Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = Sun-synchronous orbit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3796 KB  
Communication
Design of Space Target Surveillance Constellation Based on Simulation Comparison Method
by Qinying Hu, Desheng Liu and Ziwei Dong
Sensors 2025, 25(13), 3977; https://doi.org/10.3390/s25133977 - 26 Jun 2025
Cited by 1 | Viewed by 409
Abstract
Aiming at the requirement of space situational awareness on the full-domain and all-time coverage capability of low Earth orbit space targets and focusing on the design of a space-based space target awareness system, a space target awareness constellation design method based on simulation [...] Read more.
Aiming at the requirement of space situational awareness on the full-domain and all-time coverage capability of low Earth orbit space targets and focusing on the design of a space-based space target awareness system, a space target awareness constellation design method based on simulation comparison is put forward. On the basis of systematically analyzing the distribution of space targets’ orbits, the low Earth orbit space target surveillance mission mode, key indicators, and constraints of space target surveillance constellations are designed, and three space target surveillance constellation basic configurations are constructed. This paper randomly samples surveillance objects based on the stratified space target orbit distribution and selects a heterogeneous space target surveillance constellation in sun-synchronous morning–twilight orbit that meets the requirements of the surveillance mission model and capability by using simulations and comparisons. The experiments show that the constellation can provide a satisfactory observation arc segment for cataloging and orbiting more than 80% of low Earth orbit targets. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 8732 KB  
Article
Assessment of Spatial Characterization Metrics for On-Orbit Performance of Landsat 8 and 9 Thermal Infrared Sensors
by S. Eftekharzadeh Kay, B. N. Wenny, K. J. Thome, M. Yarahmadi, D. J. Lampkin, M. H. Tahersima and N. Voskanian
Remote Sens. 2024, 16(19), 3588; https://doi.org/10.3390/rs16193588 - 26 Sep 2024
Cited by 1 | Viewed by 1324
Abstract
The two near-identical pushbroom Thermal Infrared Sensors (TIRS) aboard Landsat 8 and 9 are currently imaging the Earth’s surface at 10.9 and 12 microns from similar 705 km altitude, sun-synchronous polar orbits. This work validates the consistency in the imaging data quality, which [...] Read more.
The two near-identical pushbroom Thermal Infrared Sensors (TIRS) aboard Landsat 8 and 9 are currently imaging the Earth’s surface at 10.9 and 12 microns from similar 705 km altitude, sun-synchronous polar orbits. This work validates the consistency in the imaging data quality, which is vital for harmonization of the data from the two sensors needed for global mapping. The overlapping operation of these two near-identical sensors, launched eight years apart, provides a unique opportunity to assess the sensitivity of the conventionally used metrics to any unexpectedly found nuanced differences in their spatial performance caused by variety of factors. Our study evaluates spatial quality metrics for bands 10 and 11 from 2022, the first complete year during which both TIRS instruments have been operational. The assessment relies on the straight-knife-edge technique, also known as the Edge Method. The study focuses on comparing the consistency and stability of eight separate spatial metrics derived from four separate water–desert boundary scenes. Desert coastal scenes were selected for their high thermal contrast in both the along- and across-track directions with respect to the platforms ground tracks. The analysis makes use of the 30 m upsampled TIRS images. The results show that the Landsat 8 and Landsat 9 TIRS spatial performance are both meeting the spatial performance requirements of the Landsat program, and that the two sensors are consistent and nearly identical in both across- and along-track directions. Better agreement, both with time and in magnitude, is found for the edge slope and line spread function’s full-width at half maximum. The trend of averaged modulation transfer function at Nyquist shows that Landsat 8 TIRS MTF differs more between the along- and across-track scans than that for Landsat 9 TIRS. The across-track MTF is consistently lower than that for the along-track, though the differences are within the scatter seen in the results due to the use of the natural edges. Full article
Show Figures

