Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,030)

Search Parameters:
Keywords = Stat3

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1395 KiB  
Article
Unlocking the Anti-Breast Cancer Potential of Aralia chinensis L.
by Juan Xue, Lei Li, Yongjia Shu, Chengshi Xie, Tian Lu and Huifang Chai
Curr. Issues Mol. Biol. 2025, 47(8), 662; https://doi.org/10.3390/cimb47080662 (registering DOI) - 16 Aug 2025
Abstract
Aralia chinensis L. has shown potential in breast cancer treatment, yet its pharmacodynamically active components and mechanisms remain undefined. To systematically identify the bioactive constituents absorbed into the bloodstream and elucidate their multi-target mechanisms against breast cancer, we employed ultra-high-performance liquid chromatography in [...] Read more.
Aralia chinensis L. has shown potential in breast cancer treatment, yet its pharmacodynamically active components and mechanisms remain undefined. To systematically identify the bioactive constituents absorbed into the bloodstream and elucidate their multi-target mechanisms against breast cancer, we employed ultra-high-performance liquid chromatography in conjunction with Q Exactive Orbitrap mass spectrometry (UHPLC-Q Exactive Orbitrap-MS) alongside serum pharmacochemistry to analyze the chemical constituents of total saponins derived from A. chinensis (TSAC) and to identify the blood-absorbed prototypes in a rat model. Network pharmacology predicted targets and pathways of serum prototypes, validated by molecular docking and in vitro experiments. We identified 38 triterpenoid saponins, 3 steroidal saponins, and 8 triterpenoids in TSAC, with 22 prototype compounds detected in serum. An integrative analysis encompassing 486 compound targets and 1747 genes associated with breast cancer elucidated critical pathways, notably the PI3K-Akt signaling pathway and resistance mechanisms to EGFR tyrosine kinase inhibitors. Molecular docking confirmed strong binding of araloside A and elatoside L to SRC, PIK3R1, PIK3CA, STAT3, and EGFR. In MCF-7 cells, TSAC suppressed proliferation and migration while downregulating Src, PI3K, and EGFR expression at the gene and protein levels. This study successfully identified TSAC’s serum-absorbed bioactive components and demonstrated their anti-breast cancer effects via multi-target mechanisms involving the Src/PI3K/EGFR axis, providing a crucial pharmacological foundation for developing A. chinensis-derived breast cancer therapies. Full article
(This article belongs to the Special Issue Natural Compounds: An Adjuvant Strategy in Cancer Management)
Show Figures

Figure 1

34 pages, 3045 KiB  
Review
Living on the Edge: ROS Homeostasis in Cancer Cells and Its Potential as a Therapeutic Target
by Noah Brandl, Rebecca Seitz, Noah Sendtner, Martina Müller and Karsten Gülow
Antioxidants 2025, 14(8), 1002; https://doi.org/10.3390/antiox14081002 (registering DOI) - 16 Aug 2025
Abstract
Reactive oxygen species (ROS) act as double-edged swords in cancer biology—facilitating tumor growth, survival, and metastasis at moderate levels while inducing oxidative damage and cell death when exceeding cellular buffering capacity. To survive under chronic oxidative stress, cancer cells rely on robust antioxidant [...] Read more.
Reactive oxygen species (ROS) act as double-edged swords in cancer biology—facilitating tumor growth, survival, and metastasis at moderate levels while inducing oxidative damage and cell death when exceeding cellular buffering capacity. To survive under chronic oxidative stress, cancer cells rely on robust antioxidant systems such as the glutathione (GSH) and thioredoxin (Trx), and superoxide dismutases (SODs). These systems maintain redox homeostasis and sustain ROS-sensitive signaling pathways including MAPK/ERK, PI3K/Akt/mTOR, NF-κB, STAT3, and HIF-1α. Targeting the antioxidant defense mechanisms of cancer cells has emerged as a promising therapeutic strategy. Inhibiting the glutathione system induces ferroptosis, a non-apoptotic form of cell death driven by lipid peroxidation, with compounds like withaferin A and altretamine showing strong preclinical activity. Disruption of the Trx system by agents such as PX-12 and dimethyl fumarate (DMF) impairs redox-sensitive survival signaling. Trx reductase inhibition by auranofin or mitomycin C further destabilizes redox balance, promoting mitochondrial dysfunction and apoptosis. SOD1 inhibitors, including ATN-224 and disulfiram, selectively enhance oxidative stress in tumor cells and are currently being tested in clinical trials. Mounting preclinical and clinical evidence supports redox modulation as a cancer-selective vulnerability. Pharmacologically tipping the redox balance beyond the threshold of cellular tolerance offers a rational and potentially powerful approach to eliminate malignant cells while sparing healthy tissue, highlighting novel strategies for targeted cancer therapy at the interface of redox biology and oncology. Full article
Show Figures

