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Abstract: TanSat-2, the next-generation Chinese greenhouse gas monitoring satellite for measuring
carbon dioxide (CO2), has a new city-scale observing mode. We assess the theoretical capability of
TanSat-2 to quantify integrated urban CO2 emissions over the cities of Beijing, Jinan, Los Angeles, and
Paris. A high-resolution emission inventory and a column-averaged CO2 (XCO2 ) transport model are
used to build an urban CO2 inversion system. We design a series of numerical experiments describing
this observing system to evaluate the impacts of sampling patterns and XCO2 measurement errors
on inferring urban CO2 emissions. We find that the correction in systematic and random flux errors
is correlated with the signal-to-noise ratio of satellite measurements. The reduction in systematic
flux errors for the four cities are sizable, but are subject to unbiased satellite sampling and favorable
meteorological conditions (i.e., less cloud cover and lower wind speed). The corresponding correction
to the random flux error is 19–28%. Even though clear-sky satellite data from TanSat-2 have the
potential to reduce flux errors for cities with high CO2 emissions, quantifying urban emissions by
satellite-based measurements is subject to additional limitations and uncertainties.

Keywords: TanSat-2 satellite mission; urban CO2 emissions; atmospheric CO2 inversion; OSSE

1. Introduction

Carbon dioxide (CO2) is one of the most important greenhouse gases, and was re-
sponsible for about 80% of global CO2 equivalents in 2022 (https://gml.noaa.gov/aggi/
(accessed on 25 September 2023)) [1]. Quantifying urban CO2 emissions has become a
focus of climate change mitigation efforts to limit global warming and achieve carbon
neutrality [2–6]. Satellite-based measurements of atmospheric CO2 aim to quantify surface
CO2 fluxes [7]. Here, we explore the theoretical potential of the Chinese next-generation
greenhouse gas monitoring satellite (TanSat-2) to infer urban CO2 emissions.

Anthropogenic CO2 emissions have been quantified using data from ground-based
instruments [8–17] to low-Earth-orbiting satellites such as GOSAT [18–21] and OCO-2 [22–25],
either directly as XCO2 , the atmospheric column-averaged dry-air mole fraction of CO2 [26–28],
or by monitoring tropospheric NO2 (a short-lived trace gas related to the combustion of
fossil fuels) [29–35]. The main advantage of low-Earth-orbiting satellites is their global
coverage, which is subject to cloud cover and aerosol loading [36,37]. The challenge of
using data from existing satellites to quantify urban CO2 emissions is that the probability
of sampling clear skies over individual cities is low due to the relatively long revisit time
(3–16 days) and small footprints of the instruments. While this limited capability is shared
with GOSAT-2 [38] and TanSat [39–42], it is expected to be improved in the near future with
the France–UK MicroCarb satellite [43–45], which has a city-observing model, and with the
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Copernicus CO2 Monitoring Mission [46,47]. These missions should dramatically increase
the density of relevant data.

Satellite-based XCO2 measurements are being developed at finer sub-city scales to
constrain urban CO2 emissions with high accuracy and precision. Kiel et al. (2021) [48]
estimated urban XCO2 enhancements in Los Angeles ranging from 0 to 6 ppm using data
collected by the NASA Orbiting Carbon Observatory-3 (OCO-3, installed on the Interna-
tional Space Station in 2019) Snapshot Area Maps (SAMs) observing mode [49,50]. They
found that high-density satellite measurements with sufficient accuracy have the potential
to detect changes in anthropogenic CO2 emissions over cities. The XCO2 data collected by
the NASA Orbiting Carbon Observatory-2 satellite (OCO-2, in orbit since 2014) [7,24] have
been used to constrain CO2 emissions in urban areas [26,28]. Lei et al. (2021) [28] examined
OCO-2 data availability and suggested collecting high-frequency data near metropolitan
areas to better constrain the trend of urban CO2 emissions. Recent studies have empirically
related city-scale CO2 emission estimates to urban population density [51,52].

