Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,188)

Search Parameters:
Keywords = Sustainable Cities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 813 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
21 pages, 4581 KiB  
Article
Spatiotemporal Variations and Drivers of the Ecological Footprint of Water Resources in the Yangtze River Delta
by Aimin Chen, Lina Chang, Peng Zhao, Xianbin Sun, Guangsheng Zhang, Yuanping Li, Haojun Deng and Xiaoqin Wen
Water 2025, 17(15), 2340; https://doi.org/10.3390/w17152340 - 6 Aug 2025
Abstract
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial [...] Read more.
With the acceleration of urbanization in China, water resources have become a key factor restricting regional sustainable development. Current research primarily examines the temporal or spatial variations in the water resources ecological footprint (WREF), with limited emphasis on the integration of both spatial and temporal scales. In this study, we collected the data and information from the 2005–2022 Statistical Yearbook and Water Resources Bulletin of the Yangtze River Delta Urban Agglomeration (YRDUA), and calculated evaluation indicators: WREF, water resources ecological carrying capacity (WRECC), water resources ecological pressure (WREP), and water resources ecological surplus and deficit (WRESD). We primarily analyzed the temporal and spatial variation in the per capita WREF and used the method of Geodetector to explore factors driving its temporal and spatial variation in the YRDUA. The results showed that: (1) From 2005 to 2022, the per capita WREF (total water, agricultural water, and industrial water) of the YRDUA generally showed fluctuating declining trends, while the per capita WREF of domestic water and ecological water showed obvious growth. (2) The per capita WREF and the per capita WRECC were in the order of Jiangsu Province > Anhui Province > Shanghai City > Zhejiang Province. The spatial distribution of the per capita WREF was similar to those of the per capita WRECC, and most areas effectively consume water resources. (3) The explanatory power of the interaction between factors was greater than that of a single factor, indicating that the spatiotemporal variation in the per capita WREF of the YRDUA was affected by the combination of multiple factors and that there were regional differences in the major factors in the case of secondary metropolitan areas. (4) The per capita WREF of YRDUA was affected by natural resources, and the impact of the ecological condition on the per capita WREF increased gradually over time. The impact factors of secondary metropolitan areas also clearly changed over time. Our results showed that the ecological situation of per capita water resources in the YRDUA is generally good, with obvious spatial and temporal differences. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

