A Mixture of Essential Oils from Three Cretan Aromatic Plants Inhibits SARS-CoV-2 Proliferation: A Proof-of-Concept Intervention Study in Ambulatory Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Setting
2.2. Participants
2.3. CAPeo Production and Phytochemical Analysis
2.4. CAPeo Administration
2.5. Collected Data
2.6. Statistical Analysis
2.7. Ethics
3. Results
3.1. Phytochemical Constituents of CAPeo
3.2. Demographic Data and Data Regarding Health Habits
3.3. Effect on the Frequency of Symptoms
3.4. Effect on the Severity of Symptoms
4. Discussion
4.1. A Focus on the Main Findings and Questions Raised
4.2. Limitations and Strengths
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- O’Leary, V.B.; Ovsepian Saak, V. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Trends Genet. 2020, 11, 892–893. [Google Scholar] [CrossRef] [PubMed]
- Baum, A.; Ajithdoss, D.; Copin, R.; Zhou, A.; Lanza, K.; Negron, N.; Ni, M.; Wei, Y.; Mohammadi, K.; Musser, B.; et al. Regn-Cov2 Antibodies Prevent and Treat SARS-CoV-2 Infection in Rhesus Macaques and Hamsters. Science 2020, 6520, 1110–1115. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.; Baum, A.; Pascal, K.E.; Russo, V.; Giordano, S.; Wloga, E.; Fulton, B.O.; Yan, Y.; Koon, K.; Patel, K.; et al. Studies in Humanized Mice and Convalescent Humans Yield a SARS-CoV-2 Antibody Cocktail. Science 2020, 6506, 1010–1114. [Google Scholar] [CrossRef]
- Weinreich, D.M.; Sivapalasingam, S.; Norton, T.; Ali, S.; Gao, H.; Bhore, R.; Musser, B.J.; Soo, Y.; Rofail, D.; Im, J.; et al. Regn-Cov2, a Neutralizing Antibody Cocktail, in Outpatients with COVID-19. N. Engl. J. Med. 2021, 3, 238–251. [Google Scholar] [CrossRef]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and Efficacy of the Bnt162b2 Mrna COVID-19 Vaccine. N. Engl. J. Med. 2020, 27, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and Efficacy of the Chadox1 Ncov-19 Vaccine (Azd1222) against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. Lancet 2021, 10269, 99–111. [Google Scholar] [CrossRef] [PubMed]
- Kiso, M.; Yamayoshi, S.; Iida, S.; Furusawa, Y.; Hirata, Y.; Uraki, R.; Imai, M.; Suzuki, T.; Kawaoka, Y. In Vitro and in Vivo Characterization of SARS-CoV-2 Resistance to Ensitrelvir. Nat. Commun. 2023, 1, 4231. [Google Scholar] [CrossRef]
- Kundi, M. Vaccine Effectiveness against Delta and Omicron Variants of SARS-CoV-2. BMJ 2023, 1111. [Google Scholar] [CrossRef]
- Yang, L.; Wang, Z. Bench-to-Bedside: Innovation of Small Molecule Anti-SARS-CoV-2 Drugs in China. Eur. J. Med. Chem. 2023, 257, 115503. [Google Scholar] [CrossRef]
- Bolarin, J.A.; Oluwatoyosi, M.A.; Orege, J.I.; Ayeni, E.A.; Ibrahim, Y.A.; Adeyemi, S.B.; Tiamiyu, B.B.; Gbadegesin, L.A.; Akinyemi, T.O.; Odoh, C.K.; et al. Therapeutic Drugs for SARS-CoV-2 Treatment: Current State and Perspective. Int. Immunopharmacol. 2021, 107228. [Google Scholar] [CrossRef]
- Wang, M.Y.; Zhao, R.; Gao, L.J.; Gao, X.F.; Wang, D.P.; Cao, J.M. SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front. Cell Infect. Microbiol. 2020, 587269. [Google Scholar]
- Wang, Y.; Huo, P.; Dai, R.; Lv, X.; Yuan, S.; Zhang, Y.; Guo, Y.; Li, R.; Yu, Q.; Zhu, K. Convalescent Plasma May Be a Possible Treatment for COVID-19: A Systematic Review. Int. Immunopharmacol 2021, 91, 107262. [Google Scholar] [CrossRef] [PubMed]
