Comprehensive Detection of Particle Radiation Effects on the Orbital Platform of the Upper Stage of the Chinese CZ-4C Carrier Rocket
Abstract
:1. Introduction
2. Application Objective
3. Technical Index
4. Instrument Design
4.1. Principles
4.1.1. Detection of LET Spectra
4.1.2. Detection of Radiation Dose
4.2. Systematic Scheme
4.3. Design of Sensor Unit
4.4. Design of Electronic Unit
5. Ground Calibration Results
6. Preliminary In-Orbit Detection Results
6.1. Proton Detection
6.2. Radiation Dose
6.3. LET Spectra
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yoon, Y.; Amare, Y.; Angelaszek, D.; Anthony, N.; Cheryian, K.; Choi, G.; Copley, M.; Coutu, S.; Derome, L.; Eraud, L.; et al. The cosmic ray energetics and mass for the international space station (ISS-CREAM) instrument. Astropart. Phys. 2024, 158, 102947. [Google Scholar] [CrossRef]
- Serpolla, A.; Duranti, M.; Formato, V.; Oliva, A. Real-Time Monitoring of Solar Energetic Particles Using the Alpha Magnetic Spectrometer on the International Space Station. Instruments 2023, 7, 38. [Google Scholar] [CrossRef]
- Gao, M.; Zhao, G.H.; Gu, Y.D. Space science and application mission in China’s space station. Bull. Chin. Acad. Sci. 2015, 30, 721–732. [Google Scholar]
- Wang, C.; Chang, Z.; Zhang, H.; Zhang, S.; Sun, Y.; Hou, D. Differential analysis of proton direction distribution in SAA based on Tianhe Core Module observations. Chin. J. Geophys. 2023, 66, 1856–1863. [Google Scholar]
- Neubüser, C.; Battiston, R.; Burger, W.J.; Follega, F.M.; Vitale, V. Search for Electron Bursts in the Inner Van Allen Belts with the CSES and NOAA POES Satellites. Remote Sens. 2023, 15, 411. [Google Scholar] [CrossRef]
- Evans, D.; Garrett, H.; Jun, I.; Evans, R.; Chow, J. Long-term observations of the trapped high-energy proton population (L 4) by the NOAA Polar Orbiting Environmental Satellites (POES). Adv. Space Res. Off. J. Comm. Space Res. COSPAR 2008, 41, 1261–1268. [Google Scholar] [CrossRef]
- Sun, Y.; Zong, Q.; Liu, Y.; Ye, Y.; Zou, H.; Yue, C.; Zhou, X.; Hao, Y. Dawn-dusk asymmetry of energetic electron at LEO during a storm: Observation by FY3E. J. Geophys. Res. Space Phys. 2023, 128, e2023JA031802. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Zhang, H.; Li, X.; Zong, W.; Li, J.; Huang, C.; Zhang, C.; Xiang, Z.; Chang, Z.; et al. Inter-Calibration Between the Electron Flux Measurements of FengYun-3B and Van Allen Probe-A Based on Electron Phase Space Density Conjunctions. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030463. [Google Scholar] [CrossRef]
- Oh, D.; Kim, J.; Loto’aniu, P.T.; Lim, H.C.; Lee, D.Y.; Kim, D. Energetic particle flux measurements from the Korean space weather monitor particle detector: A comparative study with the MPS-HI onboard GOES-16. Earth Planets Space 2024, 76, 46. [Google Scholar] [CrossRef]
- Kress, B.T.; Rodriguez, J.V.; Boudouridis, A.; Onsager, T.G.; Dichter, B.K.; Galica, G.E.; Tsui, S. Observations from NOAA’s Newest Solar Proton Sensor. Space Weather 2021, 19, e2021SW002750. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, B.; Zhang, X.; Shen, G.; Jing, T.; Zhang, S.; Zhang, X.; Huang, C.; Li, J.; Zong, W.; et al. Radiation dose detection on FY-4B satellite. Aerospace 2023, 10, 325. [Google Scholar] [CrossRef]