The launch of TanSat-2 is planned for 2025. TanSat-2 is a satellite cluster consisting
of two to three satellites measuring XCO2 at an across-track swath of 2900 km and with a
pixel size of 2 km × 2 km. The precision of its XCO2 measurements is expected to be less
than 1 ppm. It is intended to verify satellite data using ground-based measurements from
the Total Carbon Column Observing Network [53–55] and EM27/SUN measurements [56]
for optimizing parameters in satellite sampling. In this paper, we evaluate the theoretical
ability of TanSat-2 to detect urban CO2 emission signatures based on a closed-loop inversion
system (Figure 1). We simulate synthetic data sampled by TanSat-2 in Beijing (BJ), Jinan
(JN), Los Angeles (LA), and Paris (PR) while accounting for the impacts of cloud cover and
aerosol loading. We compare the effectiveness of correcting flux bias and random errors in
different cities. Finally, we discuss limitations and uncertainties in linking these results to
real-data inversion experiments.
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Figure 1. Flow chart of the Observing System Simulation Experiment (OSSE) for urban CO2 inversion.

2. Data and Methods
2.1. TanSat-2 Configuration

The next-generation Chinese greenhouse gas monitoring satellite known as TanSat-2
is the continuation mission of China’s first carbon monitoring satellite, TanSat. TanSat-2
will fly at a medium-Earth orbit with an apogee of 7840 km and a perigee of 522 km
(Figure 2). Previous studies indicate that more than 80% of anthropogenic CO2 emissions
are concentrated in the region of 15°–55°N, which the apogee of TanSat-2 is placed over
in order to measure most fossil fuel CO2 emissions. Three bands, O2-A (0.747–0.773 µm),
CO2 and CH4 (1.590–1.675 µm), and CO2 (1.990–2.095 µm), provide continuous measure-
ments of the atmospheric absorption spectrum of CO2 and CH4, with an expected retrieval
precision of less than 1 ppm and 8 ppb to account for clouds and aerosol loading. In
addition, there is a visible band for measuring NO2 to identify and separate anthropogenic
emissions from natural carbon fluxes. Overall, TanSat-2 includes normal push broom,
target, and glint modes. A new cloud and aerosol polarization imager will be installed as
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well, providing additional information to reduce errors due to clouds and aerosol particles.
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Figure 2. TanSat-2 sampling trajectory and the simulated footprint of a cloud-free sample at
06:00 (UTC) 2 January 2017 over Beijing (BJ) with monthly mean ODIAC emissions. Footprint
values are plotted on a logarithmic scale.

We simulated synthetic satellite measurements over BJ, JN, LA, and PR for four ar-
bitrary clear-sky days in January and April 2017 (Figure 3). Following the same method
described in Wu et al. (2023) [45], we used ERA5 total cloud cover reanalysis data at
0.25◦ × 0.25◦ resolution [57] to screen out samples contaminated by clouds while account-
ing for the organization of cloud distribution and the randomness of the impact of clouds
and aerosol particles on satellite measurements. Of the more than one thousand individual
samples over each city, our method identified 397 (BJ), 255 (JN), 217 (LA), and 307 (PR)
samples as cloud-free in each city (Figure 3).
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Figure 3. Monthly mean ODIAC emissions and synthetic cloud-free CO2 samples over Beijing (a),
Jinan (b), Los Angeles (c), and Paris (d).

2.2. Anthropogenic CO2 Emission Inventory

We used the Open-source Data Inventory for Anthropogenic CO2 (ODIAC, ver-
sion 2020b) for monthly mean CO2 emissions from fossil fuels at a spatial resolution of
1 km × 1 km [58,59]. This data product uses satellite observations of night-time light and
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power plant profiles, including emission intensity and geographic location, to distribute
CO2 emission estimates from fossil fuel combustion at the country level. Sources of sys-
tematic and random flux errors are due to spatial and temporal disaggregation that vary
by emission sector at different scales (from national to urban) and uncertainties in the
use of night-time light data as an emission proxy. We used ODIAC to define our broader
study domains for urban areas and to ensure that anthropogenic source regions that lie
outside the spatial extent of TanSat-2 were included (Figure 3). BJ (9.84 tCO2 s−1) and JN
(1.63 tCO2 s−1) emissions of CO2 are concentrated in the city centre, with high emissions
beyond 60 µmol m−2 s−1 (Figure 3), home to about 21.54 and 8.7 million people. LA
(3.67 tCO2 s−1) and PR (1.81 tCO2 s−1) show fewer CO2 emissions ranging from 10 to
20 µmol m−2 s−1 (Figure 3), home to about 3.85 and 2.16 million people, where emissions
are distributed with the expansion of city.

