Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = TanSat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2395 KiB  
Article
Theoretical Potential of TanSat-2 to Quantify China’s CH4 Emissions
by Sihong Zhu, Dongxu Yang, Liang Feng, Longfei Tian, Yi Liu, Junji Cao, Minqiang Zhou, Zhaonan Cai, Kai Wu and Paul I. Palmer
Remote Sens. 2025, 17(13), 2321; https://doi.org/10.3390/rs17132321 - 7 Jul 2025
Viewed by 415
Abstract
Satellite-based monitoring of atmospheric column-averaged dry-air mole fraction (XCH4) is essential for quantifying methane (CH4) emissions, yet uncharacterized spatially varying biases in XCH4 observations can cause misattribution in flux estimates. This study assesses the potential of the upcoming [...] Read more.
Satellite-based monitoring of atmospheric column-averaged dry-air mole fraction (XCH4) is essential for quantifying methane (CH4) emissions, yet uncharacterized spatially varying biases in XCH4 observations can cause misattribution in flux estimates. This study assesses the potential of the upcoming TanSat-2 satellite mission to estimate China’s CH4 emission using a series of Observing System Simulation Experiments (OSSEs) based on an Ensemble Kalman Filter (EnKF) inversion framework coupled with GEOS-Chem on a 0.5° × 0.625° grid, alongside an evaluation of current TROPOMI-based products against Total Carbon Column Observing Network (TCCON) observations. Assuming a target precision of 8 ppb, TanSat-2 could achieve an annual national emission estimate accuracy of 2.9% ± 4.2%, reducing prior uncertainty by 84%, with regional deviations below 5.0% across Northeast, Central, East, and Southwest China. In contrast, limited coverage in South China due to persistent cloud cover leads to a 26.1% discrepancy—also evident in pseudo TROPOMI OSSEs—highlighting the need for complementary ground-based monitoring strategies. Sensitivity analyses show that satellite retrieval biases strongly affect inversion robustness, reducing the accuracy in China’s total emission estimates by 5.8% for every 1 ppb increase in bias level across scenarios, particularly in Northeast, Central and East China. We recommend expanding ground-based XCH4 observations in these regions to support the correction of satellite-derived biases and improve the reliability of satellite-constrained inversion results. Full article
Show Figures

Figure 1

18 pages, 3442 KiB  
Technical Note
Towards the Optimization of TanSat-2: Assessment of a Large-Swath Methane Measurement
by Sihong Zhu, Dongxu Yang, Liang Feng, Longfei Tian, Yi Liu, Junji Cao, Kai Wu, Zhaonan Cai and Paul I. Palmer
Remote Sens. 2025, 17(3), 543; https://doi.org/10.3390/rs17030543 - 5 Feb 2025
Cited by 2 | Viewed by 794
Abstract
To evaluate the potential of an upcoming large-swath satellite for estimating surface methane (CH₄) fluxes at a weekly scale, we report the results from a series of observing system simulation experiments (OSSEs) that use an established modeling framework that includes the GEOS-Chem 3D [...] Read more.
To evaluate the potential of an upcoming large-swath satellite for estimating surface methane (CH₄) fluxes at a weekly scale, we report the results from a series of observing system simulation experiments (OSSEs) that use an established modeling framework that includes the GEOS-Chem 3D atmospheric transport model and an ensemble Kalman filter. These experiments focus on the sensitivity of CH₄ flux estimates to systematic errors (μ) and random errors (σ) in the column average methane (XCH4) measurements. Our control test (INV_CTL) demonstrates that with median errors (μ = 1.0 ± 0.9 ppb and σ = 6.9 ± 1.6 ppb) in XCH₄ measurements over a 1000 km swath, global CH4 fluxes can be estimated with an accuracy of 5.1 ± 1.7%, with regional accuracies ranging from 3.8% to 21.6% across TransCom sub-continental regions. The northern hemisphere mid-latitudes show greater reliability and consistency across varying μ and σ levels, while tropical and boreal regions exhibit higher sensitivity due to limited high-quality observations. In σ-sensitive regions, such as the North American boreal zone, expanding the swath width from 1000 km to 3000 km significantly reduces discrepancies, while such adjustments provide limited improvements for μ-sensitive regions like North Africa. For TanSat-2 mission, with its elliptical medium Earth orbit and 1500 km swath width, the global total estimates achieved an accuracy of 3.1 ± 2.2%. Enhancing the swath width or implementing a dual-satellite configuration is proposed to further improve TanSat-2 inversion performance. Full article
Show Figures