Figure 1

19 pages, 3962 KiB  
Article
Potential of Alkaloids from Zanthoxylum nitidum var. tomentosum in Treating Rat Rheumatoid Arthritis Model and Validation of Molecular Mechanisms
by Yuanle Shen, Linghui Zou, Yinggang Zeng, Ting Xia, Zhenjie Liu, Kaili Hu, Liuping Wang and Jianfang Feng
Curr. Issues Mol. Biol. 2025, 47(8), 661; https://doi.org/10.3390/cimb47080661 (registering DOI) - 15 Aug 2025
Abstract
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by synovial hyperplasia and joint destruction. Previous studies have demonstrated that the alkaloids of Rushanhu (ARSHs), the dried root and stem of Zanthoxylum nitidum var. tomentosum, exhibit favorable therapeutic effects on RA, and [...] Read more.
Background: Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by synovial hyperplasia and joint destruction. Previous studies have demonstrated that the alkaloids of Rushanhu (ARSHs), the dried root and stem of Zanthoxylum nitidum var. tomentosum, exhibit favorable therapeutic effects on RA, and this study aims to investigate the underlying molecular mechanisms involved. Methods: A complete Freund’s adjuvant (CFA)-induced arthritis model in male SD rats (n = 64) was used to evaluate ARSHs. Groups included control, model, methotrexate (MTX), and ARSH-treated. Therapeutic effects were assessed via arthritis index, paw swelling, and serum cytokines (IL-1β, IL-6, IL-17A). Network pharmacology identified bioactive alkaloids and core targets, validated by molecular docking. In vitro mechanisms (proliferation, apoptosis, signaling pathways) were examined in MH7A synovial cells. Results: ARSHs significantly attenuated joint inflammation and damage in CFA rats (* p < 0.01 vs. model), reducing pro-inflammatory cytokines. Fifteen alkaloids (e.g., dihydrochelerythrine, magnoflorine) and 24 targets (e.g., SRC, STAT3, MAPK3) were prioritized. Molecular docking confirmed strong binding (binding energy < −7.0 kcal/mol). In vitro, ARSHs suppressed MH7A proliferation and induced apoptosis via Bcl-2/Bax dysregulation and the inhibition of SRC/STAT3/MAPK3 phosphorylation. Conclusions: ARSHs mitigate RA pathogenesis by targeting the SRC/STAT3/MAPK3 signaling axis in synovial cells. This study provides mechanistic validation of ARSHs as multi-target phytotherapeutic agents against inflammatory arthritis. Full article
Show Figures