Figure 1

22 pages, 35244 KB  
Article
The Typical ELF/VLF Electromagnetic Wave Activities in the Upper Ionosphere Recorded by the China Seismo-Electromagnetic Satellite
by Yunpeng Hu, Zeren Zhima, Tieyan Wang, Chao Lu, Dehe Yang, Xiaoying Sun, Tian Tang and Jinbin Cao
Remote Sens. 2024, 16(15), 2835; https://doi.org/10.3390/rs16152835 - 2 Aug 2024
Cited by 2 | Viewed by 2552
Abstract
Driven by the scientific objective of geophysical field detection and natural hazard monitoring from space, China launched an electromagnetic satellite, which is known as the China Seismo-Electromagnetic Satellite (CSES-01), on 2 February 2018, into a circular sun-synchronous orbit with an altitude of about [...] Read more.
Driven by the scientific objective of geophysical field detection and natural hazard monitoring from space, China launched an electromagnetic satellite, which is known as the China Seismo-Electromagnetic Satellite (CSES-01), on 2 February 2018, into a circular sun-synchronous orbit with an altitude of about 507 km in the ionosphere. The CSES-01 has been in orbit for over 6 years, successfully exceeding its designed 5-year lifespan, and will continually operate as long as possible. A second identical successor (CSES-02) will be launched in December 2024 in the same orbit space. The ionosphere is a highly dynamic and complicated system, and it is necessary to comprehensively understand the electromagnetic environment and the physical effects caused by various disturbance sources. The motivation of this report is to introduce the typical electromagnetic waves, mainly in the ELF/VLF band (i.e., ~100 Hz to 25 kHz), recorded by the CSES-01 in order to call the international community for deep research on EM wave activities and geophysical sphere coupling mechanisms. The wave spectral properties and the wave propagation parameters of those typical EM wave activities in the upper ionosphere are demonstrated in this study based on wave vector analysis using the singular value decomposition (SVD) method. The analysis shows that those typical and common natural EM waves in the upper ionosphere mainly include the ionospheric hiss and proton whistlers in the ELF band (below 1 kHz), the quasiperiodic (QP) emissions, magnetospheric line radiations (MLR), the falling-tone lightning whistlers, and V-shaped streaks in the ELF/VLF band (below 20 kHz). The typical artificial EM waves in the ELF/VLF band, such as power line harmonic radiation (PLHR) and radio waves in the VLF band, are also well recorded in the ionosphere. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

16 pages, 1049 KB  
Article
Inter-Satellite Link Prediction with Supervised Learning: An Application in Polar Orbits
by Estel Ferrer, Joan A. Ruiz-De-Azua, Francesc Betorz and Josep Escrig
Aerospace 2024, 11(7), 551; https://doi.org/10.3390/aerospace11070551 - 4 Jul 2024
Cited by 3 | Viewed by 1588
Abstract
Distributed space systems are increasingly valued in the space industry, as they enhance mission performance through collaborative efforts and resource sharing among multiple heterogeneous satellites. Additionally, enabling autonomous and real-time satellite-to-satellite communications through Inter-Satellite Links (ISLs) can further increase the overall performance by [...] Read more.
Distributed space systems are increasingly valued in the space industry, as they enhance mission performance through collaborative efforts and resource sharing among multiple heterogeneous satellites. Additionally, enabling autonomous and real-time satellite-to-satellite communications through Inter-Satellite Links (ISLs) can further increase the overall performance by allowing cooperation without relying on ground links and extensive coordination efforts among diverse stakeholders. Given the constrained resources available onboard satellites, a crucial element of achieving cost-effective and autonomous cooperation involves minimizing energy wastage resulting from unsuccessful or unnecessary communication. To address this challenge, satellites must anticipate their ISL opportunities or encounters with minimal resource utilization. Building upon prior publications, this work presents further insights into the use of supervised learning to enable satellites to forecast their encounters without relying on orbit propagation. In particular, a more realistic definition of satellite encounters, along with a versatile solution applicable to all polar low-Earth orbit satellites is implemented. Results show that the trained model can anticipate encounters for realistic and unseen data from an available data source with a balance accuracy of around 90% and six times faster when compared with the well-known Simplified General Perturbation 4 orbital model. Full article
Show Figures