- Low, Z.; Lani, R.; Tiong, V.; Poh, C.; AbuBakar, S.; Hassandarvish, P. COVID-19 Therapeutic Potential of Natural Products. Int. J. Mol. Sci. 2023, 11, 9589. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, N.; Yang, L.; Song, X.Q. Bioactive Natural Products in COVID-19 Therapy. Front. Pharmacol. 2022, 13, 926507. [Google Scholar] [CrossRef]
- Karaoğlu, Ö.; Serhatlı, M.; Pelvan, E.; Karadeniz, B.; Demirtas, I.; Çakırca, G.; Sipahix, H.; Özhan, Y.; Karapınar, G.; Charehsaz, M. Chewable Tablet with Herbal Extracts and Propolis Arrests Wuhan and Omicron Variants of SARS-CoV-2 Virus. J. Funct. Foods 2023, 105544. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yang, L. Chinese Herbal Medicine: Fighting SARS-CoV-2 Infection on All Fronts. J. Ethnopharmacol. 2021, 113869. [Google Scholar]
- Benarba, B.; Pandiella, A. Medicinal Plants as Sources of Active Molecules against COVID-19. Front. Pharmacol. 2020, 11, 1189. [Google Scholar] [CrossRef]
- Desborough, J.; Dykgraaf, S.H.; Phillips, C.; Wright, M.; Maddox, R.; Davis, S.; Kidd, M. Lessons for the Global Primary Care Response to COVID-19: A Rapid Review of Evidence from Past Epidemics. Fam. Pract. 2021, 6, 811–825. [Google Scholar] [CrossRef]
- Pirintsos, S.A.; Bariotakis, M.; Kampa, M.; Sourvinos, G.; Lionis, C.; Castanas, E. The Therapeutic Potential of the Essential Oil of Thymbra capitata (L.) Cav., Origanum dictamnus L. and Salvia fruticosa Mill. and a Case of Plant-Based Pharmaceutical Development. Front. Pharmacol. 2020, 11, 522213. [Google Scholar] [CrossRef]
- Anastasaki, M.; Bertsias, A.; Pirintsos, S.A.; Castanas, E.; Lionis, C. Post-Market Outcome of an Extract of Traditional Cretan Herbs on Upper Respiratory Tract Infections: A Pragmatic, Prospective Observational Study. BMC Complement. Altern. Med. 2017, 17, 466. [Google Scholar] [CrossRef] [Green Version]
- Duijker, G.; Bertsias, A.; Symvoulakis, E.K.; Moschandreas, J.; Malliaraki, N.; Derdas, S.P.; Tsikalas, G.K.; Katerinopoulos, H.E.; Pirintsos, S.A.; Sourvinos, G.; et al. Reporting Effectiveness of an Extract of Three Traditional Cretan Herbs on Upper Respiratory Tract Infection: Results from a Double-Blind Randomized Controlled Trial. J. Ethnopharmacol. 2015, 163, 157–166. [Google Scholar] [CrossRef]
- Tseliou, M.; Pirintsos Stergios, A.; Lionis, C.; Castanas, E.; Sourvinos, G. Antiviral Effect of an Essential Oil Combination Derived from Three Aromatic Plants (Coridothymus capitatus (L.) Rchb. F., Origanum dictamnus L. And Salvia Fruticosa Mill.) against Viruses Causing Infections of the Upper Respiratory Tract. J. Herb. Med. 2019, 17–18, 100288. [Google Scholar] [CrossRef]
- Pirintsos, S.; Panagiotopoulos, A.; Bariotakis, M.; Daskalakis, V.; Lionis, C.; Sourvinos, G.; Karakasiliotis, I.; Kampa, M.; Castanas, E. From Traditional Ethnopharmacology to Modern Natural Drug Discovery: A Methodology Discussion and Specific Examples. Molecules 2022, 13, 4060. [Google Scholar] [CrossRef] [PubMed]
- National Organization of Public Health. COVID-19, Weekly Surveillance Reports from August 2020 until February 2022. Available online: https://www.health.nsw.gov.au/Infectious/covid-19/Pages/weekly-reports-archive.aspx (accessed on 1 March 2022).
- WHO. Tracking SARS-CoV-2 Variants. 2022. Available online: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (accessed on 1 March 2022).
