The Typical ELF/VLF Electromagnetic Wave Activities in the Upper Ionosphere Recorded by the China Seismo-Electromagnetic Satellite
Abstract
:1. Introduction
2. Satellite and Data Preprocessing
3. The Natural EM Waves Recorded by CSES-01
3.1. The Waves below 1 kHz
3.1.1. Ionospheric Hiss Waves
3.1.2. Proton Whistler Waves
3.2. The Waves below 2.5 kHz
3.2.1. Quasi-Periodic Emissions
3.2.2. Magnetospheric Line Radiation
3.3. The Waves below 20 kHz
3.3.1. VLF Lightning Whistlers
3.3.2. V-Shaped Streaks
4. The Typical Artificial EM Waves Recorded by CSES-01
4.1. Power Line Harmonic Radiation/
4.2. Transmitter-Emitted VLF Radio Waves
5. Discussion
6. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoffman, R. The Magnetosphere, Ionosphere, and Atmosphere as a System: Dynamics Explorer 5 Years Later. Rev. Geophys. 1988, 26, 209–214. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) Model—An Unified Concept for Earthquake Precursors Validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Cao, J.; Liu, Z.; Yang, J.; Yian, C.; Wang, Z.; Zhang, X.; Wang, S.; Chen, S.; Bian, W.; Dong, W.; et al. First Results of Low Frequency Electromagnetic Wave Detector of TC-2/Double Star Program. In Proceedings of the Annales Geophysicae; Copernicus GmbH: Göttingen, Germany, 2005; Volume 23, pp. 2803–2811. [Google Scholar]
- Zhima, Z.; Cao, J.; Liu, W.; Fu, H.; Yang, J.; Zhang, X.; Shen, X. DEMETER Observations of High-Latitude Chorus Waves Penetrating the Plasmasphere during a Geomagnetic Storm. Geophys. Res. Lett. 2013, 40, 5827–5832. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Gereová, K.; Macúšová, E.; de Conchy, Y.; Cornilleau-Wehrlin, N. Initial Results of a Survey of Equatorial Noise Emissions Observed by the Cluster Spacecraft. Planet. Space Sci. 2005, 53, 291–298. [Google Scholar] [CrossRef]
- Chen, L.; Santolík, O.; Hajoš, M.; Zheng, L.; Zhima, Z.; Heelis, R.; Hanzelka, M.; Horne, R.B.; Parrot, M. Source of the Low-Altitude Hiss in the Ionosphere. Geophys. Res. Lett. 2017, 44, 2060–2069. [Google Scholar] [CrossRef]
- Santolík, O.; Chum, J.; Parrot, M.; Gurnett, D.; Pickett, J.; Cornilleau-Wehrlin, N. Propagation of Whistler Mode Chorus to Low Altitudes: Spacecraft Observations of Structured ELF Hiss. J. Geophys. Res. Space Phys. 2006, 111, A10208. [Google Scholar] [CrossRef]
- Zhima, Z.; Chen, L.; Xiong, Y.; Cao, J.; Fu, H. On the Origin of Ionospheric Hiss: A Conjugate Observation. J. Geophys. Res. Space Phys. 2017, 122, 11784–11793. [Google Scholar] [CrossRef]
- Wang, Y.; Zhima, Z.; Wang, X.; Wu, Y.; Ouyang, X.-Y.; Hu, Y.; Lu, H.; Shen, X.; Dong, L. Statistical Characteristics of the Local Proton Cyclotron Band Emissions Observed by the CSES. J. Geophys. Res. Space Phys. 2022, 127, e2022JA030860. [Google Scholar] [CrossRef]
- Santolík, O.; Parrot, M.; Inan, U.; Burešová, D.; Gurnett, D.; Chum, J. Propagation of Unducted Whistlers from Their Source Lightning: A Case Study. J. Geophys. Res. Space Phys. 2009, 114, 3212. [Google Scholar]
