Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (203)

Search Parameters:
Keywords = TerraSAR-X radar data

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9699 KB  
Article
Evaluation of Digital Elevation Models (DEM) Generated from the InSAR Technique in a Sector of the Central Andes of Chile, Using Sentinel 1 and TerraSar-X Images
by Francisco Flores, Paulina Vidal-Páez, Francisco Mena, Waldo Pérez-Martínez and Patricia Oliva
Appl. Sci. 2026, 16(1), 392; https://doi.org/10.3390/app16010392 - 30 Dec 2025
Viewed by 381
Abstract
The Synthetic Aperture Radar Interferometry (InSAR) technique enables researchers to generate Digital Elevation Models (DEMs) from SAR data, which researchers widely apply in multi-temporal analyses, including ground deformation monitoring, susceptibility mapping, and analysis of spatial changes in erosion basins. In this study, we [...] Read more.
The Synthetic Aperture Radar Interferometry (InSAR) technique enables researchers to generate Digital Elevation Models (DEMs) from SAR data, which researchers widely apply in multi-temporal analyses, including ground deformation monitoring, susceptibility mapping, and analysis of spatial changes in erosion basins. In this study, we generated two interferometric DEMs from Sentinel-1 (S1, VV polarization) and TerraSAR-X (TSX, HH polarization, ascending orbit) data, processed in SNAP, over a mountainous sector of the central Andes in Chile. We assessed the accuracy of the DEMs against two reference datasets: the SRTM DEM and a high-resolution LiDAR-derived DEM. We selected 150 randomly distributed points across different slope classes to compute statistical metrics, including RMSE and MedAE. Relative to the LiDAR DEM, both sensors yielded rMSE values of approximately 20 m, increasing to 23–24 m when compared with the SRTM DEM. The MedAE, a metric less sensitive to outliers, was 3.97 m for S1 and 3.26 m for TSX with respect to LiDAR, and 7.07 m for S1 and 7.49 m for TSX relative to SRTM. We observed a clear positive correlation between elevation error and terrain slope. In areas with slopes greater than 45°, the MedAE exceeded 14 m relative to the LiDAR DEM and reached ~15 m relative to the SRTM for both S1 and TSX. Full article
Show Figures

Figure 1

19 pages, 5120 KB  
Article
Deformation of the Taleqan Dam, Iran, from InSAR and Ground Observation
by Mehrnoosh Ghadimi, Andrew Hooper and David Whipp
Sustainability 2026, 18(1), 173; https://doi.org/10.3390/su18010173 - 23 Dec 2025
Viewed by 355
Abstract
Reliable assessments of dam stability require the continuous acquisition and interpretation of deformation data, as monitoring technologies provide essential information for evaluating structural behavior. Surface displacement measurements are particularly valuable for identifying instability within the dam embankment and adjacent slopes. While terrestrial surveying [...] Read more.
Reliable assessments of dam stability require the continuous acquisition and interpretation of deformation data, as monitoring technologies provide essential information for evaluating structural behavior. Surface displacement measurements are particularly valuable for identifying instability within the dam embankment and adjacent slopes. While terrestrial surveying networks can provide accurate point-based observations, they are often time-consuming and costly to maintain. Satellite radar interferometry (InSAR) offers a complementary, cost-effective means of monitoring surface displacement with wide spatial coverage; however, careful analysis is required to avoid misinterpreting superficial motions of riprap and cover materials as true dam settlement. In this study, we use multi-platform SAR datasets, including Sentinel-1A (2014–2019) and high-resolution TerraSAR-X (2018), to investigate the deformation behavior of the Taleqan Dam. We compare LOS displacement derived from InSAR with independent measurements from a terrestrial surveying network spanning the same period. TerraSAR-X data indicate up to ~20 mm of LOS displacement over three months (May–August 2018), and the displacement pattern is consistent with the Sentinel-1 time series. Despite lower spatial resolutions, Sentinel-1 provided dense, temporally continuous coverage, with LOS velocities reaching ~4 mm/yr on the downstream slope. The combined datasets demonstrate that the observed deformation predominantly reflects the ongoing lateral movement of downstream riprap materials rather than the vertical settlement of the dam’s core. These results highlight both the utility of InSAR for long-term dam monitoring and the importance of integrating multi-sensor observations to ensure accurate interpretations of dam deformation signals. Full article
(This article belongs to the Section Hazards and Sustainability)
Show Figures