32 pages, 1845 KiB  
Article
Enhancing Smart and Zero-Carbon Cities Through a Hybrid CNN-LSTM Algorithm for Sustainable AI-Driven Solar Power Forecasting (SAI-SPF)
by Haytham Elmousalami, Felix Kin Peng Hui and Aljawharah A. Alnaser
Buildings 2025, 15(15), 2785; https://doi.org/10.3390/buildings15152785 - 6 Aug 2025
Abstract
The transition to smart, zero-carbon cities relies on advanced, sustainable energy solutions, with artificial intelligence (AI) playing a crucial role in optimizing renewable energy management. This study evaluates state-of-the-art AI models for solar power forecasting, emphasizing accuracy, reliability, and environmental sustainability. Using operational [...] Read more.
The transition to smart, zero-carbon cities relies on advanced, sustainable energy solutions, with artificial intelligence (AI) playing a crucial role in optimizing renewable energy management. This study evaluates state-of-the-art AI models for solar power forecasting, emphasizing accuracy, reliability, and environmental sustainability. Using operational data from Benban Solar Park in Egypt and Sakaka Solar Power Plant in Saudi Arabia, two of the world’s largest solar installations, the research highlights the effectiveness of hybrid AI techniques. The hybrid Convolutional Neural Network–Long Short-Term Memory (CNN-LSTM) model outperformed other models, achieving a Mean Absolute Percentage Error (MAPE) of 2.04%, Root Mean Square Error (RMSE) of 184, Mean Absolute Error (MAE) of 252, and R2 of 0.99 for Benban, and an MAPE of 2.00%, RMSE of 190, MAE of 255, and R2 of 0.98 for Sakaka. This model excels at capturing complex spatiotemporal patterns in solar data while maintaining low computational CO2 emissions, supporting sustainable AI practices. The findings demonstrate the potential of hybrid AI models to enhance the accuracy and sustainability of solar power forecasting, thereby contributing to efficient, resilient, and zero-carbon urban environments. This research provides valuable insights for policymakers and stakeholders aiming to advance smart energy infrastructure. Full article
(This article belongs to the Special Issue Intelligent Automation in Construction Management)
24 pages, 62899 KiB  
Essay
Monitoring and Historical Spatio-Temporal Analysis of Arable Land Non-Agriculturalization in Dachang County, Eastern China Based on Time-Series Remote Sensing Imagery
by Boyuan Li, Na Lin, Xian Zhang, Chun Wang, Kai Yang, Kai Ding and Bin Wang
Earth 2025, 6(3), 91; https://doi.org/10.3390/earth6030091 (registering DOI) - 6 Aug 2025
Abstract
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of [...] Read more.
The phenomenon of arable land non-agriculturalization has become increasingly severe, posing significant threats to the security of arable land resources and ecological sustainability. This study focuses on Dachang Hui Autonomous County in Langfang City, Hebei Province, a region located at the edge of the Beijing–Tianjin–Hebei metropolitan cluster. In recent years, the area has undergone accelerated urbanization and industrial transfer, resulting in drastic land use changes and a pronounced contradiction between arable land protection and the expansion of construction land. The study period is 2016–2023, which covers the key period of the Beijing–Tianjin–Hebei synergistic development strategy and the strengthening of the national arable land protection policy, and is able to comprehensively reflect the dynamic changes of arable land non-agriculturalization under the policy and urbanization process. Multi-temporal Sentinel-2 imagery was utilized to construct a multi-dimensional feature set, and machine learning classifiers were applied to identify arable land non-agriculturalization with optimized performance. GIS-based analysis and the geographic detector model were employed to reveal the spatio-temporal dynamics and driving mechanisms. The results demonstrate that the XGBoost model, optimized using Bayesian parameter tuning, achieved the highest classification accuracy (overall accuracy = 0.94) among the four classifiers, indicating its superior suitability for identifying arable land non-agriculturalization using multi-temporal remote sensing imagery. Spatio-temporal analysis revealed that non-agriculturalization expanded rapidly between 2016 and 2020, followed by a deceleration after 2020, exhibiting a pattern of “rapid growth–slowing down–partial regression”. Further analysis using the geographic detector revealed that socioeconomic factors are the primary drivers of arable land non-agriculturalization in Dachang Hui Autonomous County, while natural factors exerted relatively weaker effects. These findings provide technical support and scientific evidence for dynamic monitoring and policy formulation regarding arable land under urbanization, offering significant theoretical and practical implications. Full article
Show Figures

Figure 1

22 pages, 2484 KiB  
Article
Urban Land Revenue and Common Prosperity: An Urban Differential Rent Perspective
by Fang He, Yuxuan Si and Yixi Hu
Land 2025, 14(8), 1606; https://doi.org/10.3390/land14081606 - 6 Aug 2025
Abstract
Common prosperity serves as a pivotal condition for achieving sustainable development by fostering social equity, bolstering economic resilience, and promoting environmental stewardship. Differential land revenue, as a crucial form of property based on spatial resource occupation, significantly contributes to the achievement of common [...] Read more.
Common prosperity serves as a pivotal condition for achieving sustainable development by fostering social equity, bolstering economic resilience, and promoting environmental stewardship. Differential land revenue, as a crucial form of property based on spatial resource occupation, significantly contributes to the achievement of common prosperity, though empirical evidence of its impact is limited. This study explores the potential influence of land utilization revenue disparity on common prosperity from the perspective of urban macro differential rent (UMDR). Utilizing panel data from 280 Chinese cities spanning 2007 to 2020, we discover that UMDR and common prosperity levels exhibit strikingly similar spatiotemporal evolution. Further empirical analysis shows that UMDR significantly raises urban common prosperity levels, with a 0.217 standard unit increase in common prosperity for every 1 standard unit rise in UMDR. This boost stems from enhanced urban prosperity and the sharing of development achievements, encompassing economic growth, improved public services, enhanced ecological civilization, and more equitable distribution of development gains between urban and rural areas and among individuals. Additionally, we observe that UMDR has a more pronounced effect on common prosperity in eastern cities and those with a predominant service industry. This study enhances the comprehension of the relationship between urban land revenue disparities, prosperity, and equitable sharing, presenting a new perspective for the administration to contemplate the utilization of land-based policy tools in pursuit of the common prosperity goal and ultimately achieve sustainable development. Full article
Show Figures