Figure 1

12 pages, 6897 KB  
Article
Comprehensive Detection of Particle Radiation Effects on the Orbital Platform of the Upper Stage of the Chinese CZ-4C Carrier Rocket
by Guohong Shen, Zheng Chang, Huanxin Zhang, Chunqin Wang, Ying Sun, Zida Quan, Xianguo Zhang and Yueqiang Sun
Atmosphere 2024, 15(6), 705; https://doi.org/10.3390/atmos15060705 - 12 Jun 2024
Cited by 2 | Viewed by 1637
Abstract
Based on the characteristics of space particle radiation in the Sun-synchronous orbit (SSO), a space particle radiation effect comprehensive measuring instrument (SPRECMI) was installed on the orbital platform of the upper stage of the Chinese CZ-4C carrier rocket, which can acquire the high-energy [...] Read more.
Based on the characteristics of space particle radiation in the Sun-synchronous orbit (SSO), a space particle radiation effect comprehensive measuring instrument (SPRECMI) was installed on the orbital platform of the upper stage of the Chinese CZ-4C carrier rocket, which can acquire the high-energy proton energy spectra, linear energy transfer (LET) spectra of particles, and radiation dose rate. The particle radiation detection data were obtained at 1000 km altitude for the first time, which can be used mainly for scientific research of the space environment, in-orbit fault analysis, and the operational control management of spacecraft, and can also serve as reference data for component validation tests. After SPRECMI’s development, accelerator calibration and simulations were conducted, and the results demonstrated that all the measured indicators, including the high-energy proton spectra (energy range: 21.8–275.0 MeV, precision: <3.3%), total radiation dose (dose range: 0–1.04 × 106 rad, sensitivity: 6.2 µrad/h), and the LET spectra (range: 0.001–37.20 MeV/(mg/cm2), >37.2 MeV/(mg/cm2)), met the relevant requirements. Furthermore, the in-orbit flight test revealed that the detection results of the load components were consistent with the physical characteristics of the particle radiation environment of the spacecraft’s orbit. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

18 pages, 1929 KB  
Article
Solar Sail-Based Mars-Synchronous Displaced Orbits for Remote Sensing Applications
by Marco Bassetto and Alessandro A. Quarta
Appl. Sci. 2024, 14(12), 5001; https://doi.org/10.3390/app14125001 - 7 Jun 2024
Cited by 1 | Viewed by 1927
Abstract
A solar sail is a propellantless propulsion system that allows a spacecraft to use solar radiation pressure as a propulsive source for planetary and deep space missions that would be difficult, or even unfeasible, to accomplish with more conventional thrusters, either chemical or [...] Read more.
A solar sail is a propellantless propulsion system that allows a spacecraft to use solar radiation pressure as a propulsive source for planetary and deep space missions that would be difficult, or even unfeasible, to accomplish with more conventional thrusters, either chemical or electric. A challenging application for these fascinating propulsion systems is a heliocentric mission that requires a displaced non-Keplerian orbit (DNKO), that is, a solar sail-induced closed trajectory in which the orbital plane does not contain the Sun’s center of mass. In fact, thanks to the pioneering work of McInnes, it is known that a solar sail is able to reach and maintain a family of heliocentric DNKOs of given characteristics. The aim of this paper is to analyze the properties of Mars-synchronous circular DNKOs, which have an orbital period matching that of the planet for remote sensing applications. In fact, those specific displaced orbits allow a scientific probe to continuously observe the high-latitude regions of Mars from a quasi-stationary position relative to the planet. In this context, this paper also analyzes the optimal (i.e., the minimum-time) heliocentric transfer trajectory from the Earth to circular DNKOs in two special mission scenarios taken as a reference. Full article
(This article belongs to the Special Issue Autonomous Formation Systems: Guidance, Dynamics and Control)
Show Figures