Figure 1

11 pages, 5828 KB  
Article
Challenges in Young Siberian Forest Height Estimation from Winter TerraSAR-X/TanDEM-X PolInSAR Observations
by Tumen Chimitdorzhiev, Irina Kirbizhekova and Aleksey Dmitriev
Forests 2025, 16(12), 1815; https://doi.org/10.3390/f16121815 - 4 Dec 2025
Viewed by 323
Abstract
Accurate estimation of young forest height is essential for assessing the carbon sequestration potential of vast Siberian boreal forests recovering from wildfires. Satellite radar interferometry, particularly PolInSAR, is a promising tool for this task. However, its application in winter conditions and over sparse [...] Read more.
Accurate estimation of young forest height is essential for assessing the carbon sequestration potential of vast Siberian boreal forests recovering from wildfires. Satellite radar interferometry, particularly PolInSAR, is a promising tool for this task. However, its application in winter conditions and over sparse young forests remains underexplored. This study proposes a novel method for estimating the height of sparse young pine (Pinus sylvestris) stands using fully polarimetric bistatic TerraSAR-X/TanDEM-X data acquired in winter. The method is based on an analysis of the multimodal distribution of the unwrapped interferometric phase of the surface scattering component, which was isolated via PolInSAR decomposition. We hypothesize that the phase centers correspond to the snow-covered ground (located between tree groups) and the rough surface formed by the upper layer of branches and needles (of the tree groups). The results demonstrate that the difference between the dominant modes of the surface scattering phase distribution correlates with the height of young trees. However, the measurable height difference is limited by the interferometric height of ambiguity. Furthermore, a temporal analysis of the phase and meteorological data revealed a strong correlation between sudden phase shifts and daytime temperature rises around 0 °C. This is interpreted as the formation of a layered snowpack structure with a dense ice crust. This study confirms the potential of X-band PolInSAR for monitoring the structure of young Siberian forests in winter but also highlights a significant limitation: the critical impact of snowpack metamorphism, particularly melt-freeze cycles, on the interferometric phase. The proposed method is only applicable to certain forest regeneration stages where tree height does not exceed the ambiguity limit and snow conditions are stable. Full article
(This article belongs to the Special Issue Post-Fire Recovery and Monitoring of Forest Ecosystems)
Show Figures

Figure 1

43 pages, 32364 KB  
Article
Towards Explainable Machine Learning from Remote Sensing to Medical Images—Merging Medical and Environmental Data into Public Health Knowledge Maps
by Liviu Bilteanu, Corneliu Octavian Dumitru, Andreea Dumachi, Florin Alexandrescu, Radu Popa, Octavian Buiu and Andreea Iren Serban
Mach. Learn. Knowl. Extr. 2025, 7(4), 140; https://doi.org/10.3390/make7040140 - 6 Nov 2025
Viewed by 573
Abstract
Both remote sensing and medical fields benefited a lot from the machine learning methods, originally developed for computer vision and multimedia. We investigate the applicability of the same data mining-based machine learning (ML) techniques for exploring the structure of both Earth observation (EO) [...] Read more.
Both remote sensing and medical fields benefited a lot from the machine learning methods, originally developed for computer vision and multimedia. We investigate the applicability of the same data mining-based machine learning (ML) techniques for exploring the structure of both Earth observation (EO) and medical image data. Support Vector Machine (SVM) is an explainable active learning tool to discover the semantic relations between the EO image content classes, extending this technique further to medical images of various types. The EO image dataset was acquired by multispectral and radar sensors (WorldView-2, Sentinel-2, TerraSAR-X, Sentinel-1, RADARSAT-2, and Gaofen-3) from four different urban areas. In addition, medical images were acquired by camera, microscope, and computed tomography (CT). The methodology has been tested by several experts, and the semantic classification results were checked by either comparing them with reference data or through the feedback given by these experts in the field. The accuracy of the results amounts to 95% for the satellite images and 85% for the medical images. This study opens the pathway to correlate the information extracted from the EO images (e.g., quality-of-life-related environmental data) with that extracted from medical images (e.g., medical imaging disease phenotypes) to obtain geographically refined results in epidemiology. Full article
Show Figures

