Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (20,843)

Search Parameters:
Keywords = Therapeutic proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1581 KiB  
Article
Combining Topical Oxygen and Negative-Pressure Wound Therapy: New Insights from a Pilot Study on Chronic Wound Treatment
by Bartosz Molasy, Mateusz Frydrych, Rafał Kuchciński and Stanisław Głuszek
J. Clin. Med. 2025, 14(15), 5564; https://doi.org/10.3390/jcm14155564 (registering DOI) - 7 Aug 2025
Abstract
Background: Chronic wounds are a growing clinical challenge due to their prolonged healing time and associated healthcare burden. Combined therapeutic approaches, including topical oxygen therapy (TOT) and negative-pressure wound therapy (NPWT), have shown promise in enhancing wound healing. This pilot exploratory study aimed [...] Read more.
Background: Chronic wounds are a growing clinical challenge due to their prolonged healing time and associated healthcare burden. Combined therapeutic approaches, including topical oxygen therapy (TOT) and negative-pressure wound therapy (NPWT), have shown promise in enhancing wound healing. This pilot exploratory study aimed to assess the clinical effectiveness of combined TOT and NPWT in chronic wound treatment and to explore the prognostic value of selected laboratory and thermographic markers. Methods: Eighteen patients with chronic wounds due to type 2 diabetes mellitus or chronic venous insufficiency were treated with either TOT alone (control group) or TOT combined with NPWT (intervention group). Wound characteristics, thermographic data, and laboratory parameters (NLR, MLR, PLR, CRP, and total protein) were collected at baseline and during therapy. The primary endpoints were the total treatment duration and complete wound closure. Statistical analyses were exploratory and used non-parametric tests, correlation analyses, and simple linear regression. Results: Ulcer duration was significantly associated with the wound surface area. Lower serum total protein levels correlated negatively with ulcer duration, wound size, and granulation tissue area. A significant reduction in treatment duration was observed in the intervention group compared to the controls. One strong correlation was found between MLR and peripheral wound temperature on day 7 in the control group. No significant group differences were observed in wound size or thermographic measures after one week of treatment. Conclusions: Combining TOT and NPWT may reduce treatment duration in chronic wound management. Selected laboratory and thermographic markers show promise as prognostic tools. These exploratory findings require confirmation in larger, randomized trials. Full article
(This article belongs to the Special Issue New Advances in Wound Healing and Skin Wound Treatment)
Show Figures

Figure 1

18 pages, 1256 KiB  
Article
Longitudinal Assessment of Body Composition and Inflammatory Status in Rheumatoid Arthritis During TNF Inhibitor Treatment: A Pilot Study
by Natalia Mena-Vázquez, Aimara García-Studer, Fernando Ortiz-Márquez, Sara Manrique-Arija, Arkaitz Mucientes, Jose Manuel Lisbona-Montañez, Paula Borregón-Garrido, Patricia Ruiz-Limón, Rocío Redondo-Rodriguez, Laura Cano-García and Antonio Fernández-Nebro
Int. J. Mol. Sci. 2025, 26(15), 7635; https://doi.org/10.3390/ijms26157635 (registering DOI) - 7 Aug 2025
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease frequently associated with alterations in body composition, including reduced lean mass and increased fat mass. These alterations are thought to be driven by persistent systemic inflammation, which may be influenced by inflammatory activity and by [...] Read more.
Rheumatoid arthritis (RA) is a chronic inflammatory disease frequently associated with alterations in body composition, including reduced lean mass and increased fat mass. These alterations are thought to be driven by persistent systemic inflammation, which may be influenced by inflammatory activity and by therapeutic interventions. Objectives: This pilot study aimed to provide preliminary data on changes in body composition and inflammatory activity in biologic-naive patients with active RA during the initial 6 months of TNF inhibitor treatment, and to compare baseline body composition with healthy controls. We conducted a single-center, observational, 24-week pilot study of 70 biologic-naive RA patients with moderate-to-severe disease activity and 70 matched healthy controls. Lean mass, fat mass, and lean mass index (LMI) were measured using dual-energy X-ray absorptiometry at baseline for both groups, and after 6 months only in the RA group. Clinical, laboratory, adipokines, and cytokine parameters were also recorded. At baseline, RA patients had lower lean mass and LMI than controls. Over 6 months, RA patients showed significant clinical and laboratory improvement, with a corresponding increase in lean mass and LMI. No statistically significant change was observed in fat mass. The increase in lean mass was paralleled by a reduction in inflammatory markers. The LMI was inversely associated with female sex (β = −0.562) and C-reactive protein (β = −0.432) and directly associated with body mass index (β = 0.570). Similar associations were observed for total lean mass and change in lean mass, as well as for DAS28 (β = −0.333). This pilot study provides preliminary evidence that TNF inhibitor therapy may be associated with increased lean mass and decreased inflammation in RA patients. Owing to the absence of a comparator RA group not receiving TNF inhibitors, these findings should be interpreted as hypothesis-generating. Full article
Show Figures