2.3. Atmospheric Transport Model

We used the column version of the Stochastic Time-Inverted Lagrangian Transport
model (X-STILT) [60–62] to link surface CO2 fluxes to variations in atmospheric column
CO2 at the locations of satellite sampling. X-STILT tracks the movement of air parcels
backwards in time for 24 h. We applied a typical averaging kernel profile of OCO-2 and
pressure weighting functions to the model fields to describe the footprints of satellite-
based atmospheric CO2 measurements (Figure 2). The footprints describe the sensitivity
of CO2 columns at the receptors (locations where the satellite observes the atmosphere)
to upwind surface fluxes. In order to drive air parcels in X-STILT, we used meteorolog-
ical data from the Global Forecast System with a horizontal resolution of 0.25 degrees
(GFS0.25, https://www.ready.noaa.gov/data/archives/gfs0p25/ (accessed on 25 Septem-
ber 2023)) [63]. A total of 3000 air parcels evenly distributed from the surface to a 3 km
height were released from the atmospheric column of each observation. We simulated
footprints for the cloud-free observations sampled by TanSat-2. The sum of the convolution
of the footprints and the ODIAC inventory represents the urban CO2 enhancements from
upwind CO2 fluxes, as sampled by air parcels arriving at the locations of each sample.

2.4. Urban CO2 Inversion System

We followed the same method described in Wu et al. (2023) [45] to configure an
urban CO2 inversion system with synthetic satellite measurements. Figure 1 describes
the experimental design we followed to assess the theoretical ability of TanSat-2 sampling
to quantify urban emissions of CO2. We used the ODIAC emissions as the true state.
The corresponding CO2 column enhancements were generated from the true fluxes using
the X-STILT transport model. We added synthetic observation noise to each cloud-free scene
based on simulations of cloud cover and aerosol loading. The random measurement errors
ranged between −2 ppm to 2 ppm, with a standard deviation of 0.41 ppm to 0.54 ppm. We
added an unbiased 20% random error to account for atmospheric transport errors [64,65].
Later in this paper, we examine the impacts of different transport errors (described by the
observation error covariance matrix) on the error reduction of flux inversion.

Evaluating the ability to reduce a priori flux errors (including systematic and random
errors) was the primary objective of this study. We assumed respective mean systematic
and random flux error of 2 µmol m−2 s−1 for the prior state [66,67]. The total systematic
and random flux errors are constrained by the Chi-square test, which should be close to
one (meaning that the posterior state is weighted by balancing the information from the
data and the prior state) [16]. We used an eigenvalue decomposition method to generate
a priori flux noise from the flux error covariance matrix, which is spatially correlated with
an exponentially decaying function of the distance between emission grids. The spatial
correlation length was assumed to be 10 km [68,69]. The vector of prior flux noise was
calculated by multiplying the eigenvector of the flux error covariance matrix with a normal
distribution vector characterizing the systematic and random flux errors.

https://www.ready.noaa.gov/data/archives/gfs0p25/
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We used the Maximum A Posteriori (MAP) inverse method [70–72], in which we
solved for a posteriori CO2 emissions by minimizing a cost function [67] that describes
the mismatch between the model-calculated enhancements and the measurements while
accounting for a priori and measurement uncertainties. Minimizing the cost function results
in the following expressions:

x̂ = x0 + (HB)T(HBHT + R)−1(y − Hx0), (1)

Ŝ = B − (HB)T(HBHT + R)−1(HB), (2)

where x̂ and Ŝ denote the a posteriori state of grid-based CO2 emissions and the associ-
ated error covariance matrix, x0 and B denote the a priori emissions and the associated
error covariance matrix, the measurement vector y includes the atmospheric CO2 column
enhancements (with the associated errors described by the observation error covariance
matrix R, including measurement errors and atmospheric transport errors), and H denotes
the Jacobian matrix that describes the sensitivity of CO2 column enhancements to changes
in surface CO2 emissions.

To evaluate the theoretical performance of TanSat-2 sampling on improving a priori
knowledge of urban CO2 emissions, we used an error reduction metric (η) that takes into
account differences between the a priori and a posteriori random flux errors [73]:

η =

1 −
(

Ŝi,i

Bi,i

)1/2
× 100%, (3)

where the subscripts denote the diagonal elements of the error covariance matrices; the larger
the value of η, the more the uncertainty of CO2 emissions is reduced from the prior state
due to assimilation of satellite data. Finally, we computed a metric for the overall correction
of flux errors to account for the reduction of bias and random error in the flux estimates.