Graphical abstract

18 pages, 3558 KB  
Article
Land-Cover Controls on the Accuracy of PS-InSAR-Derived Concrete Track Settlement Measurements
by Byung-kyu Kim, Joonyoung Kim, Jeongjun Park, Ilwha Lee and Mintaek Yoo
Remote Sens. 2025, 17(21), 3537; https://doi.org/10.3390/rs17213537 - 25 Oct 2025
Viewed by 671
Abstract
Accurate monitoring of settlement in high-speed railway embankments is critical for operational safety and long-term serviceability. This study investigates the applicability of Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) for quantifying millimeter-scale deformations and emphasizes how surrounding environmental factors influence measurement accuracy. Using [...] Read more.
Accurate monitoring of settlement in high-speed railway embankments is critical for operational safety and long-term serviceability. This study investigates the applicability of Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) for quantifying millimeter-scale deformations and emphasizes how surrounding environmental factors influence measurement accuracy. Using 29 TerraSAR-X images acquired between 2016 and 2018, PS-InSAR-derived settlements were compared with precise leveling survey data across twelve representative embankment sections of the Honam High-Speed Railway in South Korea. Temporal and spatial discrepancies between the two datasets were harmonized through preprocessing, allowing robust accuracy assessment using mean absolute error (MAE) and standard deviation (SD). Results demonstrate that PS-InSAR reliably captures settlement trends, with MAE ranging from 1.7 to 4.2 mm across different scenes. However, significant variability in accuracy was observed depending on local land-cover composition. Correlation analysis revealed that vegetation-dominated areas, such as agricultural and forest land, reduce persistent scatterer density and increase measurement variability, whereas high-reflectivity surfaces, including transportation facilities and buildings, enhance measurement stability and precision. These findings confirm that environmental conditions are decisive factors in determining the performance of PS-InSAR. The study highlights the necessity of integrating site-specific land-cover information when designing and interpreting satellite-based monitoring strategies for railway infrastructure management. Full article
Show Figures

Figure 1

20 pages, 7699 KB  
Article
Large-Gradient Displacement Monitoring and Parameter Inversion of Mining Collapse with the Optical Flow Method of Synthetic Aperture Radar Images
by Chuanjiu Zhang and Jie Chen
Remote Sens. 2025, 17(21), 3533; https://doi.org/10.3390/rs17213533 - 25 Oct 2025
Viewed by 738
Abstract
Monitoring large-gradient surface displacement caused by underground mining remains a significant challenge for conventional Synthetic Aperture Radar (SAR)-based techniques. This study introduces optical flow methods to monitor large-gradient displacement in mining areas and conducts a comprehensive comparison with Small Baseline Subset Interferometric SAR [...] Read more.
Monitoring large-gradient surface displacement caused by underground mining remains a significant challenge for conventional Synthetic Aperture Radar (SAR)-based techniques. This study introduces optical flow methods to monitor large-gradient displacement in mining areas and conducts a comprehensive comparison with Small Baseline Subset Interferometric SAR (SBAS-InSAR) and Pixel Offset Tracking (POT) methods. Using 12 high-resolution TerraSAR-X (TSX) SAR images over the Daliuta mining area in Yulin, China, we evaluate the performance of each method in terms of sensitivity to displacement gradients, computational efficiency, and monitoring accuracy. Results indicate that SBAS-InSAR is only capable of detecting displacement at the decimeter level in the Dalinta mining area and is unable to monitor rapid, large-gradient displacement exceeding the meter scale. While POT can detect meter-scale displacements, it suffers from low efficiency and low precision. In contrast, the proposed optical flow method (OFM) achieves sub-pixel accuracy with root mean square errors of 0.17 m (compared to 0.26 m for POT) when validated against Global Navigation Satellite System (GNSS) data while improving computational efficiency by nearly 30 times compared to POT. Furthermore, based on the optical flow results, mining parameters and three-dimensional (3D) displacement fields were successfully inverted, revealing maximum vertical subsidence exceeding 4.4 m and horizontal displacement over 1.5 m. These findings demonstrate that the OFM is a reliable and efficient tool for large-gradient displacement monitoring in mining areas, offering valuable support for hazard assessment and mining management. Full article
Show Figures