Figure 1

19 pages, 2057 KiB  
Review
Therapeutic Opportunities in Overcoming Premature Termination Codons in Epidermolysis Bullosa via Translational Readthrough
by Kathleen L. Miao, Ryan Huynh, David Woodley and Mei Chen
Cells 2025, 14(15), 1215; https://doi.org/10.3390/cells14151215 (registering DOI) - 7 Aug 2025
Abstract
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes [...] Read more.
Epidermolysis Bullosa (EB) comprises a group of inherited blistering disorders caused by pathogenic variants in genes essential for skin and mucosal integrity. Nonsense mutations, which generate premature termination codons (PTCs), result in reduced or absent protein expression and contribute to severe disease phenotypes in EB. Readthrough therapies, which may continue translation past PTCs to restore full-length functional proteins, have emerged as promising approaches. This review summarizes findings from preclinical studies investigating readthrough therapies in EB models, clinical studies demonstrating efficacy in EB patients, and emerging readthrough agents with potential application to EB. Preclinical and clinical studies with gentamicin have demonstrated restored type VII collagen and laminin-332 expression, leading to measurable clinical improvements. Parallel development of novel compounds—including aminoglycoside analogs (e.g., ELX-02), translation termination factor degraders (e.g., CC-90009, SRI-41315, SJ6986), tRNA post-transcriptional inhibitors (e.g., 2,6-diaminopurine, NV848), and nucleoside analogs (e.g., clitocine)—has expanded the therapeutic pipeline. Although challenges remain regarding toxicity, codon specificity, and variable protein restoration thresholds, continued advances in molecular targeting and combination therapies offer the potential to establish readthrough therapies as localized or systemic treatments addressing both cutaneous and extracutaneous disease manifestations in EB. Full article
Show Figures

Figure 1

27 pages, 15414 KiB  
Article
Epimedium-Derived Exosome-Loaded GelMA Hydrogel Enhances MC3T3-E1 Osteogenesis via PI3K/Akt Pathway
by Weijian Hu, Xin Xie and Jiabin Xu
Cells 2025, 14(15), 1214; https://doi.org/10.3390/cells14151214 (registering DOI) - 7 Aug 2025
Abstract
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed [...] Read more.
Healing large bone defects remains challenging. Gelatin scaffolds are biocompatible and biodegradable, but lack osteoinductive activity. Plant-derived exosomes carry miRNAs, growth factors, and proteins that modulate osteogenesis, but free exosomes suffer from poor stability, limited targeting, and low bioavailability in vivo. We developed a 3D GelMA hydrogel loaded with Epimedium-derived exosomes (“GelMA@Exo”) to improve exosome retention, stability, and sustained release. Its effects on MC3T3-E1 preosteoblasts—including proliferation, osteogenic differentiation, migration, and senescence—were evaluated via in vitro assays. Angiogenic potential was assessed using HUVECs. Underlying mechanisms were examined at transcriptomic and protein levels to elucidate GelMA@Exo’s therapeutic osteogenesis actions. GelMA@Exo exhibited sustained exosome release, enhancing exosome retention and cellular uptake. In vitro, GelMA@Exo markedly boosted MC3T3-E1 proliferation, migration, and mineralized nodule formation, while reducing senescence markers and promoting angiogenesis in HUVECs. Mechanistically, GelMA@Exo upregulated key osteogenic markers (RUNX2, TGF-β1, Osterix, COL1A1, ALPL) and activated the PI3K/Akt pathway. Transcriptomic data confirmed global upregulation of osteogenesis-related genes and bone-regeneration pathways. This study presents a GelMA hydrogel functionalized with plant-derived exosomes, which synergistically provides osteoinductive stimuli and structural support. The GelMA@Exo platform offers a versatile strategy for localized delivery of natural bioactive molecules and a promising approach for bone tissue engineering. Our findings provide strong experimental evidence for the translational potential of plant-derived exosomes in regenerative medicine. Full article
(This article belongs to the Section Cell Proliferation and Division)
Show Figures