Figure 1

26 pages, 2126 KiB  
Systematic Review
Interlinking Urban Sustainability, Circular Economy and Complexity: A Systematic Literature Review
by Walter Antonio Abujder Ochoa, Angela Gabriela Torrico Arce, Alfredo Iarozinski Neto, Mayara Regina Munaro, Oriana Palma Calabokis and Vladimir A. Ballesteros-Ballesteros
Sustainability 2025, 17(15), 7118; https://doi.org/10.3390/su17157118 - 6 Aug 2025
Abstract
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of [...] Read more.
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of 71 peer-reviewed articles published between 2015 and 2025, we analyze conceptual, methodological, and practical articulations across multiple thematic axes, including circular governance, urban metabolism, regenerative design, adaptive planning, digital integration, and environmental justice. Bibliometric and content analyses were conducted using Scopus metadata, VOSviewer for thematic clustering, and the StArt software (Version 3.4) to structure article selection. The findings reveal that circular economy provides practical tools for resource efficiency and regeneration, while complexity theory offers an adaptive framework to navigate uncertainty, emergent behaviors, and feedback dynamics. The synthesis suggests that their integration enables a more holistic and resilient approach to urban transformation. However, gaps remain in social inclusivity, long-term assessment, and the operationalization of complexity-informed planning. This study contributes to advancing a transdisciplinary agenda for circular and adaptive urban futures, offering insights for scholars, planners, and policymakers aiming to reconfigure cities within planetary boundaries. Full article
Show Figures

Figure 1

20 pages, 1279 KiB  
Article
A Framework for Quantifying Hyperloop’s Socio-Economic Impact in Smart Cities Using GDP Modeling
by Aleksejs Vesjolijs, Yulia Stukalina and Olga Zervina
Economies 2025, 13(8), 228; https://doi.org/10.3390/economies13080228 - 6 Aug 2025
Abstract
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires [...] Read more.
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires tailored evaluation tools for policymakers. This study proposes a custom-designed framework to quantify its macroeconomic effects through changes in gross domestic product (GDP) at the city level. Unlike traditional economic models, the proposed approach is specifically adapted to Hyperloop’s multimodality, infrastructure, speed profile, and digital-green footprint. A Poisson pseudo-maximum likelihood (PPML) model is developed and applied at two technology readiness levels (TRL-6 and TRL-9). Case studies of Glasgow, Berlin, and Busan are used to simulate impacts based on geo-spatial features and city-specific trade and accessibility indicators. Results indicate substantial GDP increases driven by factors such as expanded 60 min commute catchment zones, improved trade flows, and connectivity node density. For instance, under TRL-9 conditions, GDP uplift reaches over 260% in certain scenarios. The framework offers a scalable, reproducible tool for policymakers and urban planners to evaluate the economic potential of Hyperloop within the context of sustainable smart city development. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

26 pages, 3194 KiB  
Article
Evolution Trends, Spatial Differentiation, and Convergence Characteristics of Urban Ecological Economic Resilience in China
by Xiaofeng Ran, Rui Ding and Bowen Zhang
Systems 2025, 13(8), 666; https://doi.org/10.3390/systems13080666 - 6 Aug 2025
Abstract
Achieving a win-win situation for both economy and ecology is crucial for promoting sustainable social development and shaping new advantages in high-quality developments. This article constructs an ecological economic resilience (EER) analysis framework by integrating both ecological and economic dimensions from a resilience [...] Read more.
Achieving a win-win situation for both economy and ecology is crucial for promoting sustainable social development and shaping new advantages in high-quality developments. This article constructs an ecological economic resilience (EER) analysis framework by integrating both ecological and economic dimensions from a resilience perspective. Based on panel data from 290 cities in China, it explores the dynamic evolution characteristics, regional differences, and convergence trends of EER. The findings indicate that the EER has weakened nationwide and in the four major economic regions, overall tending towards stability. Significant disparities exist in EER, particularly pronounced in the northeast. There is σ convergence in the nation as well as in the northeast and east regions. Additionally, both absolute and conditional β convergence is evident nationwide and in all regions, with conditional convergence occurring at a faster pace. The research findings in this paper provide solid theoretical support for promoting regional coordinated development and constructing a new development paradigm. Full article
Show Figures