Figure 1

20 pages, 12213 KiB  
Article
Towards Supporting Satellite Design Through the Top-Down Approach: A General Model for Assessing the Ability of Future Satellite Missions to Quantify Point Source Emissions
by Lu Yao, Dongxu Yang, Zhe Jiang, Yi Liu, Lixu Chen, Longfei Tian, Janne Hakkarainen, Zhaonan Cai, Jing Wang and Xiaoyu Ren
Remote Sens. 2024, 16(23), 4503; https://doi.org/10.3390/rs16234503 - 30 Nov 2024
Cited by 1 | Viewed by 1154
Abstract
Monitoring and accurately quantifying greenhouse gas (GHG) emissions from point sources via satellite measurements is crucial for validating emission inventories. Numerous studies have applied varied methods to estimate emission intensities from both natural and anthropogenic point sources, highlighting the potential of satellites for [...] Read more.
Monitoring and accurately quantifying greenhouse gas (GHG) emissions from point sources via satellite measurements is crucial for validating emission inventories. Numerous studies have applied varied methods to estimate emission intensities from both natural and anthropogenic point sources, highlighting the potential of satellites for point source quantification. To promote the development of the space-based GHG monitoring system, it is pivotal to assess the satellite’s capacity to quantify emissions from distinct sources before its design and launch. However, no universal method currently exists for quantitatively assessing the ability of satellites to quantify point source emissions. This paper presents a parametric conceptual model and database for efficiently evaluating the quantification capabilities of satellites and optimizing their technical characteristics for particular detection missions. Using the model and database, we evaluated how well various satellites can detect and quantify GHG emissions. Our findings indicate that accurate estimation of point source emissions requires both high spatial resolution and measurement precision. The requirement for satellite spatial resolution and measurement precision to achieve unbiased emission estimation gradually decreases with increasing emission intensity. The model and database developed in this study can serve as a reference for harmonious satellite configuration that balances measurement precision and spatial resolution. Furthermore, to progress the evaluation model of satellites for low-intensity emission point sources, it is imperative to implement a more precise simulation model and estimate method with a refined mask-building approach. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

20 pages, 5472 KiB  
Article
Global Evaluation and Intercomparison of XCO2 Retrievals from GOSAT, OCO-2, and TANSAT with TCCON
by Junjun Fang, Baozhang Chen, Huifang Zhang, Adil Dilawar, Man Guo, Chunlin Liu, Shu’an Liu, Tewekel Melese Gemechu and Xingying Zhang
Remote Sens. 2023, 15(20), 5073; https://doi.org/10.3390/rs15205073 - 23 Oct 2023
Cited by 5 | Viewed by 2615
Abstract
Accurate global monitoring of carbon dioxide (CO2) is essential for understanding climate change and informing policy decisions. This study compares column-averaged dry-air mole fractions of CO2 (XCO2) between ACOS_L2_Lite_FP V9r for Japan’s Greenhouse Gases Observing Satellite (GOSAT), OCO-2_L2_Lite_FP [...] Read more.
Accurate global monitoring of carbon dioxide (CO2) is essential for understanding climate change and informing policy decisions. This study compares column-averaged dry-air mole fractions of CO2 (XCO2) between ACOS_L2_Lite_FP V9r for Japan’s Greenhouse Gases Observing Satellite (GOSAT), OCO-2_L2_Lite_FP V10r for the USA’s Orbiting Carbon Observatory-2 (OCO-2), and IAPCAS V2.0 for China’s Carbon Dioxide Observation Satellite (TANSAT) collectively referred to as GOT, with data from the Total Carbon Column Observing Network (TCCON). Our findings are as follows: (1) Significant data quantity differences exist between OCO-2 and the other satellites, with OCO-2 boasting a data volume 100 times greater. GOT shows the highest data volume between 30–45°N and 20–30°S, but data availability is notably lower near the equator. (2) XCO2 from GOT exhibits similar seasonal variations, with lower concentrations during June, July, and August (JJA) (402.72–403.74 ppm) and higher concentrations during December, January, and February (DJF) (405.74–407.14 ppm). XCO2 levels are higher in the Northern Hemisphere during March, April, and May (MAM) and DJF, while slightly lower during JJA and September, October, and November (SON). (3) The differences in XCO2 (ΔXCO2) reveal that ΔXCO2 between OCO-2 and TANSAT are minor (−0.47 ± 0.28 ppm), whereas the most significant difference is observed between GOSAT and TANSAT (−1.13 ± 0.15 ppm). Minimal differences are seen in SON (with the biggest difference between GOSAT and TANSAT: −0.84 ± 0.12 ppm), while notable differences occur in DJF (with the biggest difference between GOSAT and TANSAT: −1.43 ± 0.17 ppm). Regarding latitudinal variations, distinctions between OCO-2 and TANSAT are most pronounced in JJA and SON. (4) Compared to TCCON, XCO2 from GOT exhibits relatively high determination coefficients (R2 > 0.8), with GOSAT having the highest root mean square error (RMSE = 1.226 ppm, <1.5 ppm), indicating a strong relationship between ground-based observed and retrieved values. This research contributes significantly to our understanding of the spatial characteristics of global XCO2. Furthermore, it offers insights that can inform the analysis of differences in the inversion of carbon sources and sinks within assimilation systems when incorporating XCO2 data from satellite observations. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