- Wang, X.; Cao, X.; Ma, X.; Zhang, X.; Chen, A.; Dong, J.; Ni, B.; Dou, X. Cross-satellite calibration of high-energy electron fluxes measured by Feng Yun-4A based on Arase observations. Earth Planet. Phys. 2023, 7, 565–575. [Google Scholar] [CrossRef]
- Jo, G.B.; Sohn, J.; Choi, C.R.; Yi, Y.; Min, K.W.; Kang, S.B.; Woon, N.G.; Shin, G.H. Development of High Energy Particle Detector for the Study of Space Radiation Storm. J. Astron. Space Sci. 2014, 31, 277–283. [Google Scholar] [CrossRef]
- Cheng, P.C.; Min, R. An overview of near-earth space radiation and its protection. Radiat. Prot. Bull. 2017, 37, 14–21. [Google Scholar]
- Shang, H.; Meng, X.; Li, T.; Jiao, J.; Zhang, Q. Rocket final stage launch: A new way for small payloads to enter space. Int. Space 2018, 4, 24–25. [Google Scholar]
- Science and Technology Innovation KS Test Load: Running in orbit with the final stage of the rocket. Space Explor. 2017, 1, 15.
- Benton, E.; Benton, E. Space radiation dosimetry in low-Earth orbit and beyond. Nucl. Inst. Methods Phys. Res. B 2001, 184, 255–294. [Google Scholar] [CrossRef] [PubMed]
- Doke, T.; Hayashi, T.; Nagaoka, S.; Ogura, K.; Takeuchi, R. Estimation of dose equivalent in STS-47 by a combination of TLDs and CR-39. Radiat. Meas. 1995, 24, 75–82. [Google Scholar] [CrossRef]
- Van Allen, J.A. Radiation Belts Around the Earth. Sci. Am. 1959, 200, 39–47. [Google Scholar] [CrossRef]
- Ginzburg, E.A.; Zinkina, M.D.; Pisanko, Y.V. Induced Electron Precipitations from the Inner Radiation Belt Registered in Oceania. Geomagn. Aeron. 2023, 63, 735–746. [Google Scholar] [CrossRef]
- Guo, X.; Jiang, W.; Li, H. Statistical Investigation on Galactic Cosmic Rays and Solar Wind Variation Based on ACE Observations. Chin. Astron. Astrophys. 2021, 45, 147–161. [Google Scholar] [CrossRef]
- Wozniak, W.; Iskra, K.; Modzelewska, R.; Siluszyk, M. Analysis of Galactic Cosmic Ray Anisotropy During the Time Period from 1996 to 2020. Sol. Phys. 2023, 298, 28. [Google Scholar] [CrossRef]
- Gussenhoven, M.S.; Mullen, E.G.; Violet, M.D. Solar particle events as seen on CRRES. Adv. Space Res. 1994, 14, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Khumlumlert, T.; Mongwanna, T.; Chuenkam, P.; Khotkhanti, C.; Karnjanapa, W.; Aiemsa-Ad, N.; Peldon, D. Solar energetic particles propagation during solar events at the beginning of the 25 solar cycle. J. Phys. Conf. Ser. 2023, 2653, 012021. [Google Scholar] [CrossRef]
- Xue, Y.X.; Yang, S.S.; Ba, D.S.; An, H.; Liu, Q.; Shi, H.; Cao, Z. Analyze of spacecraft system failures and anomalies attributed to the natural space radiation environment. Vac. Cryog. 2012, 18, 63–70. [Google Scholar]
- Pu, J.; Ye, Z.H. Effects of space particle radiation on integrated chips in satellites. Chin. J. Space Sci. 1993, 13, 292–298. [Google Scholar] [CrossRef]