- Bariotakis, M.; Georgescu, L.; Laina, D.; Oikonomou, I.; Ntagounakis, G.; Koufaki, M.-I.; Souma, M.; Choreftakis, M.; Zormpa, O.G.; Smykal, P.; et al. From Wild Harvest Towards Precision Agriculture: Use of Ecological Niche Modelling to Direct Potential Cultivation of Wild Medicinal Plants in Crete. Sci. Total Environ. 2019, 694, 133681. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and Bioefficacy of Polyphenols in Humans. I. Review of 97 Bioavailability Studies. Am. J. Clin. Nutr. 2005, 81, 230s–242s. [Google Scholar] [CrossRef] [Green Version]
- Scalbert, A.; Morand, C.; Manach, C.; Rémésy, C. Absorption and Metabolism of Polyphenols in the Gut and Impact on Health. Biomed. Pharmacother. 2002, 6, 276–282. [Google Scholar] [CrossRef]
- Allen, W.E.; Altae-Tran, H.; Briggs, J.; Jin, X.; McGee, G.; Shi, A.; Raghavan, R.; Kamariza, M.; Nova, N.; Pereta, A.; et al. Population-Scale Longitudinal Mapping of COVID-19 Symptoms, Behaviour and Testing. Nat. Hum. Behav. 2020, 9, 972–982. [Google Scholar] [CrossRef]
- Lechien, J.R.; Chiesa-Estomba, C.M.; Place, S.; Van Laethem, Y.; Cabaraux, P.; Mat, Q.; Huet, K.; Plzak, J.; Horoi, M.; Hans, S.; et al. Clinical and Epidemiological Characteristics of 1420 European Patients with Mild-to-Moderate Coronavirus Disease 2019. J. Intern. Med. 2020, 3, 335–344. [Google Scholar] [CrossRef]
- Tenforde, M.W.; Kim, S.S.; Lindsell, C.J.; Billig Rose, E.; Shapiro, N.I.; Files, D.C.; Gibbs, K.W.; Erickson, H.L.; Steingrub, J.S.; Smithline, H.A.; et al. Symptom Duration and Risk Factors for Delayed Return to Usual Health among Outpatients with COVID-19 in a Multistate Health Care Systems Network—United States, March–June 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 30, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Demeke, C.A.; Woldeyohanins, A.E.; Kifle, Z.D. Herbal Medicine Use for the Management of COVID-19: A Review Article. Metab. Open 2021, 12, 100141. [Google Scholar] [CrossRef]
- Wernhart, S.; Förster, T.H.; Weihe, E. Outpatient Management of Oligosymptomatic Patients with Respiratory Infection in the Era of SARS-CoV-2: Experience from Rural German General Practitioners. BMC Infect. Dis. 2020, 1, 811. [Google Scholar] [CrossRef] [PubMed]
- Lauer, S.A.; Grantz, K.H.; Bi, Q.; Jones, F.K.; Zheng, Q.; Meredith, H.R.; Azman, A.S.; Reich, N.G.; Lessler, J. The Incubation Period of Coronavirus Disease 2019 (COVID-19) from Publicly Reported Confirmed Cases: Estimation and Application. Ann. Intern. Med. 2020, 9, 577–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panagiotopoulos, A.; Tseliou, M.; Karakasiliotis, I.; Kotzampasi, D.M.; Daskalakis, V.; Kesesidis, N.; Notas, G.; Lionis, C.; Kampa, M.; Pirintsos, S.; et al. P-Cymene Impairs SARS-CoV-2 and Influenza a (H1n1) Viral Replication: In Silico Predicted Interaction with SARS-CoV-2 Nucleocapsid Protein and H1n1 Nucleoprotein. Pharmacol. Res. Perspect. 2021, 4, e00798. [Google Scholar] [CrossRef] [PubMed]
- Singanayagam, A.; Patel, M.; Charlett, A.; Lopez Bernal, J.; Saliba, V.; Ellis, J.; Ladhani, S.; Zambon, M.; Gopal, R. Duration of Infectiousness and Correlation with Rt-Pcr Cycle Threshold Values in Cases of COVID-19, England, January to May 2020. Eurosurveillance 2020, 32, 2001483. [Google Scholar] [CrossRef]
- Weinbergerova, B.; Mayer, J.; Hrabovsky, S.; Novakova, Z.; Pospisil, Z.; Martykanova, L.; Hortova, K.; Mandelova, L.; Hejduk, K.; Chloupková, R.; et al. COVID-19’s Natural Course among Ambulatory Monitored Outpatients. Sci. Rep. 2021, 1, 10124. [Google Scholar] [CrossRef]