13 pages, 1781 KiB  
Technical Note
Evaluating the Ability of the Pre-Launch TanSat-2 Satellite to Quantify Urban CO2 Emissions
by Kai Wu, Dongxu Yang, Yi Liu, Zhaonan Cai, Minqiang Zhou, Liang Feng and Paul I. Palmer
Remote Sens. 2023, 15(20), 4904; https://doi.org/10.3390/rs15204904 - 10 Oct 2023
Cited by 13 | Viewed by 3021
Abstract
TanSat-2, the next-generation Chinese greenhouse gas monitoring satellite for measuring carbon dioxide (CO2), has a new city-scale observing mode. We assess the theoretical capability of TanSat-2 to quantify integrated urban CO2 emissions over the cities of Beijing, Jinan, Los Angeles, [...] Read more.
TanSat-2, the next-generation Chinese greenhouse gas monitoring satellite for measuring carbon dioxide (CO2), has a new city-scale observing mode. We assess the theoretical capability of TanSat-2 to quantify integrated urban CO2 emissions over the cities of Beijing, Jinan, Los Angeles, and Paris. A high-resolution emission inventory and a column-averaged CO2 (XCO2) transport model are used to build an urban CO2 inversion system. We design a series of numerical experiments describing this observing system to evaluate the impacts of sampling patterns and XCO2 measurement errors on inferring urban CO2 emissions. We find that the correction in systematic and random flux errors is correlated with the signal-to-noise ratio of satellite measurements. The reduction in systematic flux errors for the four cities are sizable, but are subject to unbiased satellite sampling and favorable meteorological conditions (i.e., less cloud cover and lower wind speed). The corresponding correction to the random flux error is 19–28%. Even though clear-sky satellite data from TanSat-2 have the potential to reduce flux errors for cities with high CO2 emissions, quantifying urban emissions by satellite-based measurements is subject to additional limitations and uncertainties. Full article
(This article belongs to the Special Issue China's First Dedicated Carbon Satellite Mission (TanSat))
Show Figures