Figure 1

31 pages, 2319 KiB  
Review
Biopharming of Lactoferrin: Current Strategies and Future Prospects
by Rajaravindra Konadaka Sri, Parthasarathi Balasamudram Chandrasekhar, Architha Sirisilla, Qudrathulla Khan Quadri Mohammed, Thejasri Jakkoju, Rajith Reddy Bheemreddy, Tarun Kumar Bhattacharya, Rajkumar Ullengala and Rudra Nath Chatterjee
Pharmaceutics 2025, 17(8), 1023; https://doi.org/10.3390/pharmaceutics17081023 (registering DOI) - 7 Aug 2025
Abstract
Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein primarily found in milk, saliva, tears, and nasal secretions. LF is well known for its antibacterial and immunomodulatory effects. However, the extraction of LF from milk is inadequate for large-scale therapeutic applications, presenting a challenge [...] Read more.
Lactoferrin (LF) is an 80 kDa iron-binding glycoprotein primarily found in milk, saliva, tears, and nasal secretions. LF is well known for its antibacterial and immunomodulatory effects. However, the extraction of LF from milk is inadequate for large-scale therapeutic applications, presenting a challenge for economic mass production. Recombinant protein expression systems offer a solution to overcome this challenge and efficient production of LF. This review discusses recent progress in the translational research of LF gene transfer and biopharming, focusing on different expression systems such as bacteria, yeast, filamentous fungi, transgenic crops, and animals as well as purification methods. The optimization of expression yields, prospects for genetic engineering, and biotechnology to enhance LF production for biomedical applications are emphasized. This review systematically sourced the literature from 1987 to 2025 from leading scientific databases, including PubMed, Scopus, Web of Science, and Google Scholar. Despite ongoing debates, progress in this field indicates a viable path towards the effective use of LF in therapeutic settings. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

18 pages, 865 KiB  
Review
Proteomics-Based Approaches to Decipher the Molecular Strategies of Botrytis cinerea: A Review
by Olivier B. N. Coste, Almudena Escobar-Niño and Francisco Javier Fernández-Acero
J. Fungi 2025, 11(8), 584; https://doi.org/10.3390/jof11080584 - 6 Aug 2025
Abstract
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. [...] Read more.
Botrytis cinerea is a highly versatile pathogenic fungus, causing significant damage across a wide range of plant species. A central focus of this review is the recent advances made through proteomics, an advanced molecular tool, in understanding the mechanisms of B. cinerea infection. Recent advances in mass spectrometry-based proteomics—including LC-MS/MS, iTRAQ, MALDI-TOF, and surface shaving—have enabled the in-depth characterization of B. cinerea subproteomes such as the secretome, surfactome, phosphoproteome, and extracellular vesicles, revealing condition-specific pathogenic mechanisms. Notably, in under a decade, the proportion of predicted proteins experimentally identified has increased from 10% to 52%, reflecting the rapid progress in proteomic capabilities. We explore how proteomic studies have significantly enhanced our knowledge of the fungus secretome and the role of extracellular vesicles (EVs), which play key roles in pathogenesis, by identifying secreted proteins—such as pH-responsive elements—that may serve as biomarkers and therapeutic targets. These technologies have also uncovered fine regulatory mechanisms across multiple levels of the fungal proteome, including post-translational modifications (PTMs), the phosphomembranome, and the surfactome, providing a more integrated view of its infection strategy. Moreover, proteomic approaches have contributed to a better understanding of host–pathogen interactions, including aspects of the plant’s defensive responses. Furthermore, this review discusses how proteomic data have helped to identify metabolic pathways affected by novel, more environmentally friendly antifungal compounds. A further update on the advances achieved in the field of proteomics discovery for the organism under consideration is provided in this paper, along with a perspective on emerging tools and future developments expected to accelerate research and improve targeted intervention strategies. Full article
(This article belongs to the Special Issue Plant Pathogenic Sclerotiniaceae)
Show Figures