Figure 1

22 pages, 518 KiB  
Article
Staying or Leaving a Shrinking City: Migration Intentions of Creative Youth in Erzurum, Eastern Türkiye
by Defne Dursun and Doğan Dursun
Sustainability 2025, 17(15), 7109; https://doi.org/10.3390/su17157109 - 6 Aug 2025
Abstract
This study explores the migration intentions of university students—representing the potential creative class—in Erzurum, a medium-sized city in eastern Turkey experiencing shrinkage. Within the theoretical framework of shrinking cities, it investigates how economic, social, physical, and personal factors influence students’ post-graduation stay or [...] Read more.
This study explores the migration intentions of university students—representing the potential creative class—in Erzurum, a medium-sized city in eastern Turkey experiencing shrinkage. Within the theoretical framework of shrinking cities, it investigates how economic, social, physical, and personal factors influence students’ post-graduation stay or leave decisions. Survey data from 742 Architecture and Fine Arts students at Atatürk University were analyzed using factor analysis, logistic regression, and correlation to identify key migration drivers. Findings reveal that, in addition to economic concerns such as limited job opportunities and low income, personal development opportunities and social engagement also play a decisive role. In particular, the perception of limited chances for skill enhancement and the belief that Erzurum is not a good place to meet people emerged as the strongest predictors of migration intentions. These results suggest that members of the creative class are influenced not only by economic incentives but also by broader urban experiences related to self-growth and social connectivity. This study highlights spatial inequalities in access to cultural, educational, and social infrastructure, raising important questions about spatial justice in shrinking urban contexts. This paper contributes to the literature on shrinking cities by highlighting creative youth in mid-sized Global South cities. It suggests smart shrinkage strategies focused on creative sector development, improved quality of life, and inclusive planning to retain young talent and support sustainable urban revitalization. Full article
Show Figures

Graphical abstract

15 pages, 1337 KiB  
Article
Application of Prefabricated Public Buildings in Rural Areas with Extreme Hot–Humid Climate: A Case Study of the Yongtai County Digital Industrial Park, Fuzhou, China
by Xin Wu, Jiaying Wang, Ruitao Zhang, Qianru Bi and Jinghan Pan
Buildings 2025, 15(15), 2767; https://doi.org/10.3390/buildings15152767 - 6 Aug 2025
Abstract
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only [...] Read more.
Accomplishing China’s national targets of carbon peaking and carbon neutrality necessitates proactive solutions, hinging critically on fundamentally transforming rural construction models. Current construction practices in rural areas are characterized by inefficiency, high resource consumption, and reliance on imported materials. These shortcomings not only jeopardize the attainment of climate objectives, but also hinder equitable development between urban and rural regions. Using the Digital Industrial Park in Yongtai County, Fuzhou City, as a case study, this study focuses on prefabricated public buildings in regions with extreme hot–humid climate, and innovatively integrates BIM (Building Information Modeling)-driven carbon modeling with the Gaussian Two-Step Floating Catchment Area (G2SFCA) method for spatial accessibility assessment to investigate the carbon emissions and economic benefits of prefabricated buildings during the embodied stage, and analyzes the spatial accessibility of prefabricated building material suppliers in Fuzhou City and identifies associated bottlenecks, seeking pathways to promote sustainable rural revitalization. Compared with traditional cast-in-situ buildings, embodied carbon emissions of prefabricated during their materialization phase significantly reduced. This dual-perspective approach ensures that the proposed solutions possess both technical rigor and logistical feasibility. Promoting this model across rural areas sharing similar climatic conditions would advance the construction industry’s progress towards the dual carbon goals. Full article
Show Figures