- Townsend, L.W.; Fry, R.J.M. Radiation protection guidance for activities in low-earth orbit. Adv. Space Res. 2002, 30, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Kalegaev, V.; Kaportseva, K.; Nikolaeva, N.; Shugay, Y.; Vlasova, N. Solar Energetic Particles and Trapped Radiation in the Near-Earth Space: Space Experiments and Modelling. Phys. At. Nucl. 2021, 84, 1105–1113. [Google Scholar] [CrossRef]
- Simpson, J.A. Elemental and Isotopic Composition of the Galactic Cosmic Rays. Annu. Rev. Nucl. Part. Sci. 1983, 33, 323–382. [Google Scholar] [CrossRef]
- Feng, Y.J.; Hua, G.X.; Liu, S.F. Summary of research on radiation resistance of aerospace electronics. J. Astronaut. 2007, 5, 1071–1080. [Google Scholar]
- Matthiä, D.; Burmeister, S.; Przybyla, B.; Berger, T. Active radiation measurements over one solar cycle with two DOSTEL instruments in the Columbus laboratory of the International Space Station. Life Sci. Space Res. 2023, 39, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Alexey, S.; Jainisha, S.; Sydney, C. Space Radiation Effects on Surface and Bulk Resistivity of Polymeric Materials. J. Astronaut. Sci. 2023, 70, 41. [Google Scholar] [CrossRef]
- Yuan, B.; Zhang, S.; Zhang, B.; Chang, Z.; Shen, G.; Sun, Y.; Jing, T.; Sun, Y.; Liu, J.; Wang, J. Analysis of space particle radiation LET spectra detecting result in MEO/LEO and its error. Energy Sci Technol. 2018, 52, 334–339. [Google Scholar] [CrossRef]
- Zhou, D.; Zhang, B.; Zhang, S.; Sun, Y.; Liang, J.; Zhu, G.; Jing, T.; Yuan, B.; Zhang, H.; Zhang, M.; et al. Radiation Measured for Chinese Satellite SJ-10 Space Mission. J. Geophys. Res. Space Phys. 2018, 123, 1690–1700. [Google Scholar] [CrossRef]
- An, H.; Wen, X.; Li, D.T.; Wang, Y.; Li, C.H.; Yang, S.S.; Qin, X.G.; Wang, J.; Zhang, C.G.; Cao, Z. Detection technology and design analysis of LET spectrum of space radiation particles. Nucl. Tech. 2020, 43, 41–49. [Google Scholar]
- Xue, Y.; Ma, Y.; Yang, S.; Tian, K.; Cao, Z. An overview of spacecraft inner-cabin radiation dose measurement in manned spaceflight missions. Spacecr. Environ. Eng. 2010, 27, 210–214. [Google Scholar]
- Tamás, P.; Sándor, D.; Edit, L. Space dosimetry with the application of a 3D silicon detector telescope: Response function and inverse algorithm. Radiat. Prot. Dosim. 2006, 120, 401–404. [Google Scholar]
- Sajid, M.; Chechenin, N.G.; Torres, F.S.; Gulzari, U.A.; Butt, M.U.; Ming, Z.; Khan, E.U. Single Event Upset rate determination for 65nm SRAM bit-cell in LEO radiation environments. Microelectron. Reliab. 2017, 78, 11–16. [Google Scholar] [CrossRef]
- Noeldeke, C.; Boettcher, M.; Mohr, U.; Gaisser, S.; Alvarez, R.M.; Eickhoff, J.; Leslie, M.; Von, T.M.; Klinkner, S.; Varatharajoo, R. Flight Single Event Upset Investigations on the “Flying Laptop” Satellite Mission. Adv. Space Res. 2021, 67, 2000–2009. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhang, X.G.; Wang, C.Q.; Shen, G.H.; Jing, T.; Zhang, B.Q.; Sun, Y.Q.; Zhu, G.W.; Liang, J.B.; Zhang, X.X.; et al. Calculation of geometric factors of space high-energy proton detector of FY-3 satellite. Sci. Sin. (Terrae) 2014, 44, 2479–2486. [Google Scholar]