- Shklyar, D.R.; Storey, L.R.O.; Chum, J.; Jiříček, F.; Němec, F.; Parrot, M.; Santolik, O.; Titova, E.E. Spectral Features of Lightning-Induced Ion Cyclotron Waves at Low Latitudes: DEMETER Observations and Simulation: Lightning-induced ion cyclotron waves. J. Geophys. Res. 2012, 117, A12206. [Google Scholar] [CrossRef]
- Parrot, M.; Pinçon, J.-L.; Shklyar, D. Short-Fractional Hop Whistler Rate Observed by the Low-Altitude Satellite DEMETER at the End of the Solar Cycle 23. J. Geophys. Res. Space Phys. 2019, 124, 3522–3531. [Google Scholar] [CrossRef]
- Cohen, M.B.; Lehtinen, N.G.; Inan, U.S. Models of Ionospheric VLF Absorption of Powerful Ground Based Transmitters. Geophys. Res. Lett. 2012, 39, L24101. [Google Scholar] [CrossRef]
- Němec, F.; Santolík, O.; Parrot, M.; Bortnik, J. Power Line Harmonic Radiation Observed by Satellite: Properties and Propagation through the Ionosphere. J. Geophys. Res. Space Phys. 2008, 113, A08317. [Google Scholar] [CrossRef]
- Zhima, Z.; Hu, Y.; Piersanti, M.; Shen, X.; De Santis, A.; Yan, R.; Yang, Y.; Zhao, S.; Zhang, Z.; Wang, Q.; et al. The Seismic Electromagnetic Emissions During the 2010 Mw 7.8 Northern Sumatra Earthquake Revealed by DEMETER Satellite. Front. Earth Sci. 2020, 8, 572393. [Google Scholar] [CrossRef]
- Recchiuti, D.; D’Angelo, G.; Papini, E.; Diego, P.; Cicone, A.; Parmentier, A.; Ubertini, P.; Battiston, R.; Piersanti, M. Detection of Electromagnetic Anomalies over Seismic Regions during Two Strong (MW > 5) Earthquakes. Front. Earth Sci. 2023, 11, 1152343. [Google Scholar] [CrossRef]
- Zhima, Z.; Yan, R.; Lin, J.; Wang, Q.; Yang, Y.; Lv, F.; Huang, J.; Cui, J.; Liu, Q.; Zhao, S.; et al. The Possible Seismo-Ionospheric Perturbations Recorded by the China-Seismo-Electromagnetic Satellite. Remote Sens. 2022, 14, 905. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, X.; Yuan, S.; Wang, L.; Cao, J.; Huang, J.; Zhu, X.; Piergiorgio, P.; Dai, J. The State-of-the-Art of the China Seismo-Electromagnetic Satellite Mission. Sci. China Technol. Sci. 2018, 61, 634–642. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, Y.; Zhang, Y.; Gou, X.; Cheng, B.; Wang, J.; Li, L. Magnetic Field Data Processing Methods of the China Seismo-Electromagnetic Satellite. Earth Planet. Phys. 2018, 2, 455–461. [Google Scholar] [CrossRef]
- Pollinger, A.; Lammegger, R.; Magnes, W.; Hagen, C.; Ellmeier, M.; Jernej, I.; Leichtfried, M.; Kürbisch, C.; Maierhofer, R.; Wallner, R.; et al. Coupled Dark State Magnetometer for the China Seismo-Electromagnetic Satellite. Meas. Sci. Technol. 2018, 29, 095103. [Google Scholar] [CrossRef]
- Cao, J.; Zeng, L.; Zhan, F.; Wang, Z.; Wang, Y.; Chen, Y.; Meng, Q.; Ji, Z.; Wang, P.; Liu, Z.; et al. The Electromagnetic Wave Experiment for CSES Mission: Search Coil Magnetometer. Sci. China Technol. Sci. 2018, 61, 653–658. [Google Scholar] [CrossRef]