Figure 1

13 pages, 3790 KiB  
Article
Anti-CD26 Antibody Suppresses Epithelial-Mesenchymal Transition in Colorectal Cancer Stem Cells
by Takumi Iwasawa, Ryo Hatano, Satoshi Takeda, Ayumi Kurusu, Chikako Okamoto, Kazunori Kato, Chikao Morimoto and Noriaki Iwao
Int. J. Mol. Sci. 2025, 26(15), 7620; https://doi.org/10.3390/ijms26157620 - 6 Aug 2025
Abstract
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully [...] Read more.
CD26 (dipeptidyl peptidase-4) is a marker of colorectal cancer stem cells with high metastatic potential and resistance to therapy. Although CD26 expression is known to be associated with tumor progression, its functional involvement in epithelial-mesenchymal transition (EMT) and metastasis remains to be fully elucidated. In this study, we aimed to investigate the effects of a monoclonal anti-CD26 antibody on EMT-related phenotypes and metastatic behavior in colorectal cancer cells. We evaluated changes in EMT markers by quantitative PCR and Western blotting, assessed cell motility and invasion using scratch wound-healing and Transwell assays, and examined metastatic potential in vivo using a splenic injection mouse model. Treatment with the anti-CD26 antibody significantly increased the expression of the epithelial marker E-cadherin and reduced levels of EMT-inducing transcription factors, including ZEB1, Twist1, and Snail1, at the mRNA and protein levels. Functional assays revealed that the antibody markedly inhibited cell migration and invasion in vitro without exerting cytotoxic effects. Furthermore, systemic administration of the anti-CD26 antibody significantly suppressed the formation of liver metastases in vivo. These findings suggest that CD26 may contribute to the regulation of EMT and metastatic behavior in colorectal cancer. Our data highlight the potential therapeutic utility of CD26-targeted antibody therapy for suppressing EMT-associated phenotypes and metastatic progression. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Colorectal Cancer: 4th Edition)
Show Figures

Figure 1

55 pages, 2103 KiB  
Review
Reactive Oxygen Species: A Double-Edged Sword in the Modulation of Cancer Signaling Pathway Dynamics
by Manisha Nigam, Bajrang Punia, Deen Bandhu Dimri, Abhay Prakash Mishra, Andrei-Flavius Radu and Gabriela Bungau
Cells 2025, 14(15), 1207; https://doi.org/10.3390/cells14151207 - 6 Aug 2025
Abstract
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment [...] Read more.
Reactive oxygen species (ROS) are often seen solely as harmful byproducts of oxidative metabolism, yet evidence reveals their paradoxical roles in both promoting and inhibiting cancer progression. Despite advances, precise context-dependent mechanisms by which ROS modulate oncogenic signaling, therapeutic response, and tumor microenvironment dynamics remain unclear. Specifically, the spatial and temporal aspects of ROS regulation (i.e., the distinct effects of mitochondrial versus cytosolic ROS on the PI3K/Akt and NF-κB pathways, and the differential cellular outcomes driven by acute versus chronic ROS exposure) have been underexplored. Additionally, the specific contributions of ROS-generating enzymes, like NOX isoforms and xanthine oxidase, to tumor microenvironment remodeling and immune modulation remain poorly understood. This review synthesizes current findings with a focus on these critical gaps, offering novel mechanistic insights into the dualistic nature of ROS in cancer biology. By systematically integrating data on ROS source-specific functions and redox-sensitive signaling pathways, the complex interplay between ROS concentration, localization, and persistence is elucidated, revealing how these factors dictate the paradoxical support of tumor progression or induction of cancer cell death. Particular attention is given to antioxidant mechanisms, including NRF2-mediated responses, that may undermine the efficacy of ROS-targeted therapies. Recent breakthroughs in redox biosensors (i.e., redox-sensitive fluorescent proteins, HyPer variants, and peroxiredoxin–FRET constructs) enable precise, real-time ROS imaging across subcellular compartments. Translational advances, including redox-modulating drugs and synthetic lethality strategies targeting glutathione or NADPH dependencies, further highlight actionable vulnerabilities. This refined understanding advances the field by highlighting context-specific vulnerabilities in tumor redox biology and guiding more precise therapeutic strategies. Continued research on redox-regulated signaling and its interplay with inflammation and therapy resistance is essential to unravel ROS dynamics in tumors and develop targeted, context-specific interventions harnessing their dual roles. Full article
Show Figures