3. Results
3.1. Simulation of Satellite Sampling over Cities

We simulated synthetic TanSat-2 sampling over the cities of BJ, JN, LA, and PR on four
arbitrary clear-sky days in January and April 2017 (Figure 3). The scattered distribution
of cloud-free samples is due to the randomness of small-scale clouds, which are not re-
solved by the ERA5 cloud data. The differences in CO2 enhancements across the four cities
(Figure 4a) are due to different emission levels and footprints associated with local meteo-
rological conditions. The synthetic column CO2 enhancements (with measurement errors)
in the four cities range from −2 ppm to 8 ppm, similar to previous studies [20,48,74,75].
The mean value of XCO2 enhancements in BJ is 1.19 ppm, with a random error of 0.42 ppm
(Figure 4b), resulting in a maximum signal-to-noise ratio of 2.8, followed by JN (2.1),
LA (0.7), and PR (0.1). The signal-to-noise ratio of satellite data is an important indicator
of flux error reduction, which shows significant correction in BJ and JN and negligible
error reduction in PR (Figure 5). The sizable error reduction in each city is concentrated in
the region with significant XCO2 enhancement signals and high-density satellite sampling
(Figure 3).

3.2. Comparison of Flux Inversion for Different Cities

Figures S1–S4 show the spatial distributions of the true, a priori, and a posteriori CO2
emissions and the associated flux noise in the cities of BJ, JN, LA, and PR. The a posteriori
emissions optimized by the satellite data can retrieve the true integrated emissions for
the four cities within 3% (BJ), 20% (JN), 31% (LA), and 30% (PR) from an a priori state
of 13% (BJ), 65% (JN), 52% (LA), and 69% (PR) larger than the truth. The corresponding
reductions in flux random errors are 28% (BJ), 19% (JN), 25% (LA), and 23% (PR). The
reduced posterior flux noise due to flux correction illustrates that cloud-free satellite data
can broadly retrieve the spatial structure and magnitude of the true emissions.
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Figure 4. Probability density of synthetic XCO2 enhancements in Beijing (BJ), Jinan (JN), Los Angeles
(LA), and Paris (PR) (a) along with the corresponding measurement errors (b). The values (in units of
ppm) after the city names are the mean (first number) and standard deviation (second number).

(Units: %)

Figure 5. Flux error reduction in Beijing (a), Jinan (b), Los Angeles (c), and Paris (d).

Figure 6 shows the urban CO2 column enhancements that correspond to the true, a
priori, and a posteriori emissions. Certain satellite samples show a significant increase in
CO2 (greater than 3σ) in BJ and LA, corresponding to a sizable reduction in flux errors in the
two cities (Figure 5). The synthetic CO2 enhancements (synthetic OBS) in PR vary outside
the range of truth (perfect OBS) due to the relatively low signal-to-noise ratio. Therefore,
the reduction in flux error in PR is negligible (Figure 5). We evaluated the performance
of inversion by comparing integrated urban CO2 emissions in the four cities (Figure 7).
The bias correction ranges from 40% to 75%, with a 19% to 28% reduction in random flux
error (Table 1). The overall correction (including bias and random error) ranges from 32%
to 46% depending on the signal-to-noise ratio and the density of satellite sampling (due to
clouds and aerosol loading) that can detect significant XCO2 enhancement signals.
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Figure 6. Urban CO2 enhancements in Beijing (a), Jinan (b), Los Angeles (c), and Paris (d).

Figure 7. Urban CO2 emissions in Beijing (BJ), Jinan (JN), Los Angeles (LA), and Paris (PR).

Table 1. Reduction of flux bias and random error (RE) and overall correction (OC) of integrated urban
CO2 emissions in Beijing (BJ), Jinan (JN), Los Angeles (LA), and Paris (PR); units are %.

City Bias RE OC

BJ 75 28 46
JN 68 19 45
LA 40 25 32
PR 56 23 37
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3.3. Sensitivity to Systematic and Random Measurement Errors

We investigated the sensitivity of flux estimates to bias in satellite data for the medium-
size city of JN (Figure 8a), which is a typical city in terms of the area of the city. A systematic
measurement error of ±1 ppm would significantly degrade emission estimates inferred
from the data, especially when the observation bias and the flux bias are in the same
direction. A slight bias within −0.5 ppm in the data, in the opposite direction of a priori
flux bias, is beneficial for improving the integrated estimate of CO2 emissions. Figure 8b
shows the sensitivity of the flux error reduction to observation uncertainties, including
atmospheric transport errors, under different resolutions of satellite sampling. The peak
spatially-averaged error reduction is approximately 25% with an observation uncertainty
of 0.5 ppm and the largest number of measurements. The lowest error reduction is for
the minimum data availability (25 OBS) and a sampling resolution of 20 km. Moreover,
the scenario of 4 km resolution (127 OBS) with 1 ppm observation uncertainty shows
similar error reduction to the scenario of 8 km resolution (76 OBS), with a 0.75 ppm
random error, indicating that better measurement precision can partially compensate for
fewer measurements.