Figure 1

14 pages, 5994 KiB  
Article
On-Orbit Characterization of TanSat Instrument Line Shape Using Observed Solar Spectra
by Zhaonan Cai, Kang Sun, Dongxu Yang, Yi Liu, Lu Yao, Chao Lin and Xiong Liu
Remote Sens. 2022, 14(14), 3334; https://doi.org/10.3390/rs14143334 - 11 Jul 2022
Cited by 4 | Viewed by 1800
Abstract
The Chinese carbon dioxide measurement satellite (TanSat) has collected a large number of measurements in the solar calibration mode. To improve the accuracy of XCO2 retrieval, the Instrument Line Shape (ILS, also known as the slit function) must be accurately determined. In this [...] Read more.
The Chinese carbon dioxide measurement satellite (TanSat) has collected a large number of measurements in the solar calibration mode. To improve the accuracy of XCO2 retrieval, the Instrument Line Shape (ILS, also known as the slit function) must be accurately determined. In this study, we characterized the on-orbit ILS of TanSat by fitting measured solar irradiance from 2017 to 2018 with a well-calibrated high-spectral-resolution solar reference spectrum. We used various advanced analytical functions and the stretch/sharpen of the tabulated preflight ILS to represent the ILS for each wavelength window, footprint, and band. Using super Gaussian+P7 and the stretch/sharpen functions substantially reduced the fitting residual in O2 A-band and weak CO2 band compared with using the preflight ILS. We found that the difference between the derived ILS width and on-ground preflight ILS was up to −3.5% in the weak CO2 band, depending on footprint and wavelength. The large amplitude of the ILS wings, depending on the wavelength, footprint, and bands, indicated possible uncorrected stray light. Broadening ILS wings will cause additive offset (filling-in) on the deep absorption lines of the spectra, which we confirmed using offline bias correction of the solar-induced fluorescence retrieval. We estimated errors due to the imperfect ILS using simulated TanSat spectra. The results of the simulations showed that XCO2 retrieval is sensitive to errors in the ILS, and 4% uncertainty in the full width of half maximum (FWHM) or 20% uncertainty in the ILS wings can induce an error of up to 1 ppm in the XCO2 retrieval. Full article
(This article belongs to the Special Issue China's First Dedicated Carbon Satellite Mission (TanSat))
Show Figures

Figure 1

27 pages, 6927 KiB  
Article
Investigation on Geometry Computation of Spaceborne GNSS-R Altimetry over Topography: Modeling and Validation
by Minfeng Song, Xiufeng He, Milad Asgarimehr, Weiqiang Li, Ruya Xiao, Dongzhen Jia, Xiaolei Wang and Jens Wickert
Remote Sens. 2022, 14(9), 2105; https://doi.org/10.3390/rs14092105 - 27 Apr 2022
Cited by 7 | Viewed by 3202
Abstract
The spaceborne Global Navigation Satellite Systems Reflectometry (GNSS-R) offers versatile Earth surface observation. While the accuracy of the computed geometry, required for the implementation of the technique, degrades when Earth’s surface topography is complicated, previous studies ignored the effects of the local terrain [...] Read more.
The spaceborne Global Navigation Satellite Systems Reflectometry (GNSS-R) offers versatile Earth surface observation. While the accuracy of the computed geometry, required for the implementation of the technique, degrades when Earth’s surface topography is complicated, previous studies ignored the effects of the local terrain surrounding the ideal specular point at a suppositional Earth reference surface. The surface slope and its aspect have been confirmed that it can lead to geolocation-related errors in the traditional radar altimetry, which will be even more intensified in tilt observations. In this study, the effect of large-scale slope on the spaceborne GNSS-R technique is investigated. We propose a new geometry computation strategy based on the property of ellipsoid to carry out forward and inverse calculations of path geometries. Moreover, it can be extended to calculate unusual reflected paths over versatile Earth’s topography by taking the surface slope and aspects into account. A simulation considering the slope effects demonstrates potential errors as large as meters to tens kilometers in geolocation and height estimations in the grazing observation condition over slopes. For validation, a single track over the Greenland surface received by the TechDemoSat 1 (TDS-1) satellite with a slope range from 0% to 1% was processed and analyzed. The results show that using the TanDEM-X 90 m Digital Elevation Model (DEM) as a reference, a slope of 0.6% at an elevation angle of 54 degrees can result in a geolocation inaccuracy of 10 km and a height error of 50 m. The proposed method in this study greatly reduces the standard deviation of geolocations of specular points from 4758 m to 367 m, and height retrievals from 28 m to 5.8 m. Applications associated with topography slopes, e.g., cryosphere could benefit from this method. Full article
(This article belongs to the Special Issue Applications of GNSS Reflectometry for Earth Observation II)
Show Figures