- Huang, J.; Lei, J.; Li, S.; Zeren, Z.; Li, C.; Zhu, X.; Yu, W. The Electric Field Detector (EFD) Onboard the ZH-1 Satellite and First Observational Results. Earth Planet. Phys. 2018, 2, 469–478. [Google Scholar] [CrossRef]
- Zhima, Z.; Zhou, B.; Zhao, S.; Wang, Q.; Huang, J.; Zeng, L.; Lei, J.; Chen, Y.; Li, C.; Yang, D.; et al. Cross-Calibration on the Electromagnetic Field Detection Payloads of the China Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 2022, 65, 1415–1426. [Google Scholar] [CrossRef]
- Yang, D.; Zhima, Z.; Wang, Q.; Huang, J.; Wang, X.; Zhang, Z.; Zhao, S.; Guo, F.; Cheng, W.; Lu, H.; et al. Stability Validation on the VLF Waveform Data of the China-Seismo-Electromagnetic Satellite. Sci. China Technol. Sci. 2022, 65, 3069–3078. [Google Scholar] [CrossRef]
- Santolík, O.; Parrot, M.; Lefeuvre, F. Singular Value Decomposition Methods for Wave Propagation Analysis: SVD Methods for wave propagation analysis. Radio Sci. 2003, 38, 10-1–10-13. [Google Scholar] [CrossRef]
- Wei, X.; Cao, J.; Zhou, G.; Santolík, O.; Rème, H.; Dandouras, I.; Cornilleau-Wehrlin, N.; Lucek, E.; Carr, C.; Fazakerley, A. Cluster Observations of Waves in the Whistler Frequency Range Associated with Magnetic Reconnection in the Earth’s Magnetotail. J. Geophys. Res. Space Phys. 2007, 112, A10225. [Google Scholar] [CrossRef]
- Zhima, Z.; Huang, J.; Shen, X.; Xia, Z.; Chen, L.; Piersanti, M.; Yang, Y.; Wang, Q.; Zeng, L.; Lei, J.; et al. Simultaneous Observations of ELF/VLF Rising-Tone Quasiperiodic Waves and Energetic Electron Precipitations in the High-Latitude Upper Ionosphere. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027574. [Google Scholar] [CrossRef]
- Lv, F.; Hu, Y.; Zhima, Z.; Sun, X.; Lu, C.; Yang, D. The Upward Propagating Ionospheric Hiss Waves during the Seismic Time Observed by the China Seismo-Electromagnetic Satellite. Front. Astron. Space Sci. 2023, 10, 1127738. [Google Scholar] [CrossRef]
- YunPeng, H.; ZeRen, Z.; JianPing, H.; ShuFan, Z.; Feng, G.; Qiao, W.; XuHui, S. Algorithms and Implementation of Wave Vector Analysis Tool for the Electromagnetic Waves Recorded by the CSES Satellite. Chin. J. Geophys. 2020, 63, 1751–1765. [Google Scholar]
- Thorne, R.M.; Smith, E.J.; Burton, R.K.; Holzer, R.E. Plasmaspheric Hiss. J. Geophys. Res. 1973, 78, 1581–1596. [Google Scholar] [CrossRef]
- Xia, Z.; Chen, L.; Zhima, Z.; Santolík, O.; Horne, R.B.; Parrot, M. Statistical Characteristics of Ionospheric Hiss Waves. Geophys. Res. Lett. 2019, 46, 7147–7156. [Google Scholar] [CrossRef]
- Smith, R.; Brice, N.; Katsufrakis, J.; Gurnett, D.; Shawhan, S.; Belrose, J.; Barrington, R. An Ion Gyrofrequency Phenomenon Observed in Satellites. Nature 1964, 204, 274–275. [Google Scholar] [CrossRef]
- Jiříček, F.; Tixier, M. Localization of Sources of Two-Hop Whistlers Observed Aboard the Interkosmos 3 Satellite over Europe. J. Atmos. Terr. Phys. 1973, 35, 1705–1708, IN7–IN8. [Google Scholar] [CrossRef]