Figure 1

11 pages, 1226 KiB  
Proceeding Paper
Assessment of Nature-Based Solutions’ Impact on Urban Air Quality Using Remote Sensing
by Paloma C. Toscan, Alcindo Neckel, Emanuelle Goellner, Marcos L. S. Oliveira and Eduardo N. B. Pereira
Eng. Proc. 2025, 94(1), 15; https://doi.org/10.3390/engproc2025094015 - 5 Aug 2025
Abstract
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first [...] Read more.
Urban air pollution poses a significant challenge to public health and sustainable development, particularly in mid-sized cities with limited monitoring capabilities. This study investigates the impact of Nature-Based Solutions (NBS) on air quality and Land Surface Temperature (LST) in Guimarães, Portugal. The first phase involves mapping pollutants and assessing European guidelines, traditional monitoring methods, and emerging tools such as sensors and satellite data. The findings indicate gaps in spatial coverage, emphasizing the importance of integrating data from Sentinel-3, Sentinel-5P, local sensors, and drones. These insights establish a foundation for the next phase, which involves predictive modeling of NBS, LST, and pollutants using machine learning techniques to support data-driven policy-making. Full article
Show Figures

Figure 1

20 pages, 10605 KiB  
Article
Network Analysis of Outcome-Based Education Curriculum System: A Case Study of Environmental Design Programs in Medium-Sized Cities
by Yang Wang, Zixiao Zhan and Honglin Wang
Sustainability 2025, 17(15), 7091; https://doi.org/10.3390/su17157091 - 5 Aug 2025
Abstract
With deepening global higher education reforms, outcome-based education has emerged as the core paradigm for teaching model innovation. This study investigates the structural dependencies and teaching effectiveness of the Environmental Design curriculum at Hubei Engineering University in medium-sized cities, China, addressing challenges of [...] Read more.
With deepening global higher education reforms, outcome-based education has emerged as the core paradigm for teaching model innovation. This study investigates the structural dependencies and teaching effectiveness of the Environmental Design curriculum at Hubei Engineering University in medium-sized cities, China, addressing challenges of enrollment decline and market contraction critical for urban sustainability. Using network analysis, we construct curriculum support and contribution networks and course temporal networks to assess structural dependencies and teaching effectiveness, revealing structural patterns and optimizing the OBE-based Environmental Design curriculum to enhance educational quality and student competencies. Analysis reveals computer basic courses as knowledge transmission hubs, creating a course network with a distinct core–periphery structure. Technical course reforms significantly outperform theoretical course reforms in improving student performance metrics, such as higher average scores, better grade distributions, and reduced performance gaps, while innovative practice courses show peripheral isolation patterns, indicating limited connectivity with core curriculum modules, which reduces their educational impact. These findings provide empirical insights for curriculum optimization, supporting urban sustainable development through enhanced professional talent cultivation equipped to address environmental challenges like sustainable design practices and resource-efficient urban planning. Network analysis applications introduce innovative frameworks for curriculum reform strategies. Future research expansion through larger sample validation will support urban sustainable development goals and enhance professional talent cultivation outcomes. Full article
Show Figures