Figure 1

16 pages, 4142 KB  
Article
Seasonal Variations in Lunar-Assisted GEO Transfer Capability for Southward Launch
by Su-Jin Choi and Hoonhee Lee
Aerospace 2024, 11(4), 321; https://doi.org/10.3390/aerospace11040321 - 19 Apr 2024
Viewed by 2117
Abstract
The launch azimuth of the Naro Space Center is limited toward the south of the Korean peninsula, at 170 ± 10 degrees, suitable for the polar orbit, sun-synchronous orbit, and safety range issues. In this circumstance, one option to send a satellite into [...] Read more.
The launch azimuth of the Naro Space Center is limited toward the south of the Korean peninsula, at 170 ± 10 degrees, suitable for the polar orbit, sun-synchronous orbit, and safety range issues. In this circumstance, one option to send a satellite into GEO is to perform a dog-leg maneuver during ascent, thus forming a medium-inclination orbit under such a restrictive condition. However, this option requires an immense amount of energy for the dog-leg maneuver, as well as a plane change maneuver. The only remaining option is to raise the apogee to the Moon, utilizing lunar gravity to lower the inclination to near zero and then returning to the vicinity of the Earth at an altitude of 35,786 km without maneuver. In order to design lunar-assisted GEO transfer, all feasible paths are defined, but questions remain about how seasonal variations affect all these potential paths. Therefore, this study aims to design and analyze all available trajectories for the year 2031 using a high-fidelity dynamic model, root-finding algorithm, and well-arranged initial conditions, focusing on the impact of seasonal trends. The simulation results indicate that cislunar free-return trajectories generally require less ΔV compared to circumlunar free-return trajectories, and circumlunar trajectories are minimally affected by lunisolar effects due to their relatively short return time of flight. Conversely, cislunar trajectories show seasonal variations, so spring and fall seasons require up to 20 m/s less ΔV than summer and winter seasons due to the relatively long time of return duration. Full article
(This article belongs to the Special Issue Spacecraft Orbit Transfers)
Show Figures

Figure 1

15 pages, 543 KB  
Article
Dynamical Model of Rotation and Orbital Coupling for Deimos
by Kai Huang, Lijun Zhang, Yongzhang Yang, Mao Ye and Yuqiang Li
Remote Sens. 2024, 16(7), 1174; https://doi.org/10.3390/rs16071174 - 27 Mar 2024
Cited by 3 | Viewed by 1694
Abstract
This paper introduces a novel dynamical model, building upon the existing dynamical model for Deimos in the current numerical ephemerides, which only encompasses the simple libration effects of Deimos. The study comprehensively incorporates the rotational dynamics of Deimos influenced by the torque exerted [...] Read more.
This paper introduces a novel dynamical model, building upon the existing dynamical model for Deimos in the current numerical ephemerides, which only encompasses the simple libration effects of Deimos. The study comprehensively incorporates the rotational dynamics of Deimos influenced by the torque exerted by the major celestial bodies (Mars, the Sun) in the solar system within the inertial space. Consequently, a full dynamical model is formulated to account for the complete coupling between the rotation and orbit of Deimos. Simultaneously, employing precision orbit determination methods used for artificial satellites, we develop an adjustment model for fitting data to the complete model. The 12-order Adams–Bashforth–Moulton (ABM) integration algorithm is employed to synchronously integrate the 12 state variables of the full model to obtain the orbit of Deimos.The difference in the orbits obtained by integrating the full model over a period of 10 years and those obtained by the simplified model is at the order of 10 km. After precise orbit determination, this difference decreases to below 100 m, so numerical simulation results indicate that the full dynamical model and adjustment model are stable and reliable. Simultaneously, the integration of the Deimos third-order gravity field in the full model over a 10-year period induces only meter-level positional changes. This suggests that when constructing the complete model, the utilization of a second-order gravity field alone is sufficient. Compared to the simple model, the polar axis of Deimos in the inertial space exhibits a more complex oscillation in the full model. Additionally, the full model calculates that the minimum moment of inertia principal axis of Phobos has an amplitude of approximately 0.5 degrees in the longitude direction and does not exceed 2 degrees in the latitude direction. This work further advances the current dynamical model for Deimos and establishes the foundational model for the generation of a new set of precise numerical ephemerides for Deimos. Full article
(This article belongs to the Section Satellite Missions for Earth and Planetary Exploration)
Show Figures