- Watanabe, S.; Ondoh, T. Propagation of Trans-Equatorial Deuteron Whistlers in the Low Latitude Topside Ionosphere. J. Atmos. Terr. Phys. 1980, 42, 427–435. [Google Scholar] [CrossRef]
- Gurnett, D.A.; Shawhan, S.; Brice, N.; Smith, R. Ion Cyclotron Whistlers. J. Geophys. Res. 1965, 70, 1665–1688. [Google Scholar] [CrossRef]
- Hayosh, M.; Němec, F.; Santolík, O.; Parrot, M. Propagation Properties of Quasiperiodic VLF Emissions Observed by the DEMETER Spacecraft. Geophys. Res. Lett. 2016, 43, 1007–1014. [Google Scholar] [CrossRef]
- Němec, F.; Hospodarsky, G.; Pickett, J.; Santolík, O.; Kurth, W.; Kletzing, C. Conjugate Observations of Quasiperiodic Emissions by the Cluster, Van Allen Probes, and THEMIS Spacecraft. J. Geophys. Res. Space Phys. 2016, 121, 7647–7663. [Google Scholar] [CrossRef]
- Sato, N.; Hayashi, K.; Kokubun, S.; Oguti, T.; Fukunishi, H. Relationships between Quasi-Periodic VLF Emission and Geomagnetic Pulsation. J. Atmos. Terr. Phys. 1974, 36, 1515–1526. [Google Scholar] [CrossRef]
- Bortnik, J.; Chen, L.; Li, W.; Thorne, R.; Nishimura, Y.; Angelopoulos, V.; Kletzing, C. Relationship between Chorus and Plasmaspheric Hiss Waves. In Low-Freq. Waves in Space Plasmas; American Geophysical Union (AGU): Washington, DC, USA, 2016; pp. 79–97. ISBN 978-1-119-05500-6. [Google Scholar] [CrossRef]
- Němec, F.; Pickett, J.; Santolík, O. Multispacecraft Cluster Observations of Quasiperiodic Emissions Close to the Geomagnetic Equator. J. Geophys. Res. Space Phys. 2014, 119, 9101–9112. [Google Scholar] [CrossRef]
- Titova, E.; Kozelov, B.; Demekhov, A.; Manninen, J.; Santolik, O.; Kletzing, C.; Reeves, G. Identification of the Source of Quasiperiodic VLF Emissions Using Ground-Based and Van Allen Probes Satellite Observations. Geophys. Res. Lett. 2015, 42, 6137–6145. [Google Scholar] [CrossRef]
- Kimura, I. Interrelation between VLF and ULF Emissions. Space Sci. Rev. 1974, 16, 389–411. [Google Scholar] [CrossRef]
- Parrot, M.; Manninen, J.; Santolík, O.; Němec, F.; Turunen, T.; Raita, T.; Macúšová, E. Simultaneous Observation on Board a Satellite and on the Ground of Large-Scale Magnetospheric Line Radiation. Geophys. Res. Lett. 2007, 34, 128408078. [Google Scholar] [CrossRef]
- Hu, Y.; Zhima, Z.; Fu, H.; Cao, J.; Piersanti, M.; Wang, T.; Yang, D.; Sun, X.; Lv, F.; Lu, C.; et al. A Large-Scale Magnetospheric Line Radiation Event in the Upper Ionosphere Recorded by the China-Seismo-Electromagnetic Satellite. JGR Space Phys. 2023, 128, e2022JA030743. [Google Scholar] [CrossRef]
- Němec, F.; Parrot, M.; Santolík, O. Detailed Properties of Magnetospheric Line Radiation Events Observed by the DEMETER Spacecraft. J. Geophys. Res. 2012, 117, A05210. [Google Scholar] [CrossRef]