Figure 1

25 pages, 8686 KiB  
Article
Urban Shrinkage in the Qinling–Daba Mountains: Spatiotemporal Patterns and Influencing Factors
by Yuan Lv, Shanni Yang, Dan Zhao, Yilin He and Shuaibin Li
Sustainability 2025, 17(15), 7084; https://doi.org/10.3390/su17157084 - 5 Aug 2025
Abstract
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors [...] Read more.
With the global economic restructuring and the consequent population mobility, urban shrinkage has become a common phenomenon. The Qinling–Daba Mountains, a zone with a key ecological function in China, have long experienced population decline and functional degradation. Clarifying the dynamics and influencing factors of urban shrinkage plays a vital role in supporting the sustainable development of the region. This study, using permanent resident population growth rates and nighttime light data, classified cities in the region into four spatial patterns: expansion–growth, intensive growth, expansion–shrinkage, and intensive shrinkage. It further examined the spatial characteristics of shrinkage across four periods (2005–2010, 2010–2015, 2015–2020, and 2020–2022). A Geographically and Temporally Weighted Regression (GTWR) model was applied to examine core influencing factors and their spatiotemporal heterogeneity. The results indicated the following: (1) The dominant pattern of urban shrinkage in the Qinling–Daba Mountains shifted from expansion–growth to expansion–shrinkage, highlighting the paradox of population decline alongside continued spatial expansion. (2) Three critical indicators significantly influenced urban shrinkage: the number of students enrolled in general secondary schools (X5), the per capita disposable income of urban residents (X7), and the number of commercial and residential service facilities (X12), with their effects exhibiting significant spatiotemporal heterogeneity. Temporally, X12 was the most influential factor in 2005 and 2010, while in 2015, 2020, and 2022, X5 and X7 became the dominant factors. Spatially, X7 significantly affected both eastern and western areas; X5’s influence was most pronounced in the west; and X12 had the greatest impact in the east. This study explored the patterns and underlying drivers of urban shrinkage in underdeveloped areas, aiming to inform sustainable development practices in regions facing comparable challenges. Full article
(This article belongs to the Special Issue Sustainable Urban Planning and Regional Development)
Show Figures

Figure 1

8 pages, 5870 KiB  
Proceeding Paper
Classification of Urban Environments Using State-of-the-Art Machine Learning: A Path to Sustainability
by Tesfaye Tessema, Neda Azarmehr, Parisa Saadati, Dale Mortimer and Fabio Tosti
Eng. Proc. 2025, 94(1), 14; https://doi.org/10.3390/engproc2025094014 - 4 Aug 2025
Abstract
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires [...] Read more.
Urban green infrastructure plays a vital role in the sustainable development of cities. As urban areas expand, green spaces are increasingly affected. The pressure from new developments leads to a reduction in vegetation and raises new public health risks. Addressing this challenge requires effective planning, maintenance, and continuous monitoring. To enhance traditional approaches, remote sensing is becoming a vital tool for city-wide observations. Publicly available large-scale data, combined with machine learning models, can improve our understanding. We explore the potential of Sentinel-2 to classify and extract meaningful features from urban landscapes. Using advanced machine learning techniques, we aim to develop a robust and scalable framework for classifying urban environments. The proposed models will assist in monitoring changes in green spaces across diverse urban settings, enabling timely and informed decisions to foster sustainable urban growth. Full article
Show Figures

Figure 1

28 pages, 14684 KiB  
Article
SDT4Solar: A Spatial Digital Twin Framework for Scalable Rooftop PV Planning in Urban Environments
by Athenee Teofilo, Qian (Chayn) Sun and Marco Amati
Smart Cities 2025, 8(4), 128; https://doi.org/10.3390/smartcities8040128 - 4 Aug 2025
Abstract
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. [...] Read more.
To sustainably power future urban communities, cities require advanced solar energy planning tools that overcome the limitations of traditional approaches, such as data fragmentation and siloed decision-making. SDTs present a transformative opportunity by enabling precision urban modelling, integrated simulations, and iterative decision support. However, their application in solar energy planning remains underexplored. This study introduces SDT4Solar, a novel SDT-based framework designed to integrate city-scale rooftop solar planning through 3D building semantisation, solar modelling, and a unified geospatial database. By leveraging advanced spatial modelling and Internet of Things (IoT) technologies, SDT4Solar facilitates high-resolution 3D solar potential simulations, improving the accuracy and equity of solar infrastructure deployment. We demonstrate the framework through a proof-of-concept implementation in Ballarat East, Victoria, Australia, structured in four key stages: (a) spatial representation of the urban built environment, (b) integration of multi-source datasets into a unified geospatial database, (c) rooftop solar potential modelling using 3D simulation tools, and (d) dynamic visualization and analysis in a testbed environment. Results highlight SDT4Solar’s effectiveness in enabling data-driven, spatially explicit decision-making for rooftop PV deployment. This work advances the role of SDTs in urban energy transitions, demonstrating their potential to optimise efficiency in solar infrastructure planning. Full article
(This article belongs to the Topic Sustainable Building Development and Promotion)
Show Figures

Figure 1

Back to TopTop