Figure 1

20 pages, 3674 KiB  
Article
Extracellular Adenosine in Gastric Cancer: The Role of GCSCs
by Sharin Valdivia, Carolina Añazco, Camila Riquelme, María Constanza Carrasco, Andrés Alarcón and Sebastián Alarcón
Int. J. Mol. Sci. 2025, 26(15), 7594; https://doi.org/10.3390/ijms26157594 - 6 Aug 2025
Abstract
Gastric cancer (GC) is among the most common and deadliest types of cancer, with a poor prognosis primarily due to late-stage detection and the presence of cancer stem cells (CSCs). This study investigates the mechanisms regulating extracellular adenosine levels in gastric cancer stem-like [...] Read more.
Gastric cancer (GC) is among the most common and deadliest types of cancer, with a poor prognosis primarily due to late-stage detection and the presence of cancer stem cells (CSCs). This study investigates the mechanisms regulating extracellular adenosine levels in gastric cancer stem-like cells (GCSCs) derived from the MKN-74 cell line. Our results show that GCSCs release more ATP into the extracellular medium and exhibit higher levels of CD39 expression, which enables them to hydrolyze a greater amount of ATP. Furthermore, we also found that GCSCs possess a greater capacity to hydrolyze AMP, primarily due to the activity of the CD73 protein, with no significant changes in CD73 transcripts and protein levels between GCSCs and differentiated cells. Additionally, adenosine transport is primarily mediated by members of the equilibrative nucleoside transporter (ENT) family in GCSCs, where a significant increase in the expression level of the ENT2 protein is observed compared to non-GCSCs MKN-74 cells. These findings suggest that targeting the adenosine metabolism pathway in GCSCs could be a potential therapeutic strategy for gastric cancer. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Cancer Invasion and Metastasis)
Show Figures

Figure 1

41 pages, 3389 KiB  
Review
Fully Green Particles Loaded with Essential Oils as Phytobiotics: A Review on Preparation and Application in Animal Feed
by Maria Sokol, Ivan Gulayev, Margarita Chirkina, Maksim Klimenko, Olga Kamaeva, Nikita Yabbarov, Mariia Mollaeva and Elena Nikolskaya
Antibiotics 2025, 14(8), 803; https://doi.org/10.3390/antibiotics14080803 - 6 Aug 2025
Abstract
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the [...] Read more.
The modern livestock industry incorporates widely used antibiotic growth promoters into animal feed at sub-therapeutic levels to enhance growth performance and feed efficiency. However, this practice contributes to the emergence of antibiotic-resistant pathogens in livestock, which may be transmitted to humans through the food chain, thereby diminishing the efficacy of antibiotics in treating bacterial infections. Current research explores the potential of essential oils from derived medicinal plants as alternative phytobiotics. This review examines modern encapsulation strategies that incorporate essential oils into natural-origin matrices to improve their stability and control their release both in vitro and in vivo. We discuss a range of encapsulation approaches utilizing polysaccharides, gums, proteins, and lipid-based carriers. This review highlights the increasing demand for antibiotic alternatives in animal nutrition driven by regulatory restrictions, and the potential benefits of essential oils in enhancing feed palatability and stabilizing the intestinal microbiome in monogastric animals and ruminants. Additionally, we address the economic viability and encapsulation efficiency of different matrix formulations. Full article
Show Figures