- Bullough, K. Power Line Harmonic Radiation: Sources and Environmental Effects. In Handbook of Atmospheric Electrodynamics (1995); CRC Press: Boca Raton, FL, USA, 2017; pp. 291–332. [Google Scholar]
- Němec, F.; Santolík, O.; Parrot, M.; Pickett, J. Magnetospheric Line Radiation Event Observed Simultaneously on Board Cluster 1, Cluster 2 and DEMETER Spacecraft. Geophys. Res. Lett. 2012, 39, L18103. [Google Scholar] [CrossRef]
- Rodger, C.J.; Clilverd, M.A.; Yearby, K.H.; Smith, A.J. Temporal Properties of Magnetospheric Line Radiation. J. Geophys. Res. Space Phys. 2000, 105, 329–336. [Google Scholar] [CrossRef]
- Storey, L. An Investigation of Whistling Atmospherics. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1953, 246, 113–141. [Google Scholar]
- Helliwell, R.A. Whistlers and Related Ionospheric Phenomena; Courier Corporation: North Chelmsford, MA, USA, 2014. [Google Scholar]
- Thorne, R.; Horne, R.; Meredith, N. Comment on “On the Origin of Whistler Mode Radiation in the Plasmasphere” by Green et al. J. Geophys. Res. All Ser. 2006, 111, A09210. [Google Scholar] [CrossRef]
- Smith, R.; Helliwell, R.; Yabroff, I. A Theory of Trapping of Whistlers in Field-Aligned Columns of Enhanced Ionization. J. Geophys. Res. 1960, 65, 815–823. [Google Scholar] [CrossRef]
- Smith, R. Propagation Characteristics of Whistlers Trapped in Field-Aligned Columns of Enhanced Ionization. J. Geophys. Res. 1961, 66, 3699–3707. [Google Scholar] [CrossRef]
- Kimura, I. Effects of Ions on Whistler-Mode Ray Tracing. Radio Sci. 1966, 1, 269–283. [Google Scholar] [CrossRef]
- Smith, R.; Angerami, J. Magnetospheric Properties Deduced from OGO 1 Observations of Ducted and Nonducted Whistlers. J. Geophys. Res. 1968, 73, 1–20. [Google Scholar] [CrossRef]
- Parrot, M.; Inan, U.S.; Lehtinen, N.G. V-Shaped VLF Streaks Recorded on DEMETER above Powerful Thunderstorms. J. Geophys. Res. Space Phys. 2008, 113, 10310. [Google Scholar] [CrossRef]
- James, H. VLF Saucers. J. Geophys. Res. 1976, 81, 501–514. [Google Scholar] [CrossRef]
- Mosier, S.R. Poynting Flux Studies of Hiss with the Injun 5 Satellite. J. Geophys. Res. 1971, 76, 1713–1728. [Google Scholar] [CrossRef]
- Lönnqvist, H.; André, M.; Matson, L.; Bahnsen, A.; Blomberg, L.; Erlandson, R. Generation of VLF Saucer Emissions Observed by the Viking Satellite. J. Geophys. Res. Space Phys. 1993, 98, 13565–13574. [Google Scholar] [CrossRef]
- Ergun, R.; Carlson, C.; McFadden, J.; Strangeway, R.; Goldman, M.; Newman, D. Electron Phase-Space Holes and the VLF Saucer Source Region. Geophys. Res. Lett. 2001, 28, 3805–3808. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, C.; Zeng, L.; Ma, Q. Systematic Investigation of Power Line Harmonic Radiation in Near-Earth Space above China Based on Observed Satellite Data. J. Geophys. Res. Space Phys. 2017, 122, 3448–3458. [Google Scholar] [CrossRef]