Figure 1

31 pages, 8707 KB  
Article
Multiple SSO Space Debris Flyby Trajectory Design Based on Cislunar Orbit
by Siyang Zhang and Shuquan Wang
Universe 2024, 10(3), 145; https://doi.org/10.3390/universe10030145 - 16 Mar 2024
Cited by 1 | Viewed by 2152
Abstract
This paper investigates the trajectory design problem in the scenario of a multiple Sun-synchronous Orbit (SSO) space debris flyby mission from a DRO space station. At first, the characteristics of non-planar transfer from DRO to SSO in the Earth–Moon system are analyzed. The [...] Read more.
This paper investigates the trajectory design problem in the scenario of a multiple Sun-synchronous Orbit (SSO) space debris flyby mission from a DRO space station. At first, the characteristics of non-planar transfer from DRO to SSO in the Earth–Moon system are analyzed. The methods of large-scale ergodicity and pruning are utilized to investigate single-impulse and two-impulse DRO–Earth transfers. Using a powered lunar flyby, the two-impulse DRO–Earth transfer is able to fly by SSO debris while satisfying the requirements of the mission. After the local optimization, the optimal result of two-impulse DRO–Earth transfer and flyby is obtained. A multi-objective evolutionary algorithm is used to design the Pareto-optimal trajectories of multiple flybys. The semi-analytical optimization method is developed to provide the estimations of the transfer parameters in order to reduce the computations caused by the evolutionary algorithm. Simulations show that transferring from the 3:2 resonant DRO to a near-coplanar flyby of a SSO target debris using a powered lunar gravity assist needs a 0.47 km/s velocity increment. The mission’s total velocity increment is 1.39 km/s, and the total transfer time is 2.23 years. Full article
Show Figures

Figure 1

11 pages, 3281 KB  
Article
A Silicon-Photo-Multiplier-Based Camera for the Terzina Telescope on Board the Neutrinos and Seismic Electromagnetic Signals Space Mission
by Leonid Burmistrov
Instruments 2024, 8(1), 13; https://doi.org/10.3390/instruments8010013 - 20 Feb 2024
Cited by 3 | Viewed by 2163
Abstract
NUSES is a pathfinder satellite project hosting two detectors: Ziré and Terzina. Ziré focuses on the study of protons and electrons below 250 MeV and MeV gamma rays. Terzina is dedicated to the detection of Cherenkov light produced by ultra-high-energy cosmic rays above [...] Read more.
NUSES is a pathfinder satellite project hosting two detectors: Ziré and Terzina. Ziré focuses on the study of protons and electrons below 250 MeV and MeV gamma rays. Terzina is dedicated to the detection of Cherenkov light produced by ultra-high-energy cosmic rays above 100 PeV and ultra-high-energy Earth-skimming neutrinos in the atmosphere, ensuring a large exposure. This work mainly concerns the description of the Cherenkov camera, composed of SiPMs, for the Terzina telescope. To increase the data-taking period, the NUSES orbit will be Sun-synchronous (with a height of about 550 km), thus allowing Terzina to always point toward the dark side of the Earth’s limb. The Sun-synchronous orbit requires small distances to the poles, and as a consequence, we expect an elevated dose to be received by the SiPMs. Background rates due to the dose accumulated by the SiPM would become a dominant contribution during the last two years of the NUSES mission. In this paper, we illustrate the measured effect of irradiance on SiPM photosensors with a variable-intensity beam of 50 MeV protons up to a 30 Gy total integrated dose. We also show the results of an initial study conducted without considering the contribution of solar wind protons and with an initial geometry with Geant4. The considered geometry included an entrance lens as one of the options in the initial design of the telescope. We characterize the SiPM output signal shape with different μ-cell sizes. We describe the developed parametric SiPM simulation, which is a part of the full Terzina simulation chain. Full article
Show Figures