Graphical abstract

15 pages, 4915 KiB  
Article
Study on the Ground-Based FTS Measurements at Beijing, China and the Colocation Sensitivity of Satellite Data
by Sen Yang, Xiaoyang Meng, Xingying Zhang, Lu Zhang, Wenguang Bai, Zhongdong Yang, Peng Zhang, Zhili Deng, Xin Zhang and Xifeng Cao
Atmosphere 2021, 12(12), 1586; https://doi.org/10.3390/atmos12121586 - 29 Nov 2021
Viewed by 2226
Abstract
The Fourier Transform Spectrometer (FTS) at the Beijing Satellite Meteorological Ground Station observed XCO2 (the dry carbon dioxide column) from 2 March 2016 to 4 December 2018. The validation results of ground-based XCO2, as well as GOSAT, OCO-2, and TanSat [...] Read more.
The Fourier Transform Spectrometer (FTS) at the Beijing Satellite Meteorological Ground Station observed XCO2 (the dry carbon dioxide column) from 2 March 2016 to 4 December 2018. The validation results of ground-based XCO2, as well as GOSAT, OCO-2, and TanSat XCO2, show that the best temporal matching setting for ground-based XCO2 and satellite XCO2 is ±1 h, and the best spatial matching setting for GOSAT is 0.5° × 0.5°. Consistent with OCO-2, the best spatial matching setting of TanSat is 5° × 5° or 6° × 6°. Among GOSAT, OCO-2, and TanSat, the satellite observation validation characteristics near 5° × 5° from the ground-based station are obviously different from other spatial matching grids, which may be due to the different observation characteristics of satellites near 5° × 5°. To study the influence of local CO2 sources on the characteristics of satellite observation validation, we classified the daily XCO2 observation sequence into concentrated, dispersive, increasing, and decreasing types, respectively, and then validated the satellite observations. The results showed that the concentrated and decreasing sub-datasets have better validation performance. Our results suggest that it is best to use concentrated and decreasing sub-datasets when using the Beijing Satellite Meteorological Ground Station XCO2 for satellite validation. The temporal matching setting should be ±1 h, and the spatial matching setting should consider the satellites observation characteristics of 5° × 5° distance from the ground-based station. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

13 pages, 5411 KiB  
Article
Retrieving Sun-Induced Chlorophyll Fluorescence from Hyperspectral Data with TanSat Satellite
by Shilei Li, Maofang Gao and Zhao-Liang Li
Sensors 2021, 21(14), 4886; https://doi.org/10.3390/s21144886 - 18 Jul 2021
Cited by 6 | Viewed by 3099
Abstract
A series of algorithms for satellite retrievals of sun-induced chlorophyll fluorescence (SIF) have been developed and applied to different sensors. However, research on SIF retrieval using hyperspectral data is performed in narrow spectral windows, assuming that SIF remains constant. In this paper, based [...] Read more.
A series of algorithms for satellite retrievals of sun-induced chlorophyll fluorescence (SIF) have been developed and applied to different sensors. However, research on SIF retrieval using hyperspectral data is performed in narrow spectral windows, assuming that SIF remains constant. In this paper, based on the singular vector decomposition (SVD) technique, we present an approach for retrieving SIF, which can be applied to remotely sensed data with ultra-high spectral resolution and in a broad spectral window without assuming that the SIF remains constant. The idea is to combine the first singular vector, the pivotal information of the non-fluorescence spectrum, with the low-frequency contribution of the atmosphere, plus a linear combination of the remaining singular vectors to express the non-fluorescence spectrum. Subject to instrument settings, the retrieval was performed within a spectral window of approximately 7 nm that contained only Fraunhofer lines. In our retrieval, hyperspectral data of the O2-A band from the first Chinese carbon dioxide observation satellite (TanSat) was used. The Bayesian Information Criterion (BIC) was introduced to self-adaptively determine the number of free parameters and reduce retrieval noise. SIF retrievals were compared with TanSat SIF and OCO-2 SIF. The results showed good consistency and rationality. A sensitivity analysis was also conducted to verify the performance of this approach. To summarize, the approach would provide more possibilities for retrieving SIF from hyperspectral data. Full article
Show Figures

