500 mg)-based films prepared containing or not different
concentrations of Thymbra essential oil (TEO1) *.

Film Moisture Content Moisture Uptake
(%) (%)
Control sample 223+267 11.34+292
+ 0.1 % (v/v) TEO1 203+ 1.82b 11.7 £252
+0.4 % (v/v) TEO1 18.5 4+ 1.4 2P 121+1.1°
+0.8 % (v/v) TEO1 1754 0.7° 13.3+0.8%

* Values are the mean =+ SD and the different letters indicate significant differences of the values reported in the
same column (Tukey-Kramer test, p < 0.05).

3.6. Determination of the Antimicrobial Activity of Whey Protein Films Containing Thymbra

Essential Oil

Figure 6 shows the antimicrobial activity of the WP-based films, prepared in the
absence or presence of TEO1, towards S. enteriditis 706 RIVM, S. enterica ATCC® 14028,



Coatings 2021, 11, 1364

10 of 12

S. aureus ATCC 29213, and E. faecalis ATCC 29212 strains, observed by placing small squares
(1.5 cm x 1.5 cm) of each film on a confluent bacterial plate in full contact with the agar
surface [34,35].

Salmonella enteriditis RIVM 706 Staphylococcus aureus ATCC 29213
WP WP+ 0.4% TEO1 WP+ 0.8% TEO1

Salmonelia typhimurium ATCC 14028 Enterococcus faecalis ATCC 29212
WP WP+ 0.4% TEO1 WP WP+ 0.8% TEO1

Figure 6. Antimicrobial effects of whey protein (WP)-based films, prepared either without or with
Thymbra essential oil (TEO1). Antimicrobial effects were evaluated by analyzing the growth of
the different bacterial cells held in direct contact with the films. The experiments were carried out
in triplicate.

After 24 h at 37 °C, it was observed that the WP-based film itself was unable to inhibit
bacterial growth (Figure 6). On the contrary, the films containing TEO1 at the highest
concentration tested (0.8%) showed a strong antimicrobial activity towards S. enteriditis
706 RIVM, S. enterica ATCC® 14028 as well as against S. aureus ATCC 29213. Interestingly,
it was also possible to observe a zone of inhibition surrounding the films activated with
TEOL1, thus, suggesting the ability of TEO1 to diffuse from the film into the agar matrix.
Furthermore, no antimicrobial activity of the films was observed against E. faecalis ATCC
29212 even at the highest TEO1 concentration tested. The data presented in this paper
are comparable to those obtained by Bleoanca et al. [36] who produced films from high
pressure thermally treated whey protein concentrate into which the extracts were added.
The authors have demonstrated the ability of the film matrix to vehicular the bioactive
molecules, as they were endowed with good antimicrobial properties as demonstrated
by the inhibition zones towards three fresh food spoilage microorganisms such Torulopsis
stellata, Geotrichum candidum, and Bacillus subtilis [36].

4. Conclusions

EOs extracted from two different samples of Palestinian Thymbra (Satureja capitata,
L.) leaves were analyzed for their composition and antimicrobial activity. Among these,
the most promising antimicrobial agent was incorporated into WP-based edible films
and evaluated for its ability to control the microbial growth. TEO1, showing higher
antimicrobial properties most likely due to the presence of p-cymene, was included in
the FFSs and the derived films were shown to possess improved mechanical properties,
decreased moisture content, and exhibited a marked antimicrobial activity towards S.
enteriditis, S. enterica and S. aureus. Regarding the E. faecalis bacterial strain, while FFSs were
found to exert pronounced antimicrobial properties, no noteworthy effects of the films were
detected. Furthermore, the observed zone of inhibition surrounding the films activated
with TEO1 suggested the ability of TEOL1 to diffuse into the agar matrix. Therefore, TEO1
may represent an effective bioactive additive of protein-based materials to be used in food
packaging against specific spoilage bacterial strains. To this purpose, more investigations
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are still required to effectively examine the ability of WP-based bio-active packaging
material functionalized with TEO1 in extending the shelf-life of some food.
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