- Parrot, M.; Nĕmec, F.; Santolík, O. Statistical Analysis of VLF Radio Emissions Triggered by Power Line Harmonic Radiation and Observed by the Low-Altitude Satellite DEMETER. J. Geophys. Res. Space Phys. 2014, 119, 5744–5754. [Google Scholar] [CrossRef]
- Fraser-Smith, A.C.; Bannister, P.R. Reception of ELF Signals at Antipodal Distances. Radio Sci. 1998, 33, 83–88. [Google Scholar] [CrossRef]
- Zhao, S.; Zhou, C.; Shen, X.; Zhima, Z. Investigation of VLF Transmitter Signals in the Ionosphere by ZH-1 Observations and Full-Wave Simulation. J. Geophys. Res. Space Phys. 2019, 124, 4697–4709. [Google Scholar] [CrossRef]
- Bell, T.; Graf, K.; Inan, U.; Piddyachiy, D.; Parrot, M. DEMETER Observations of Ionospheric Heating by Powerful VLF Transmitters. Geophys. Res. Lett. 2011, 38, L11103. [Google Scholar] [CrossRef]
- Sauvaud, J.-A.; Maggiolo, R.; Jacquey, C.; Parrot, M.; Berthelier, J.-J.; Gamble, R.; Rodger, C.J. Radiation Belt Electron Precipitation Due to VLF Transmitters: Satellite Observations. Geophys. Res. Lett. 2008, 35, L09101. [Google Scholar] [CrossRef]
- Grimalsky, V.; Rapoport, Y.; Tecpoyotl-Torres, M.; Ivantyshyn, O.; Nesterenko, A. Nonlinear Frequency Down-Conversion of Acoustic Wave Beams in the Atmosphere and Ionosphere under Different Types of Modulation (Regular Item). J. Atmos. Sol. Terr. Phys. 2022, 227, 105774. [Google Scholar] [CrossRef]
Frequency Band | SCM | EFD | HPM | |
---|---|---|---|---|
ULF | Frequency range Sampling rate | 10 Hz–200 Hz | DC-16 Hz | DC-15 Hz |
1024 Hz | 125 Hz | 1 Hz or 60 Hz | ||
ELF | Frequency range Sampling rate | 200 Hz–2.2 kHz | 6 Hz–2.2 kHz | / |
10.24 kHz | 5 kHz | / | ||
VLF | Frequency range Sampling rate | 1.8 kHz–20 kHz | 1.8 kHz–20 kHz | / |
50 kHz | 51.2 kHz | / | ||
HF | Frequency range Sampling rate | / | 18 kHz–3.5 MHz | / |
/ | 10 MHz | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zhima, Z.; Wang, T.; Lu, C.; Yang, D.; Sun, X.; Tang, T.; Cao, J. The Typical ELF/VLF Electromagnetic Wave Activities in the Upper Ionosphere Recorded by the China Seismo-Electromagnetic Satellite. Remote Sens. 2024, 16, 2835. https://doi.org/10.3390/rs16152835
Hu Y, Zhima Z, Wang T, Lu C, Yang D, Sun X, Tang T, Cao J. The Typical ELF/VLF Electromagnetic Wave Activities in the Upper Ionosphere Recorded by the China Seismo-Electromagnetic Satellite. Remote Sensing. 2024; 16(15):2835. https://doi.org/10.3390/rs16152835
Chicago/Turabian StyleHu, Yunpeng, Zeren Zhima, Tieyan Wang, Chao Lu, Dehe Yang, Xiaoying Sun, Tian Tang, and Jinbin Cao. 2024. "The Typical ELF/VLF Electromagnetic Wave Activities in the Upper Ionosphere Recorded by the China Seismo-Electromagnetic Satellite" Remote Sensing 16, no. 15: 2835. https://doi.org/10.3390/rs16152835
APA StyleHu, Y., Zhima, Z., Wang, T., Lu, C., Yang, D., Sun, X., Tang, T., & Cao, J. (2024). The Typical ELF/VLF Electromagnetic Wave Activities in the Upper Ionosphere Recorded by the China Seismo-Electromagnetic Satellite. Remote Sensing, 16(15), 2835. https://doi.org/10.3390/rs16152835