Figure 1

24 pages, 8838 KiB  
Project Report
Monitoring Greenhouse Gases from Space
by Hartmut Boesch, Yi Liu, Johanna Tamminen, Dongxu Yang, Paul I. Palmer, Hannakaisa Lindqvist, Zhaonan Cai, Ke Che, Antonio Di Noia, Liang Feng, Janne Hakkarainen, Iolanda Ialongo, Nikoleta Kalaitzi, Tomi Karppinen, Rigel Kivi, Ella Kivimäki, Robert J. Parker, Simon Preval, Jing Wang, Alex J. Webb, Lu Yao and Huilin Chenadd Show full author list remove Hide full author list
Remote Sens. 2021, 13(14), 2700; https://doi.org/10.3390/rs13142700 - 8 Jul 2021
Cited by 26 | Viewed by 9408
Abstract
The increase in atmospheric greenhouse gas concentrations of CO2 and CH4, due to human activities, is the main driver of the observed increase in surface temperature by more than 1 °C since the pre-industrial era. At the 2015 United Nations [...] Read more.
The increase in atmospheric greenhouse gas concentrations of CO2 and CH4, due to human activities, is the main driver of the observed increase in surface temperature by more than 1 °C since the pre-industrial era. At the 2015 United Nations Climate Change Conference held in Paris, most nations agreed to reduce greenhouse gas emissions to limit the increase in global surface temperature to 1.5 °C. Satellite remote sensing of CO2 and CH4 is now well established thanks to missions such as NASA’s OCO-2 and the Japanese GOSAT missions, which have allowed us to build a long-term record of atmospheric GHG concentrations from space. They also give us a first glimpse into CO2 and CH4 enhancements related to anthropogenic emission, which helps to pave the way towards the future missions aimed at a Monitoring & Verification Support (MVS) capacity for the global stock take of the Paris agreement. China plays an important role for the global carbon budget as the largest source of anthropogenic carbon emissions but also as a region of increased carbon sequestration as a result of several reforestation projects. Over the last 10 years, a series of projects on mitigation of carbon emission has been started in China, including the development of the first Chinese greenhouse gas monitoring satellite mission, TanSat, which was successfully launched on 22 December 2016. Here, we summarise the results of a collaborative project between European and Chinese teams under the framework of the Dragon-4 programme of ESA and the Ministry of Science and Technology (MOST) to characterize and evaluate the datasets from the TanSat mission by retrieval intercomparisons and ground-based validation and to apply model comparisons and surface flux inversion methods to TanSat and other CO2 missions, with a focus on China. Full article
(This article belongs to the Special Issue ESA - NRSCC Cooperation Dragon 4 Final Results)
Show Figures

Figure 1

26 pages, 8970 KiB  
Article
Near-Ultraviolet to Near-Infrared Band Thresholds Cloud Detection Algorithm for TANSAT-CAPI
by Ning Ding, Jianbing Shao, Changxiang Yan, Junqiang Zhang, Yanfeng Qiao, Yun Pan, Jing Yuan, Youzhi Dong and Bo Yu
Remote Sens. 2021, 13(10), 1906; https://doi.org/10.3390/rs13101906 - 13 May 2021
Cited by 9 | Viewed by 3115
Abstract
Cloud and aerosol polarization imaging detector (CAPI) is one of the important payloads on the China Carbon Dioxide Observation Satellite (TANSAT), which can realize multispectral polarization detection and accurate on-orbit calibration. The main function of the instrument is to identify the interference of [...] Read more.
Cloud and aerosol polarization imaging detector (CAPI) is one of the important payloads on the China Carbon Dioxide Observation Satellite (TANSAT), which can realize multispectral polarization detection and accurate on-orbit calibration. The main function of the instrument is to identify the interference of clouds and aerosols in the atmospheric detection path and to improve the retrieval accuracy of greenhouse gases. Therefore, it is of great significance to accurately identify the clouds in remote sensing images. However, in order to meet the requirement of lightweight design, CAPI is only equipped with channels in the near-ultraviolet to near-infrared bands. It is difficult to achieve effective cloud recognition using traditional visible light to thermal infrared band spectral threshold cloud detection algorithms. In order to solve the above problem, this paper innovatively proposes a cloud detection method based on different threshold tests from near ultraviolet to near infrared (NNDT). This algorithm first introduces the 0.38 μm band and the ratio of 0.38 μm band to 1.64 μm band, to realize the separation of cloud pixels and clear sky pixels, which can take advantage of the obvious difference in radiation characteristics between clouds and ground objects in the near-ultraviolet band and the advantages of the band ratio in identifying clouds on the snow surface. The experimental results show that the cloud recognition hit rate (PODcloud) reaches 0.94 (ocean), 0.98 (vegetation), 0.99 (desert), and 0.86 (polar), which therefore achieve the application standard of CAPI data cloud detection The research shows that the NNDT algorithm replaces the demand for thermal infrared bands for cloud detection, gets rid of the dependence on the minimum surface reflectance database that is embodied in traditional cloud recognition algorithms, and lays the foundation for aerosol and CO2 parameter inversion. Full article
Show Figures