Figure 1

13 pages, 1536 KiB  
Article
Gosha-Jinki-Gan Reduces Inflammation in Chronic Ischemic Stroke Mouse Models by Suppressing the Infiltration of Macrophages
by Mingli Xu, Kaori Suyama, Kenta Nagahori, Daisuke Kiyoshima, Satomi Miyakawa, Hiroshi Deguchi, Yasuhiro Katahira, Izuru Mizoguchi, Hayato Terayama, Shogo Hayashi, Takayuki Yoshimoto and Ning Qu
Biomolecules 2025, 15(8), 1136; https://doi.org/10.3390/biom15081136 - 6 Aug 2025
Abstract
Ischemic stroke is a primary cause of cerebrovascular diseases and continues to be one of the leading causes of death and disability among patients worldwide. Pathological processes caused by vascular damage due to stroke occur in a time-dependent manner and are classified into [...] Read more.
Ischemic stroke is a primary cause of cerebrovascular diseases and continues to be one of the leading causes of death and disability among patients worldwide. Pathological processes caused by vascular damage due to stroke occur in a time-dependent manner and are classified into three categories: acute, subacute, and chronic. Current treatments for ischemic stroke are limited to effectiveness in the early stages. In this study, we investigated the therapeutic effect of an oriental medicine, Gosha-jinki-gan (TJ107), on improving chronic ischemic stroke using the mouse model with middle cerebral artery occlusion (MCAO). The changes in the intracerebral inflammatory response (macrophages (F4/80), TLR24, IL-23, IL-17, TNF-α, and IL-1β) were examined using real-time RT-PCR. The MCAO mice showed the increased expression of glial fibrillary acidic protein (GFAP) and of F4/80, TLR2, TLR4, IL-1β, TNF-α, and IL-17 in the brain tissue from the MCAO region. This suggests that they contribute to the expansion of the ischemic stroke infarct area and to the worsening of the neurological symptoms of the MCAO mice in the chronic phase. On the other hand, the administration of TJ107 was proven to reduce the infarct area, with decreased GFAP expression, suppressed macrophage infiltration in the brain, and reduced TNF-α, IL-1β, and IL-17 production compared with the MCAO mice. This study first demonstrated Gosha-jinki-gan’s therapeutic effects on the chronic ischemic stroke. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Novel Treatments of Stroke)
Show Figures