Figure 1

23 pages, 17501 KB  
Article
Fusing BDS and Dihedral Corner Reflectors for High-Precision 3D Deformation Measurement: A Case Study in the Jinsha River Reservoir Area
by Zhiyong Qi, Yanpian Mao, Zhengyang Tang, Tao Li, Rongxin Fang, You Mou, Xuhuang Du and Zongyi Peng
Remote Sens. 2025, 17(17), 3000; https://doi.org/10.3390/rs17173000 - 28 Aug 2025
Viewed by 1108
Abstract
In mountainous canyon regions, BeiDou Navigation Satellite System (BDS)/Global Navigation Satellite System (GNSS) receivers are susceptible to multireflection and tropospheric factors, which frequently reduce the accuracy in monitoring vertical deformation monitoring under short-baseline methods. This limitation hinders the application of BDS/GNSS in high-precision [...] Read more.
In mountainous canyon regions, BeiDou Navigation Satellite System (BDS)/Global Navigation Satellite System (GNSS) receivers are susceptible to multireflection and tropospheric factors, which frequently reduce the accuracy in monitoring vertical deformation monitoring under short-baseline methods. This limitation hinders the application of BDS/GNSS in high-precision monitoring scenarios in those cases. To address this issue, this study proposes a three-dimensional (3D) deformation measurement method that integrates BDS/GNSS positioning with dihedral corner reflectors (CRs). By incorporating high-precision horizontal positioning results obtained from BDS/GNSS into the radar line-of-sight (LOS) correction process and utilizing ascending and descending Synthetic Aperture Radar (SAR) data for joint monitoring, the method achieves millimeter-level- accuracy in measuring vertical deformation at corner reflector sites. At the same time, it enhances the 3D positioning accuracy of BDS/GNSS to the 1 mm level under short-baseline configurations. Based on monitoring stations deployed at the Jinsha River dam site, the proposed deformation fusion monitoring method was validated using high-resolution SAR imagery from Germany’s TerraSAR-X (TSX) satellite. Simulated horizontal and vertical displacements were introduced at the stations. The results demonstrate that BDS/GNSS achieves better than 1 mm horizontal monitoring accuracy and a vertical accuracy of around 5 mm. Interferometric SAR (InSAR) CRs achieve approximately 2 mm in horizontal accuracy and 1 mm in vertical accuracy. The integrated method yields a 3D deformation monitoring accuracy better than 1 mm. This paper’s results show high potential for achieving high-precision deformation observations by fusing BDS/GNSS and dihedral CRs, offering promising prospects for deformation monitoring in reservoir canyon regions. Full article
(This article belongs to the Special Issue Applications of Radar Remote Sensing in Earth Observation)
Show Figures

Figure 1

20 pages, 5202 KB  
Article
On the Localization Accuracy of Deformation Zones Retrieved from SAR-Based Sea Ice Drift Vector Fields
by Anja Frost, Christoph Schnupfhagn, Christoph Pegel and Sindhu Ramanath
Remote Sens. 2025, 17(16), 2801; https://doi.org/10.3390/rs17162801 - 13 Aug 2025
Viewed by 764
Abstract
Sea ice is highly dynamic. Differences in the sea ice drift velocity and direction can cause deformations such as ridges and rubble fields or open up leads. These and other deformations have a major impact on the interaction between the atmosphere, sea ice [...] Read more.
Sea ice is highly dynamic. Differences in the sea ice drift velocity and direction can cause deformations such as ridges and rubble fields or open up leads. These and other deformations have a major impact on the interaction between the atmosphere, sea ice and the ocean, and strongly influence ship navigability in polar waters. Spaceborne Synthetic Aperture Radar (SAR) data is well suited to observing the sea ice and retrieving sea ice drift vector fields at a small scale (<1 km), revealing deformation zones. This paper introduces a software processor designed to retrieve high-resolution sea ice drift vector fields from pairs of subsequent SAR acquisitions using phase correlation embedded in a multiscale Gaussian image pyramid. We assess the accuracy of the algorithm by using drift buoys and landfast ice boundaries manually outlined from large series of TerraSAR-X acquisitions taken during winter and spring sea ice break up. In particular, we provide a first analysis of the localization accuracy in deformation zones. Overall, our experiments show that deformation zones are well detected, but can be misplaced by up to 1.1 km. An additional interferometric analysis narrows down the location of the landfast ice boundary. Full article
Show Figures