Graphical abstract

4 pages, 190 KiB  
Correction
Correction: Shupeng, W., et al. Carbon Dioxide Retrieval from TanSat Observations and Validation with TCCON Measurements. Remote Sensing 2020, 12(14), 2204
by Shupeng Wang, Ronald J. van der A, Piet Stammes, Weihe Wang, Peng Zhang, Naimeng Lu, Xingying Zhang, Yanmeng Bi, Ping Wang and Li Fang
Remote Sens. 2020, 12(21), 3626; https://doi.org/10.3390/rs12213626 - 4 Nov 2020
Cited by 1 | Viewed by 2109
Abstract
The authors wish to make the following corrections to this paper [...] Full article
(This article belongs to the Special Issue Remote Sensing of Air Pollutants and Carbon Emissions in Megacities)
17 pages, 3807 KiB  
Article
Retrieval and Validation of XCO2 from TanSat Target Mode Observations in Beijing
by Zhengyi Bao, Xingying Zhang, Tianxiang Yue, Lili Zhang, Zong Wang, Yimeng Jiao, Wenguang Bai and Xiaoyang Meng
Remote Sens. 2020, 12(18), 3063; https://doi.org/10.3390/rs12183063 - 18 Sep 2020
Cited by 11 | Viewed by 3704
Abstract
Satellite observation is one of the main methods used to monitor the global distribution and variation of atmospheric carbon dioxide (CO2). Several CO2 monitoring satellites have been successfully launched, including Japan’s Greenhouse Gases Observing SATellite (GOSAT), the USA’s Orbiting Carbon [...] Read more.
Satellite observation is one of the main methods used to monitor the global distribution and variation of atmospheric carbon dioxide (CO2). Several CO2 monitoring satellites have been successfully launched, including Japan’s Greenhouse Gases Observing SATellite (GOSAT), the USA’s Orbiting Carbon Observatory-2 (OCO-2), and China’s Carbon Dioxide Observation Satellite Mission (TanSat). Satellite observation targeting the ground-based Fourier transform spectrometer (FTS) station is the most effective technique for validating satellite CO2 measurement precision. In this study, the coincident observations from TanSat and ground-based FTS were performed numerous times in Beijing under a clear sky. The column-averaged dry-air mole fraction of carbon dioxide (XCO2) obtained from TanSat was retrieved by the Department for Eco-Environmental Informatics (DEEI) of China’s State Key Laboratory of Resources and Environmental Information System based on a full physical model. The comparison and validation of the TanSat target mode observations revealed that the average of the XCO2 bias between TanSat retrievals and ground-based FTS measurements was 2.62 ppm, with a standard deviation (SD) of the mean difference of 1.41 ppm, which met the accuracy standard of 1% required by the mission tasks. With bias correction, the mean absolute error (MAE) improved to 1.11 ppm and the SD of the mean difference fell to 1.35 ppm. We compared simultaneous observations from GOSAT and OCO-2 Level 2 (L2) bias-corrected products within a ±1° latitude and longitude box centered at the ground-based FTS station in Beijing. The results indicated that measurements from GOSAT and OCO-2 were 1.8 ppm and 1.76 ppm higher than the FTS measurements on 20 June 2018, on which the daily observation bias of the TanSat XOC2 results was 1.87 ppm. These validation efforts have proven that TanSat can measure XCO2 effectively. In addition, the DEEI-retrieved XCO2 results agreed well with measurements from GOSAT, OCO-2, and the Beijing ground-based FTS. Full article
Show Figures