Figure 1

20 pages, 7055 KiB  
Article
Cardiopulmonary Bypass-Induced IL-17A Aggravates Caspase-12-Dependent Neuronal Apoptosis Through the Act1-IRE1-JNK1 Pathway
by Ruixue Zhao, Yajun Ma, Shujuan Li and Junfa Li
Biomolecules 2025, 15(8), 1134; https://doi.org/10.3390/biom15081134 - 6 Aug 2025
Abstract
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose [...] Read more.
Cardiopulmonary bypass (CPB) is associated with significant neurological complications, yet the mechanisms underlying brain injury remain unclear. This study investigated the role of interleukin-17A (IL-17A) in exacerbating CPB-induced neuronal apoptosis and identified vulnerable brain regions. Utilizing a rat CPB model and an oxygen–glucose deprivation/reoxygenation (OGD/R) cellular model, we demonstrated that IL-17A levels were markedly elevated in the hippocampus post-CPB, correlating with endoplasmic reticulum stress (ERS)-mediated apoptosis. Transcriptomic analysis revealed the enrichment of IL-17 signaling and apoptosis-related pathways. IL-17A-Neutralizing monoclonal antibody (mAb) and the ERS inhibitor 4-phenylbutyric acid (4-PBA) significantly attenuated neurological deficits and hippocampal neuronal damage. Mechanistically, IL-17A activated the Act1-IRE1-JNK1 axis, wherein heat shock protein 90 (Hsp90) competitively regulated Act1-IRE1 interactions. Co-immunoprecipitation confirmed the enhanced Hsp90-Act1 binding post-CPB, promoting IRE1 phosphorylation and downstream caspase-12 activation. In vitro, IL-17A exacerbated OGD/R-induced apoptosis via IRE1-JNK1 signaling, reversible by IRE1 inhibition. These findings identify the hippocampus as a key vulnerable region and delineate a novel IL-17A/Act1-IRE1-JNK1 pathway driving ERS-dependent apoptosis. Targeting IL-17A or Hsp90-mediated chaperone switching represents a promising therapeutic strategy for CPB-associated neuroprotection. This study provides critical insights into the molecular crosstalk between systemic inflammation and neuronal stress responses during cardiac surgery. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 2164 KiB  
Article
The Fanconi Anemia Pathway Inhibits mTOR Signaling and Prevents Accelerated Translation in Head and Neck Cancer Cells
by Bianca Ruffolo, Sara Vicente-Muñoz, Khyati Y. Mehta, Cosette M. Rivera-Cruz, Xueheng Zhao, Lindsey Romick, Kenneth D. R. Setchell, Adam Lane and Susanne I. Wells
Cancers 2025, 17(15), 2583; https://doi.org/10.3390/cancers17152583 - 6 Aug 2025
Abstract
Background/Objectives: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks and maintenance of genomic stability. Germline loss of FA pathway function in the inherited Fanconi anemia syndrome leads to increased DNA damage and a range of clinical phenotypes, [...] Read more.
Background/Objectives: The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand crosslinks and maintenance of genomic stability. Germline loss of FA pathway function in the inherited Fanconi anemia syndrome leads to increased DNA damage and a range of clinical phenotypes, including a heightened risk of head and neck squamous cell carcinoma (HNSCC). Non-synonymous FA gene mutations are also observed in up to 20% of sporadic HNSCCs. The mechanistic target of rapamycin (mTOR) is known to stimulate cell growth, anabolic metabolism including protein synthesis, and survival following genotoxic stress. Methods/Results: Here, we demonstrate that FA− deficient (FA−) HNSCC cells exhibit elevated intracellular amino acid levels, increased total protein content, and an increase in protein synthesis indicative of enhanced translation. These changes are accompanied by hyperactivation of the mTOR effectors translation initiation factor 4E Binding Protein 1 (4E-BP1) and ribosomal protein S6. Treatment with the mTOR inhibitor rapamycin reduced the phosphorylation of these targets and blocked translation specifically in FA− cells but not in their isogenic FA− proficient (FA+) counterparts. Rapamycin-mediated mTOR inhibition sensitized FA− but not FA+ cells to rapamycin under nutrient stress, supporting a therapeutic metabolism-based vulnerability in FA− cancer cells. Conclusions: These findings uncover a novel role for the FA pathway in suppressing mTOR signaling and identify mTOR inhibition as a potential strategy for targeting FA− HNSCCs. Full article
(This article belongs to the Special Issue Targeted Therapy in Head and Neck Cancer)
Show Figures

Figure 1

22 pages, 4653 KiB  
Review
Curcumin as a Dual Modulator of Pyroptosis: Mechanistic Insights and Therapeutic Potential
by Dong Oh Moon
Int. J. Mol. Sci. 2025, 26(15), 7590; https://doi.org/10.3390/ijms26157590 - 6 Aug 2025
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, has drawn significant attention for its pleiotropic pharmacological activities, including anti-inflammatory and anticancer effects. Pyroptosis, an inflammatory form of programmed cell death mediated by inflammasome activation and gasdermin cleavage, has emerged as a critical [...] Read more.
Curcumin, a polyphenolic compound derived from Curcuma longa, has drawn significant attention for its pleiotropic pharmacological activities, including anti-inflammatory and anticancer effects. Pyroptosis, an inflammatory form of programmed cell death mediated by inflammasome activation and gasdermin cleavage, has emerged as a critical target in both chronic inflammatory diseases and cancer therapy. This review comprehensively explores the dual roles of curcumin in the regulation of NLRP3 inflammasome-mediated pyroptosis. Curcumin exerts inhibitory effects by suppressing NF-κB signaling, attenuating mitochondrial reactive oxygen species (ROS) and ER stress, preventing potassium efflux, and disrupting inflammasome complex assembly. Conversely, in certain cancer contexts, curcumin promotes pyroptosis by stabilizing NLRP3 through the inhibition of Smurf2-mediated ubiquitination. Molecular docking studies support curcumin’s direct binding to several pyroptosis-associated proteins, including NLRP3, AMPK, caspase-1, and Smurf2. These context-dependent regulatory effects underscore the therapeutic potential of curcumin as both an inflammasome suppressor in inflammatory diseases and a pyroptosis inducer in cancer. Full article
(This article belongs to the Collection Latest Review Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