Figure 1

5 pages, 636 KB  
Proceeding Paper
Burned Area Mapping Based on KazEOSat 1 Satellite Datasets
by K. V. Suresh Babu, Swati Singh, Kabdulova Gulzhiyan, Gulnara Kabzhanova and GR Baktybekov
Environ. Sci. Proc. 2024, 29(1), 82; https://doi.org/10.3390/ECRS2023-16841 - 25 Jan 2024
Cited by 1 | Viewed by 1070
Abstract
Forest fires are common occurrences in Kazakhstan, particularly from June until September, and damage the country’s forest resources extensively. The mapping of burned areas is crucial for fire management, to implement the proper mitigation strategies and restoration actions following the fire season. The [...] Read more.
Forest fires are common occurrences in Kazakhstan, particularly from June until September, and damage the country’s forest resources extensively. The mapping of burned areas is crucial for fire management, to implement the proper mitigation strategies and restoration actions following the fire season. The mapping of burned areas enables a thorough evaluation of the damage caused by fires to forests. The unique characteristics of forest plants and soil are dramatically altered by the fire’s destruction, leading to a dramatic shift in reflectance. The destruction caused by fires can be mitigated, and vegetation can be replanted, with the use of maps depicting the affected areas. The accurate and timely mapping of burned areas is critical for fire prevention methods such as planning, mitigation, and vegetation regeneration. The country Kazakhstan launched two satellites, KazEOSat 1 and KazEOSat 2, as part of the Earth Remote Sensing Satellite System (ERSSS) for the management of natural resources and monitoring. The KazEOSat 1 is a high-resolution observation satellite, launched in a Sun-synchronous orbit at an altitude of about 630 km, consisting of four spectral bands (4 m) and a very high panchromatic (1 m) band. In this study, KazEOsat 1 satellite datasets were used to map the burned areas in various parts of Kazakhstan. Three different spectral indices, viz., the Global Environmental Monitoring Index (GEMI), Ashburn Vegetation Index (AVI), and Burn Area Index (BAI), are used and the findings are compared to the best burnt area discrimination index using the KazEOsat 1 satellite datasets. The results show that the BAI shows a higher accuracy than the other indices at mapping the burnt area using the KazEOsat 1 satellite datasets. Full article
(This article belongs to the Proceedings of ECRS 2023)
Show Figures

Figure 1

32 pages, 24209 KB  
Article
CSES-01 Electron Density Background Characterisation and Preliminary Investigation of Possible Ne Increase before Global Seismicity
by Wenqi Chen, Dedalo Marchetti, Kaiguang Zhu, Dario Sabbagh, Rui Yan, Zeren Zhima, Xuhui Shen, Yuqi Cheng, Mengxuan Fan, Siyu Wang, Ting Wang, Donghua Zhang, Hanshuo Zhang and Yiqun Zhang
Atmosphere 2023, 14(10), 1527; https://doi.org/10.3390/atmos14101527 - 2 Oct 2023
Cited by 4 | Viewed by 2829
Abstract
In this paper, we provide a characterisation of the ionosphere from April 2018 to September 2022 for 48 investigated months. We used the data of the China Seismo Electromagnetic Satellite (CSES-01), which is a sun-synchronous satellite with five days of revisit time and [...] Read more.
In this paper, we provide a characterisation of the ionosphere from April 2018 to September 2022 for 48 investigated months. We used the data of the China Seismo Electromagnetic Satellite (CSES-01), which is a sun-synchronous satellite with five days of revisit time and fixed local time of about 2 a.m. and 2 p.m. The unique orbit of CSES-01 permitted us to produce a monthly background of the ionosphere for night- and daytime with median values acquired during geomagnetic quiet time in equatorial and mid-latitude regions (i.e., between 50° S and 50° N of geographical latitude). We compared the obtained CSES-01 monthly median values with the solar activity in terms of sunspot numbers, and we found a high correlation of 0.89 for nighttime and 0.85 for daytime between the mean sunspot number and the maximum of the characterised CSES-01 Ne map values. In addition, we extracted all the anomalous positive increases in CSES-01 electron density and compared them with the Worldwide M5.5+ shallow earthquakes. We tested two different definitions of anomaly based on median and interquartile range or (mild) outliers. We tried two relationships between anomalies inside Dobrovolsky’s area before the earthquake and the magnitude of the same seismic events: one which considers distance in space and time and a second which only uses the anticipation time of the anomaly before the earthquake. Using both anomaly definitions, we searched the best coefficients for these two laws for mid-latitude and equational regions. We found that the best coefficients are independent of the anomaly definition, but better accuracy (greater than 80%) is obtained for the outlier definition. Finally, using receiving operating characteristic (ROC) curves, we show that CSES-01 increases seem statistically correlated to the incoming seismic activity. Full article
Show Figures