Figure 1

19 pages, 4918 KiB  
Article
Carbon Dioxide Retrieval from TanSat Observations and Validation with TCCON Measurements
by Shupeng Wang, Ronald J. van der A, Piet Stammes, Weihe Wang, Peng Zhang, Naimeng Lu, Xingying Zhang, Yanmeng Bi, Ping Wang and Li Fang
Remote Sens. 2020, 12(14), 2204; https://doi.org/10.3390/rs12142204 - 10 Jul 2020
Cited by 23 | Viewed by 5162 | Correction
Abstract
In this study we present the retrieval of the column-averaged dry air mole fraction of carbon dioxide (XCO2) from the TanSat observations using the ACOS (Atmospheric CO2 Observations from Space) algorithm. The XCO2 product has been validated with [...] Read more.
In this study we present the retrieval of the column-averaged dry air mole fraction of carbon dioxide (XCO2) from the TanSat observations using the ACOS (Atmospheric CO2 Observations from Space) algorithm. The XCO2 product has been validated with collocated ground-based measurements from the Total Carbon Column Observing Network (TCCON) for 2 years of TanSat data from 2017 to 2018. Based on the correlation of the XCO2 error over land with goodness of fit in three spectral bands at 0.76, 1.61 and 2.06 μm, we applied an a posteriori bias correction to TanSat retrievals. For overpass averaged results, XCO2 retrievals show a standard deviation (SD) of ~2.45 ppm and a positive bias of ~0.27 ppm compared to collocated TCCON sites. The validation also shows a relatively higher positive bias and variance against TCCON over high-latitude regions. Three cases to evaluate TanSat target mode retrievals are investigated, including one field campaign at Dunhuang with measurements by a greenhouse gas analyzer deployed on an unmanned aerial vehicle and two cases with measurements by a ground-based Fourier-transform spectrometer in Beijing. The results show the retrievals of all footprints, except footprint-6, have relatively low bias (within ~2 ppm). In addition, the orbital XCO2 distributions over Australia and Northeast China between TanSat and the second Orbiting Carbon Observatory (OCO-2) on 20 April 2017 are compared. It shows that the mean XCO2 from TanSat is slightly lower than that of OCO-2 with an average difference of ~0.85 ppm. A reasonable agreement in XCO2 distribution is found over Australia and Northeast China between TanSat and OCO-2. Full article
(This article belongs to the Special Issue Remote Sensing of Air Pollutants and Carbon Emissions in Megacities)
Show Figures

Graphical abstract

18 pages, 5816 KiB  
Article
Generation of a Global Spatially Continuous TanSat Solar-Induced Chlorophyll Fluorescence Product by Considering the Impact of the Solar Radiation Intensity
by Yan Ma, Liangyun Liu, Ruonan Chen, Shanshan Du and Xinjie Liu
Remote Sens. 2020, 12(13), 2167; https://doi.org/10.3390/rs12132167 - 7 Jul 2020
Cited by 37 | Viewed by 4241
Abstract
Solar-induced chlorophyll fluorescence (SIF) provides a new and direct way of monitoring photosynthetic activity. However, current SIF products are limited by low spatial resolution or sparse sampling. In this paper, we present a data-driven method of generating a global, spatially continuous TanSat SIF [...] Read more.
Solar-induced chlorophyll fluorescence (SIF) provides a new and direct way of monitoring photosynthetic activity. However, current SIF products are limited by low spatial resolution or sparse sampling. In this paper, we present a data-driven method of generating a global, spatially continuous TanSat SIF product. Firstly, the key explanatory variables for modelling canopy SIF were investigated using in-situ and satellite observations. According to theoretical and experimental analysis, the solar radiation intensity was found to be a dominant driving environmental variable for the SIF yield at both the canopy and global scales; this has, however, been neglected in previous research. The cosine value of the solar zenith angle at noon (cos (SZA0)), a proxy for solar radiation intensity, was found to be a dominant abiotic factor for the SIF yield. Next, a Random Forest (RF) approach was employed for SIF prediction based on Moderate Resolution Imaging Spectroradiometer (MODIS) visible-to-NIR reflectance data, the normalized difference vegetation (NDVI), cos (SZA0), and air temperature. The machine learning model performed well at predicting SIF, giving R2 values of 0.73, an RMSE of 0.30 mW m−2 nm−1 sr−1 and a bias of 0.22 mW m−2 nm−1 sr−1 for 2018. If cos (SZA0) was not included, the accuracy of the RF model decreased: the R2 value was then 0.65, the RMSE 0.34 mW m−2 nm−1 sr−1 and an bias of 0.26 mW m−2 nm−1 sr−1, further verifying the importance of cos (SZA0). Finally, the globally continuous TanSat SIF product was developed and compared to the TROPOspheric Monitoring Instrument (TROPOMI) SIF data. The results showed that the globally continuous TanSat SIF product agreed well with the TROPOMI SIF data, with an R2 value of 0.73. Thus, this paper presents an improved approach to modelling satellite SIF that has a better accuracy, and the study also generated a global, spatially continuous TanSat SIF product with a spatial resolution of 0.05°. Full article
Show Figures

Graphical abstract

Back to TopTop