19 pages, 1856 KiB  
Article
Combination Therapy with Trehalose and Hyaluronic Acid Restores Tear Lipid Layer Functionality by Ameliorating Inflammatory Response Protein Markers on the Ocular Surface of Dry Eye Patients
by Natarajan Perumal, Caroline Manicam, Eunjin Jeong, Sarah Runde, Norbert Pfeiffer and Franz H. Grus
J. Clin. Med. 2025, 14(15), 5525; https://doi.org/10.3390/jcm14155525 - 5 Aug 2025
Abstract
Objectives: Topical lubricants are the fundamental treatment for dry eye disease (DED). However, the molecular mechanisms underlying their efficacy remain unknown. Here, the protective effects of Thealoz® Duo with 3% trehalose and 0.15% hyaluronic acid are investigated in DED patients by a [...] Read more.
Objectives: Topical lubricants are the fundamental treatment for dry eye disease (DED). However, the molecular mechanisms underlying their efficacy remain unknown. Here, the protective effects of Thealoz® Duo with 3% trehalose and 0.15% hyaluronic acid are investigated in DED patients by a longitudinal clinical study and subsequent elucidation of the tear proteome and cell signaling changes. Methods: Participants were classified as moderate to severe DED (DRY, n = 35) and healthy (CTRL, n = 23) groups. Specific DED subgroups comprising evaporative (DRYlip) and aqueous-deficient with DRYlip (DRYaqlip) were also classified. Only DED patients received Thealoz® Duo. All participants were clinically examined before (day 0, T1) and after the application of Thealoz® Duo at day 28 (T2) and day 56 (T3). Next, 174 individual tear samples from all groups at three time-points were subjected to proteomics analysis. Results: Clinically, Thealoz® Duo significantly improved the ocular surface disease index at T2 vs. T1 (DRY, p = 1.4 × 10−2; DRYlip, p = 9.2 × 10−3) and T3 vs. T1 (DRY, p = 2.1 × 10−5; DRYlip, p = 1.2 × 10−4), and the tear break-up time at T3 vs. T1 (DRY, p = 3.8 × 10−2; DRYlip, p = 1.4 × 10−2). Thealoz® Duo significantly ameliorated expression of inflammatory response proteins (p < 0.05) at T3, which was observed at T1 (DRY, p = 3.4 × 10−4; DRYlip, p = 7.1 × 10−3; DRYaqlip, p = 2.7 × 10−8). Protein S100-A8 (S100A8), Alpha-1-antitrypsin (SERPINA1), Annexin A1 (ANXA1), and Apolipoprotein A-I (APOA1) were found to be significantly reduced in all the DED subgroups. The application of Thealoz® Duo showed the therapeutic characteristic of the anti-inflammatory mechanism by promoting the expression of (Metalloproteinase inhibitor 1) TIMP1 in all the DED subgroups. Conclusions: Thealoz® Duo substantially improved the DED symptoms and restored the functionality of the tear lipid layer to near normal in DRYlip and DRY patients by ameliorating inflammation. Notably, this study unravels the novel mechanistic alterations underpinning the healing effects of Thealoz® Duo in DED subgroups in a time-dependent manner, which supports the improvement in corresponding clinical attributes. Full article
(This article belongs to the Section Ophthalmology)
Show Figures

Figure 1

Back to TopTop