Graphical abstract

16 pages, 8854 KB  
Article
Analysis and Suppression Design of Stray Light Pollution in a Spectral Imager Loaded on a Polar-Orbiting Satellite
by Shuaishuai Chen and Xinhua Niu
Sensors 2023, 23(17), 7625; https://doi.org/10.3390/s23177625 - 2 Sep 2023
Cited by 5 | Viewed by 2454
Abstract
As the non-imaging light of optical instruments, stray light has an important impact on normal imaging and data quantification applications. The FY-3D Medium Resolution Spectral Imager (MERSI) operates in a sun-synchronous orbit, with a scanning field of view of 110° and a surface [...] Read more.
As the non-imaging light of optical instruments, stray light has an important impact on normal imaging and data quantification applications. The FY-3D Medium Resolution Spectral Imager (MERSI) operates in a sun-synchronous orbit, with a scanning field of view of 110° and a surface imaging width of more than 2300 km, which can complete two coverage observations of global targets per day with high detection efficiency. According to the characteristics of the operating orbit and large-angle scanning imaging of MERSI, a stray light radiation model of the polar-orbiting spectrometer is constructed, and the design requirements of stray light suppression are proposed. Using the point source transmittance (PST) as the merit function of the stray light analysis method, the instrument was simulated with all stray light suppression optical paths, and the effectiveness of stray light elimination measures was verified using the stray light test. In this paper, the full-link method of “orbital stray light radiation model-system, internal and external simulation design-system analysis and actual test comparison verification” is proposed, and there is a maximum decrease in the system’s PST by about 10 times after applying the stray light suppression’s optimization design, which can provide a general method for stray light suppression designs for polar-orbit spectral imagers. Full article
Show Figures