Figure 8. Correction of flux bias with the change in observation bias in Jinan (a) and reduction of
the spatially-averaged random flux error with the change in observation uncertainty under different
sampling resolutions in Jinan (b). The numbers in parentheses are the number of observations.

4. Conclusions and Discussion

In this paper, we demonstrate that it is feasible to infer urban CO2 emissions from syn-
thetic unbiased TanSat-2 data with a 19–28% correction for random flux errors. Because atmo-
spheric column enhancements from urban CO2 emissions are less than 1% of the background
concentration, the signal-to-noise ratio of satellite samples is important for determining error
reduction in flux estimates. A systematic measurement error of ±1 ppm would significantly
degrade emission estimates derived from the data. Improving the accuracy and precision of
satellite samples can help to reduce uncertainties in urban CO2 emissions.

Although we evaluated the potential of using TanSat-2 data to detect anthropogenic
CO2 emissions, there are additional limitations and uncertainties in applying these results
to inversion experiments using real data [76]. As shown above, the reduction of flux
errors is highly dependent on unbiased high-precision (less than 1 ppm random error)
satellite measurements. However, satellite measurements are inevitably subject to bias
due to the influence of clouds and aerosols. Data collected from ground-based remote
sensing instruments (TCCON or EM27/SUN) are valuable to identify and correct larger-
scale systematic errors. Deploying ground-based atmospheric remote sensing networks
would help to correct regional systematic errors, while random measurement errors can be
reduced by increasing the number of individual samples.

Column-averaged urban CO2 enhancements are typically less than 1% of the atmo-
spheric background concentration (about 415 ppm). It has been suggested that estimating
the regional background CO2 column concentration is important for quantifying the mag-
nitude of urban CO2 enhancements due to net urban emissions, including anthropogenic
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and biospheric CO2 fluxes [77]. A range of methods have been investigated in different
studies to quantify regional background values, such as calculating spatial CO2 gradients
between upwind and downwind sites [12], solving for concentrations at the boundary as an
additional unknown [78], averaging XCO2 measurements over a latitude [79] or over surround-
ing areas that are relatively unaffected by urban emissions [20], simulating the background
concentration with an atmospheric transport model [60], or deriving it from a two-step linear
regression [26]. The choice of method for determining the background value depends on the
specifics of each study, as all involve simplifications that affect the estimated urban emissions.
Although the closed-loop experiment sidesteps this issue, it is necessary to consider additional
uncertainties (assessment of wind direction and CO2 uptake by local ecosystems) associated
with the calculation of the elevated XCO2 in experiments with real data.

This study assumes unbiased and uncorrelated atmospheric transport errors. How-
ever, these errors are likely to be correlated at the sub-city scale [80]. Our assumptions likely
result in the best-case scenario for error reduction that can be achieved by the TanSat-2
mission. Better understanding of atmospheric transport and a priori flux errors is essential
to improving the accuracy and precision of a posteriori CO2 flux estimates. In addition, sea-
sonal biospheric uptake of CO2 within and around cities weakens observed CO2 gradients,
complicating the categorization of anthropogenic and natural fluxes [17,81–83]. Coupled
assimilation of CO2 with other trace gases such as CO or NO2 can provide constraints,
allowing fossil fuel emissions of CO2 in cities to be separated from natural fluxes [29,32].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/rs15204904/s1, Figure S1: Truth (a), prior state (b), posterior state
(c), prior flux noise (prior state minus truth) (d), posterior flux noise (posterior state minus truth) (e),
and flux correction (posterior minus prior state) (f) based on the cloud-free samples in Beijing at 06:00
(UTC) 02 JAN 2017. Values in parentheses are the total CO2 emissions within the domain and their
uncertainty.; Figure S2: Same as Figure S1, but in Jinan at 06:00 (UTC) 03 JAN 2017; Figure S3: Same
as Figure S1, but in Los Angeles at 21:00 (UTC) 14 JAN 2017; Figure S4: Same as Figure S1, but in
Paris at 12:00 (UTC) 20 APR 2017.
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