Graphical abstract

19 pages, 2494 KB  
Article
Assessing Forest Structure and Biomass with Multi-Sensor Remote Sensing: Insights from Mediterranean and Temperate Forests
by Maria Cristina Mihai, Sofia Miguel, Ignacio Borlaf-Mena, Julián Tijerín-Triviño and Mihai Tanase
Forests 2025, 16(7), 1164; https://doi.org/10.3390/f16071164 - 15 Jul 2025
Viewed by 1174
Abstract
Forests provide habitat for diverse species and play a key role in mitigating climate change. Remote sensing enables efficient monitoring of many forest attributes across vast areas, thus supporting effective and efficient management strategies. This study aimed to identify an effective combination of [...] Read more.
Forests provide habitat for diverse species and play a key role in mitigating climate change. Remote sensing enables efficient monitoring of many forest attributes across vast areas, thus supporting effective and efficient management strategies. This study aimed to identify an effective combination of remote sensing sensors for estimating biophysical variables in Mediterranean and temperate forests that can be easily translated into an operational context. Aboveground biomass (AGB), canopy height (CH), and forest canopy cover (FCC) were estimated using a combination of optical (Sentinel-2, Landsat) and radar sensors (Sentinel-1 and TerraSAR-X/TanDEM-X), along with records of past forest disturbances and topography-related variables. As a reference, lidar-derived AGB, CH, and FCC were used. Model performance was assessed not only with standard approaches such as out-of-bag sampling but also with completely independent lidar-derived reference datasets, thus enabling evaluation of the model’s temporal inference capacity. In Mediterranean forests, models based on optical imagery outperformed the radar-enhanced models when estimating FCC and CH, with elevation and spectral indices being key predictors of forest structure. In contrast, in denser temperate forests, radar data (especially X-band relative heights) were crucial for estimating CH and AGB. Incorporating past disturbance data further improved model accuracy in these denser ecosystems. Overall, this study underscores the value of integrating multi-source remote sensing data while highlighting the limitations of temporal extrapolation. The presented methodology can be adapted to enhance forest variable estimation across many forest ecosystems. Full article
Show Figures

Figure 1

20 pages, 3609 KB  
Article
Beyond the Grid: GLRT-Based TomoSAR Fast Detection for Retrieving Height and Thermal Dilation
by Nabil Haddad, Karima Hadj-Rabah, Alessandra Budillon and Gilda Schirinzi
Remote Sens. 2025, 17(14), 2334; https://doi.org/10.3390/rs17142334 - 8 Jul 2025
Viewed by 888
Abstract
The Tomographic Synthetic Aperture Radar (TomoSAR) technique is widely used for monitoring urban infrastructures, as it enables the mapping of individual scatterers across additional dimensions such as height (3D), thermal dilation (4D), and deformation velocity (5D). Retrieving this information is crucial for building [...] Read more.
The Tomographic Synthetic Aperture Radar (TomoSAR) technique is widely used for monitoring urban infrastructures, as it enables the mapping of individual scatterers across additional dimensions such as height (3D), thermal dilation (4D), and deformation velocity (5D). Retrieving this information is crucial for building management and maintenance. Nevertheless, accurately extracting it from TomoSAR data poses several challenges, particularly the presence of outliers due to uneven and limited baseline distributions. One way to address these issues is through statistical detection approaches such as the Generalized Likelihood Ratio Test, which ensures a Constant False Alarm Rate. While effective, these methods face two primary limitations: high computational complexity and the off-grid problem caused by the discretization of the search space. To overcome these drawbacks, we propose an approach that combines a quick initialization process using Fast-Sup GLRT with local descent optimization. This method operates directly in the continuous domain, bypassing the limitations of grid-based search while significantly reducing computational costs. Experiments conducted on both simulated and real datasets acquired with the TerraSAR-X satellite over the Spanish city of Barcelona demonstrate the ability of the proposed approach to maintain computational efficiency while improving scatterer localization accuracy in the third and fourth dimensions. Full article
(This article belongs to the Section Urban Remote Sensing)
Show Figures