Groups | |||
---|---|---|---|
Intervention (n = 38) | Control (n = 31) | ||
n (%) | |||
Gender | males | 18 (47.4) | 14 (45.2) |
females | 20 (52.6) | 17 (54.8) | |
Age, years | mean age ± stand.dev. | 38.4 ± 12.8 | 42.1 ± 16.1 |
Family members | yes | 11 (28.9) | 15 (48.4) |
Study phases | August–October 2020 | 13 (34.2) | - |
August 2021–February 2022 | 25 (65.8) | 31 (100.0) | |
Smokers | non | 22 (57.9) | 13 (42.0) |
former | 3 (7.9) | 9 (29.0) | |
current | 13 (34.2) | 9 (29.0) | |
Morbidity (at least one chronic disease) | yes a | 14 (36.8) | 9 (29.0) |
Recurrence of COVID-19 (in last six months) | yes | -- | 1 (3.2) |
Vaccination for SARS-CoV-2 (doses) | none | 19 (50.0) | 11 (35.5) |
one | 5 (13.2) | 3 (9.7) | |
two | 10 (26.3) | 14 (45.2) | |
three | 4 (10.5) | 3 (9.7) | |
Administration/intake of medicinal or other compound for the symptoms (before, at the point of, or following inclusion to the study, additionally to CAPeo) | painkillers | 16 (42.1) | 19 (61.3) |
antibiotics | 4 (10.5) | -- |
Groups | |||||
---|---|---|---|---|---|
Intervention | Control | ||||
Symptoms | Days of Follow-Up | Marginal Means (Stand. Errors) | p-Value | η2 | |
Number | 1st (baseline) | 4.7 (0.3) | 4.0 (0.4) | ||
7th | 1.4 (0.4) | 3.1 (0.4) | |||
Δ-change (7th from 1st) | −3.3 (0.4) | −0.9 (0.5) | <0.001 | 0.20 | |
14th | 0.5 (0.2) | 1.1 (0.3) | |||
Δ-change (14th from 7th) | −0.9 (0.3) | −2.1 (0.3) | 0.008 | 0.16 | |
Δ-change (14th from 1st) | −4.2 (0.3) | −2.9 (0.4) | 0.027 | 0.08 | |
Severity | 1st (baseline) | 11.58 (0.92) | 9.16 (1.03) | ||
7th | 3.44 (1.07) | 8.10 (1.20) | |||
Δ-change (7th from 1st) | −8.14 (1.14) | −1.06 (1.28) | <0.001 | 0.20 | |
14th | 0.91 (0.55) | 2.59 (0.62) | |||
Δ-change (14th from 7th) | −2.53 (0.73) | −5.51 (0.82) | 0.014 | 0.10 | |
Δ-change (14th from 1st) | −10.67 (0.91) | −6.57 (1.02) | 0.007 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lionis, C.; Petelos, E.; Linardakis, M.; Diamantakis, A.; Symvoulakis, E.; Karkana, M.-N.; Kampa, M.; Pirintsos, S.A.; Sourvinos, G.; Castanas, E. A Mixture of Essential Oils from Three Cretan Aromatic Plants Inhibits SARS-CoV-2 Proliferation: A Proof-of-Concept Intervention Study in Ambulatory Patients. Diseases 2023, 11, 105. https://doi.org/10.3390/diseases11030105
Lionis C, Petelos E, Linardakis M, Diamantakis A, Symvoulakis E, Karkana M-N, Kampa M, Pirintsos SA, Sourvinos G, Castanas E. A Mixture of Essential Oils from Three Cretan Aromatic Plants Inhibits SARS-CoV-2 Proliferation: A Proof-of-Concept Intervention Study in Ambulatory Patients. Diseases. 2023; 11(3):105. https://doi.org/10.3390/diseases11030105
Chicago/Turabian StyleLionis, Christos, Elena Petelos, Manolis Linardakis, Athanasios Diamantakis, Emmanouil Symvoulakis, Maria-Nefeli Karkana, Marilena Kampa, Stergios A. Pirintsos, George Sourvinos, and Elias Castanas. 2023. "A Mixture of Essential Oils from Three Cretan Aromatic Plants Inhibits SARS-CoV-2 Proliferation: A Proof-of-Concept Intervention Study in Ambulatory Patients" Diseases 11, no. 3: 105. https://doi.org/10.3390/diseases11030105
APA StyleLionis, C., Petelos, E., Linardakis, M., Diamantakis, A., Symvoulakis, E., Karkana, M. -N., Kampa, M., Pirintsos, S. A., Sourvinos, G., & Castanas, E. (2023). A Mixture of Essential Oils from Three Cretan Aromatic Plants Inhibits SARS-CoV-2 Proliferation: A Proof-of-Concept Intervention Study in Ambulatory Patients. Diseases, 11(3), 105. https://doi.org/10.3390/diseases11030105