- Shen, G.; Zhang, X.; Wang, J.; Huang, C.; Li, J.; Zhang, S.; Zhang, X.; Yang, Y.; Zhang, P.; Sun, Y. Development and Calibration of a Three-Directional High-Energy Particle Detector for FY-3E Satellite. Aerospace 2023, 10, 173. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, S.; Shen, G.; Tuo, C.; Zhang, X.; Zhang, H.; Quan, L.; Tian, C.; Hou, D.; Zhou, P.; et al. Monitor of the single event upsets and linear energy transfer of space radiation on the Beidou navigation satellites. Open Astron. 2023, 32, 20220206. [Google Scholar] [CrossRef]
Item | Measuring Range | Accuracy/Sensitivity | Calibration Method | Evaluation Criterion |
---|---|---|---|---|
High-energy proton | 20–250 MeV | <10% | Particle accelerator, standard radioactive source, combination of equivalent signal generator calibration and simulation analysis | Meet the requirements of accuracy or sensitivity |
Radiation LET spectrum | 0.1–37 MeV/(mg/cm2), >37 MeV/(mg/cm2) | 5% (ΔN/N) | ||
Radiation dose | 0–105 Rad (Si) | 20 µrad/h |
Parameter | Method | Expected Results | Achieved Results |
---|---|---|---|
High-energy proton distribution | Huairou electron accelerator (100–500 keV) at CAS; Heavy Ion Accelerator at Peking University (beam conditions: 2.2–20 MeV); standard radioactive source 241Am; other energies are analyzed using the combination of equivalent signal generator calibration and simulation analysis | Energy range: 20–250 MeV Linearity: <10% Energy-level precision: <10% | Energy range: 21.857–275 MeV Linearity: <1.88% Energy-level precision: <3.2% |
Total radiation dose | Dose range: 0–105 Rad Dose sensitivity: 20 µrad/h | Dose range: 0–1.04 × 106 rad Dose sensitivity: 6.2 µrad/h | |
LET spectra range | 0.1–37 MeV/(mg/cm2), >37 MeV/(mg/cm2) | 0.001–37.20 MeV/(mg/cm2), >37.2 MeV/(mg/cm2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, G.; Chang, Z.; Zhang, H.; Wang, C.; Sun, Y.; Quan, Z.; Zhang, X.; Sun, Y. Comprehensive Detection of Particle Radiation Effects on the Orbital Platform of the Upper Stage of the Chinese CZ-4C Carrier Rocket. Atmosphere 2024, 15, 705. https://doi.org/10.3390/atmos15060705
Shen G, Chang Z, Zhang H, Wang C, Sun Y, Quan Z, Zhang X, Sun Y. Comprehensive Detection of Particle Radiation Effects on the Orbital Platform of the Upper Stage of the Chinese CZ-4C Carrier Rocket. Atmosphere. 2024; 15(6):705. https://doi.org/10.3390/atmos15060705
Chicago/Turabian StyleShen, Guohong, Zheng Chang, Huanxin Zhang, Chunqin Wang, Ying Sun, Zida Quan, Xianguo Zhang, and Yueqiang Sun. 2024. "Comprehensive Detection of Particle Radiation Effects on the Orbital Platform of the Upper Stage of the Chinese CZ-4C Carrier Rocket" Atmosphere 15, no. 6: 705. https://doi.org/10.3390/atmos15060705
APA StyleShen, G., Chang, Z., Zhang, H., Wang, C., Sun, Y., Quan, Z., Zhang, X., & Sun, Y. (2024). Comprehensive Detection of Particle Radiation Effects on the Orbital Platform of the Upper Stage of the Chinese CZ-4C Carrier Rocket. Atmosphere, 15(6), 705. https://doi.org/10.3390/atmos15060705