Graphical abstract

24 pages, 6654 KB  
Article
The Capabilities of Optical and C-Band Radar Satellite Data to Detect and Understand Faba Bean Phenology over a 6-Year Period
by Frédéric Baup, Rémy Fieuzal, Clément Battista, Herivanona Ramiakatrarivony, Louis Tournier, Serigne-Fallou Diarra, Serge Riazanoff and Frédéric Frappart
Remote Sens. 2025, 17(11), 1933; https://doi.org/10.3390/rs17111933 - 3 Jun 2025
Viewed by 1144
Abstract
This study analyzes the potential of optical and radar satellite data to monitor faba bean (Vicia faba L.) phenology over six years (2016–2021) in southwestern France. Using Sentinel-1, Sentinel-2, and Landsat-8 data, temporal variations in NDVI and radar backscatter coefficients (γ0 [...] Read more.
This study analyzes the potential of optical and radar satellite data to monitor faba bean (Vicia faba L.) phenology over six years (2016–2021) in southwestern France. Using Sentinel-1, Sentinel-2, and Landsat-8 data, temporal variations in NDVI and radar backscatter coefficients (γ0VV, γ0VH, and γ0VH/VV) are examined to assess crop growth, detect anomalies, and evaluate the impact of climatic conditions and sowing strategies. The results show that NDVI and the radar ratio (γ0VH/VV) were suited to monitor faba bean phenology, with distinct growth phases observed annually. NDVI provides a clear seasonal pattern but is affected by cloud cover, while radar backscatter offers continuous monitoring, making their combination highly beneficial. The signal γ0VH/VV exhibits well-marked correlations with NDVI (r = 0.81) and LAI (r = 0.83), particularly in orbit 30, which provides greater sensitivity to vegetation changes. The analysis of individual fields (inter-field approach) reveals variations in sowing strategies, with both autumn and spring plantings detected. Fields sown in autumn show early NDVI (and γ0VH/VV) increases, while spring-sown fields display delayed growth patterns. This study also highlights the impact of climatic factors, such as precipitation and temperature, on inter-annual variability. Moreover, faba beans used as an intercropping species exhibit a shorter and more intense growth cycle, with a rapid NDVI (and γ0VH/VV) increase and an earlier end of the vegetative cycle compared to standard rotations. Double logistic modeling successfully reconstructs temporal trends, achieving high accuracy (r > 0.95 and rRMSE < 9% for γ0VH/VV signals and r > 0.89 and rRMSE < 15% for NDVI). These double logistic functions are capable of reproducing the differences in phenological development observed between fields and years, providing a reference set of functions that can be used to monitor the phenological development of faba beans in real time. Future applications could extend this methodology to other crops and explore alternative radar systems for improved monitoring (such as TerraSAR-X, Cosmos-SkyMed, ALOS-2/PALSAR, NISAR, ROSE-L…). Full article
(This article belongs to the Special Issue Advances in Detecting and Understanding Land Surface Phenology)
Show Figures