Figure 1

25 pages, 12536 KB  
Article
Modeling the Topside Ionosphere Effective Scale Height through In Situ Electron Density Observations by Low-Earth-Orbit Satellites
by Alessio Pignalberi, Michael Pezzopane, Tommaso Alberti, Igino Coco, Giuseppe Consolini, Giulia D’Angelo, Paola De Michelis, Fabio Giannattasio, Bruno Nava, Mirko Piersanti and Roberta Tozzi
Universe 2023, 9(6), 280; https://doi.org/10.3390/universe9060280 - 9 Jun 2023
Cited by 5 | Viewed by 1798
Abstract
In this work, we aim to characterize the effective scale height at the ionosphere F2-layer peak (H0) by using in situ electron density (Ne) observations by Langmuir Probes (LPs) onboard the China Seismo-Electromagnetic Satellite (CSES—01). CSES—01 is [...] Read more.
In this work, we aim to characterize the effective scale height at the ionosphere F2-layer peak (H0) by using in situ electron density (Ne) observations by Langmuir Probes (LPs) onboard the China Seismo-Electromagnetic Satellite (CSES—01). CSES—01 is a sun-synchronous satellite orbiting at an altitude of ~500 km, with descending and ascending nodes at ~14:00 local time (LT) and ~02:00 LT, respectively. Calibrated CSES—01 LPs Ne observations for the years 2019–2021 provide information in the topside ionosphere, whereas the International Reference Ionosphere model (IRI) provides Ne values at the F2-layer peak altitude for the same time and geographical coordinates as CSES—01. CSES—01 and IRI Ne datasets are used as anchor points to infer H0 by assuming a linear scale height in the topside representation given by the NeQuick model. COSMIC/FORMOSAT—3 (COSMIC—1) radio occultation (RO) data are used to constrain the vertical gradient of the effective scale height in the topside ionosphere in the linear approximation. With the CSES—01 dataset, we studied the global behavior of H0 for daytime (~14:00 LT) and nighttime (~02:00 LT) conditions, different seasons, and low solar activity. Results from CSES—01 observations are compared with those obtained through Swarm B satellite Ne-calibrated measurements and validated against those from COSMIC—1 RO for similar diurnal, seasonal, and solar activity conditions. H0 values modeled by using CSES—01 and Swarm B-calibrated observations during daytime both agree with corresponding values obtained directly from COSMIC—1 RO profiles. Differently, H0 modeling for nighttime conditions deserves further investigation because values obtained from both CSES—01 and Swarm B-calibrated observations show remarkable and spatially localized differences compared to those obtained through COSMIC—1. Most of the H0 mismodeling for nighttime conditions can probably to be attributed to a sub-optimal spatial representation of the F2-layer peak density made by the underlying IRI model. For comparison, H0 values obtained with non-calibrated CSES—01 and Swarm B Ne observations are also calculated and discussed. The methodology developed in this study for the topside effective scale height modeling turns out to be applicable not only to CSES—01 satellite data but to any in situ Ne observation by low-Earth-orbit satellites orbiting in the topside ionosphere. Full article
(This article belongs to the Section Space Science)
Show Figures

Figure 1

24 pages, 6671 KB  
Article
Dynamics and Control of Satellite Formations Invariant under the Zonal Harmonic Perturbation
by Stefano Carletta
Appl. Sci. 2023, 13(8), 4969; https://doi.org/10.3390/app13084969 - 15 Apr 2023
Cited by 3 | Viewed by 2161
Abstract
A satellite formation operating in low-altitude orbits is subject to perturbations associated to the higher-order harmonics of the gravitational field, which cause a degradation of the formation configurations designed based on the unperturbed model of the Hill–Clohessy–Wiltshire equations. To compensate for these effects, [...] Read more.
A satellite formation operating in low-altitude orbits is subject to perturbations associated to the higher-order harmonics of the gravitational field, which cause a degradation of the formation configurations designed based on the unperturbed model of the Hill–Clohessy–Wiltshire equations. To compensate for these effects, periodic reconfiguration maneuvers are necessary, requiring the prior allocation of a propellant mass budget and, eventually, the use of resources from the ground segment, having a non-negligible impact on the complexity and cost of the mission. Using the Hamiltonian formalism and canonical transformations, a model is developed that allows designing configurations for formation flying invariant with respect to the zonal harmonic perturbation. Jn invariant configurations can be characterized, selecting the drift rate (or boundedness condition) and the amplitude of the oscillations, based on four parameters which can be easily converted in position and velocity components for the satellites of the formation. From this model, a guidance strategy is developed to inject a satellite approaching another spacecraft into a bounded relative trajectory about it and the optimal time for the maneuver, minimizing the total ΔV, is identified. The effectiveness of the model and of the guidance strategy is verified on some scenarios of interest for formations operating in a sun-synchronous and a medium-inclination low Earth orbit and a medium-inclination lunar orbit. Full article
(This article belongs to the Special Issue Autonomous Formation Systems: Guidance, Dynamics and Control)
Show Figures

Figure 1

Back to TopTop