Abstract
Accurate estimation of young forest height is essential for assessing the carbon sequestration potential of vast Siberian boreal forests recovering from wildfires. Satellite radar interferometry, particularly PolInSAR, is a promising tool for this task. However, its application in winter conditions and over sparse young forests remains underexplored. This study proposes a novel method for estimating the height of sparse young pine (Pinus sylvestris) stands using fully polarimetric bistatic TerraSAR-X/TanDEM-X data acquired in winter. The method is based on an analysis of the multimodal distribution of the unwrapped interferometric phase of the surface scattering component, which was isolated via PolInSAR decomposition. We hypothesize that the phase centers correspond to the snow-covered ground (located between tree groups) and the rough surface formed by the upper layer of branches and needles (of the tree groups). The results demonstrate that the difference between the dominant modes of the surface scattering phase distribution correlates with the height of young trees. However, the measurable height difference is limited by the interferometric height of ambiguity. Furthermore, a temporal analysis of the phase and meteorological data revealed a strong correlation between sudden phase shifts and daytime temperature rises around 0 °C. This is interpreted as the formation of a layered snowpack structure with a dense ice crust. This study confirms the potential of X-band PolInSAR for monitoring the structure of young Siberian forests in winter but also highlights a significant limitation: the critical impact of snowpack metamorphism, particularly melt-freeze cycles, on the interferometric phase. The proposed method is only applicable to certain forest regeneration stages where tree height does not exceed the ambiguity limit and snow conditions are stable.