Figure 1

21 pages, 21704 KB  
Article
An Efficient PSInSAR Method for High-Density Urban Areas Based on Regular Grid Partitioning and Connected Component Constraints
by Chunshuai Si, Jun Hu, Danni Zhou, Ruilin Chen, Xing Zhang, Hongli Huang and Jiabao Pan
Remote Sens. 2025, 17(9), 1518; https://doi.org/10.3390/rs17091518 - 25 Apr 2025
Cited by 1 | Viewed by 1472
Abstract
Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), with millimeter-level accuracy and full-resolution capabilities, is essential for monitoring urban deformation. With the advancement of SAR sensors in spatial and temporal resolution and the expansion of wide-swath observation capabilities, the number of permanent scatterers (PSs) [...] Read more.
Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR), with millimeter-level accuracy and full-resolution capabilities, is essential for monitoring urban deformation. With the advancement of SAR sensors in spatial and temporal resolution and the expansion of wide-swath observation capabilities, the number of permanent scatterers (PSs) in high-density urban areas has surged exponentially. To address these computational and memory challenges in high-density urban PSInSAR processing, this paper proposes an efficient method for integrating regular grid partitioning and connected component constraints. First, adaptive dynamic regular grid partitioning was employed to divide monitoring areas into sub-blocks, balancing memory usage and computational efficiency. Second, a weighted least squares adjustment model using common PS points in overlapping regions eliminated systematic inter-sub-block biases, ensuring global consistency. A graph-based connected component constraint mechanism was introduced to resolve multi-component segmentation issues within sub-blocks to preserve discontinuous PS information. Experiments on TerraSAR-X data covering Fuzhou, China (590 km2), demonstrated that the method processed 1.4 × 107 PS points under 32 GB memory constraints, where it achieved a 25-fold efficiency improvement over traditional global PSInSAR. The deformation rates and elevation residuals exhibited high consistency with conventional methods (correlation coefficient ≥ 0.98). This method effectively addresses the issues of memory overflow, connectivity loss between sub-blocks, and cumulative merging errors in large-scale PS networks. It provides an efficient solution for wide-area millimeter-scale deformation monitoring in high-density urban areas, supporting applications such as geohazard early warning and urban infrastructure safety assessment. Full article
(This article belongs to the Special Issue Advances in Surface Deformation Monitoring Using SAR Interferometry)
Show Figures

Graphical abstract

21 pages, 9480 KB  
Article
Collapse Hotspot Detection in Urban Area Using Sentinel-1 and TerraSAR-X Dataset with SBAS and PSI Techniques
by Niloofar Alizadeh, Yasser Maghsoudi, Tayebe Managhebi and Saeed Azadnejad
Land 2024, 13(12), 2237; https://doi.org/10.3390/land13122237 - 20 Dec 2024
Cited by 2 | Viewed by 2661
Abstract
Urban areas face an imminent risk of collapse due to structural deficiencies and gradual ground subsidence. Therefore, monitoring surface movements is crucial for detecting abnormal behavior, implementing timely preventive measures, and minimizing the detrimental effects of this phenomenon in residential regions. In this [...] Read more.
Urban areas face an imminent risk of collapse due to structural deficiencies and gradual ground subsidence. Therefore, monitoring surface movements is crucial for detecting abnormal behavior, implementing timely preventive measures, and minimizing the detrimental effects of this phenomenon in residential regions. In this context, interferometric synthetic aperture radar (InSAR) has emerged as a highly effective technique for monitoring slow and long-term ground hazards and surface motions. The first goal of this study is to explore the potential applications of persistent scatterer interferometry (PSI) and small baseline subset (SBAS) algorithms in collapse hotspot detection, utilizing a dataset consisting of 144 Sentinel-1 images. The experimental results from three areas with a history of collapses demonstrate that the SBAS algorithm outperforms PSI in uncovering behavior patterns indicative of collapse and accurately pinpointing collapse points near real collapse sites. In the second phase, this research incorporated an additional dataset of 36 TerraSAR-X images alongside the Sentinel-1 data to compare results based on radar images with different spatial resolutions in the C and X bands. The findings reveal a strong correlation between the TerraSAR-X and Sentinel-1 time series. Notably, the analysis of the TerraSAR-X time series for one study area identified additional collapse-prone points near the accident site, attributed to the higher spatial resolution of these data. By leveraging the capabilities of InSAR and advanced algorithms, like SBAS, this study highlights the potential to identify areas at risk of collapse, enabling the implementation of preventive measures and reducing potential harm to residential communities. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

24 pages, 2680 KB  
Review
Remote Sensing Techniques for Assessing Snow Avalanche Formation Factors and Building Hazard Monitoring Systems
by Natalya Denissova, Serik Nurakynov, Olga Petrova, Daniker Chepashev, Gulzhan Daumova and Alena Yelisseyeva
Atmosphere 2024, 15(11), 1343; https://doi.org/10.3390/atmos15111343 - 9 Nov 2024
Cited by 14 | Viewed by 4586
Abstract
Snow avalanches, one of the most severe natural hazards in mountainous regions, pose significant risks to human lives, infrastructure, and ecosystems. As climate change accelerates shifts in snowfall and temperature patterns, it is increasingly important to improve our ability to monitor and predict [...] Read more.
Snow avalanches, one of the most severe natural hazards in mountainous regions, pose significant risks to human lives, infrastructure, and ecosystems. As climate change accelerates shifts in snowfall and temperature patterns, it is increasingly important to improve our ability to monitor and predict avalanches. This review explores the use of remote sensing technologies in understanding key geomorphological, geobotanical, and meteorological factors that contribute to avalanche formation. The primary objective is to assess how remote sensing can enhance avalanche risk assessment and monitoring systems. A systematic literature review was conducted, focusing on studies published between 2010 and 2025. The analysis involved screening relevant studies on remote sensing, avalanche dynamics, and data processing techniques. Key data sources included satellite platforms such as Sentinel-1, Sentinel-2, TerraSAR-X, and Landsat-8, combined with machine learning, data fusion, and change detection algorithms to process and interpret the data. The review found that remote sensing significantly improves avalanche monitoring by providing continuous, large-scale coverage of snowpack stability and terrain features. Optical and radar imagery enable the detection of crucial parameters like snow cover, slope, and vegetation that influence avalanche risks. However, challenges such as limitations in spatial and temporal resolution and real-time monitoring were identified. Emerging technologies, including microsatellites and hyperspectral imaging, offer potential solutions to these issues. The practical implications of these findings underscore the importance of integrating remote sensing data with ground-based observations for more robust avalanche forecasting. Enhanced real-time monitoring and data fusion techniques will improve disaster management, allowing for quicker response times and more effective policymaking to mitigate risks in avalanche-prone regions. Full article
Show Figures

Figure 1

23 pages, 9165 KB  
Article
Leveraging Multi-Temporal InSAR Technique for Long-Term Structural Behaviour Monitoring of High-Speed Railway Bridges
by Winter Kim, Changgil Lee, Byung-Kyu Kim, Kihyun Kim and Ilwha Lee
Remote Sens. 2024, 16(17), 3153; https://doi.org/10.3390/rs16173153 - 26 Aug 2024
Cited by 2 | Viewed by 2453
Abstract
The effective monitoring of railway facilities is crucial for safety and operational efficiency. This study proposes an enhanced remote monitoring technique for railway facilities, specifically bridges, using satellite radar InSAR (Interferometric Synthetic Aperture Radar) technology. Previous studies faced limitations such as insufficient data [...] Read more.
The effective monitoring of railway facilities is crucial for safety and operational efficiency. This study proposes an enhanced remote monitoring technique for railway facilities, specifically bridges, using satellite radar InSAR (Interferometric Synthetic Aperture Radar) technology. Previous studies faced limitations such as insufficient data points and challenges with topographical and structural variations. Our approach addresses these issues by analysing displacements from 30 images captured by the X-band SAR satellite, TerraSAR-X, over two years. We tested each InSAR parameter to develop an optimal set of parameters, applying the technique to a post-tensioned PSC (pre-stressed concrete) box bridge. Our findings revealed a recurring arch-shaped elevation along the bridge, attributed to temporal changes and long-term deformation. Further analysis showed a strong correlation between this deformation pattern and average surrounding temperature. This indicates that our technique can effectively identify micro-displacements due to temperature changes and structural deformation. Thus, the technique provides a theoretical foundation for improved SAR monitoring of large-scale social overhead capital (SOC) facilities, ensuring efficient maintenance and management. Full article
(This article belongs to the Special Issue Remote Sensing in Urban Infrastructure and Building Monitoring)
Show Figures

Figure 1

Back to TopTop