Figure 1

28 pages, 1195 KiB  
Review
Targeting Intracellular Pathways in Atopic Dermatitis with Small Molecule Therapeutics
by Georgiana Nitulescu, Octavian Tudorel Olaru, Corina Andrei, George Mihai Nitulescu and Anca Zanfirescu
Curr. Issues Mol. Biol. 2025, 47(8), 659; https://doi.org/10.3390/cimb47080659 - 15 Aug 2025
Abstract
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder characterized by immune dysregulation and epidermal barrier dysfunction. Advances in understanding the interplay of genetic predisposition, cytokine signaling, and environmental triggers have led to the emergence of targeted therapies. Although biologic agents such [...] Read more.
Atopic dermatitis (AD) is a chronic, relapsing inflammatory skin disorder characterized by immune dysregulation and epidermal barrier dysfunction. Advances in understanding the interplay of genetic predisposition, cytokine signaling, and environmental triggers have led to the emergence of targeted therapies. Although biologic agents such as dupilumab, tralokinumab, and lebrikizumab have revolutionized AD management, their high costs, injectable administration, and limited global accessibility highlight the need for alternative options. Small molecule therapies are gaining momentum as they target intracellular pathways central to AD pathogenesis and offer oral or topical administration routes. This review provides a comprehensive analysis of key agents including Janus kinase (JAK) inhibitors (upadacitinib, abrocitinib, baricitinib, ruxolitinib, delgocitinib), phosphodiesterase 4 (PDE4) inhibitors (crisaborole, difamilast, roflumilast, apremilast), as well as STAT6 degraders (KT621, NX3911), aryl hydrocarbon receptor modulators, histamine H4 receptor antagonists (adriforant, izuforant), and sphingosine-1-phosphate receptor modulators (etrasimod, BMS-986166). We summarize their mechanisms of action, pharmacological profiles, and pivotal clinical trial data, emphasizing their potential to address unmet therapeutic needs. Finally, we discuss safety concerns, long-term tolerability, and future directions for integrating small molecule therapies into precision treatment strategies for moderate-to-severe AD. Full article
(This article belongs to the Special Issue Novel Drugs and Natural Products Discovery)
Show Figures

Figure 1

24 pages, 1942 KiB  
Review
The Pivotal Role of NF-κB in Glioblastoma: Mechanisms of Activation and Therapeutic Implications
by Vanajothi Ramar, Shanchun Guo, Guangdi Wang and Mingli Liu
Int. J. Mol. Sci. 2025, 26(16), 7883; https://doi.org/10.3390/ijms26167883 - 15 Aug 2025
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by high intratumoral heterogeneity, therapy resistance, and poor prognosis. Nuclear factor-κB (NF-κB) signaling plays a pivotal role in GBM pathogenesis by promoting proliferation, invasion, inflammation, immune evasion, and [...] Read more.
Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor in adults, characterized by high intratumoral heterogeneity, therapy resistance, and poor prognosis. Nuclear factor-κB (NF-κB) signaling plays a pivotal role in GBM pathogenesis by promoting proliferation, invasion, inflammation, immune evasion, and treatment resistance. This review provides a comprehensive overview of canonical and non-canonical NF-κB signaling pathways and their molecular mechanisms in GBM, with a focus on their regulation in glioma stem-like cells (GSCs), interactions with key oncogenic factors (including STAT3, FOSL1, and TRPM7), and roles in maintaining tumor stemness, metabolic adaptation, and angiogenesis. We further discuss the reciprocal regulatory dynamics between NF-κB and non-coding RNAs (ncRNAs), particularly microRNAs, highlighting novel ncRNA-mediated epigenetic switches that shape GBM cell plasticity and subtype specification. Additionally, we examine the influence of NF-κB in modulating the tumor microenvironment (TME), where it orchestrates pro-tumorigenic cytokine production, immune cell reprogramming, and stromal remodeling. Finally, we review current NF-κB-targeting therapeutic strategies in GBM, including clinical trial data on small-molecule inhibitors and combinatorial approaches. Understanding the multifaceted roles of NF-κB in GBM offers new insights into targeted therapies aimed at disrupting tumor-promoting circuits within both cancer cells and the TME. Full article
(This article belongs to the Special Issue Future Perspectives and Challenges in Molecular Research of Glioma)
Show Figures

Figure 1

13 pages, 1509 KiB  
Review
PIEZO Channels in Mechano-Inflammation: Gatekeepers of Neuroimmune Crosstalk
by Carmelo Pirri
Diseases 2025, 13(8), 263; https://doi.org/10.3390/diseases13080263 - 15 Aug 2025
Abstract
Mechanical forces shape immune responses in both health and disease. PIEZO1 and PIEZO2, two mechanosensitive ion channels, have emerged as critical transducers of these forces, influencing inflammation, pain, fibrosis, and neuroimmune regulation. This review aims to synthesize the current evidence on the role [...] Read more.
Mechanical forces shape immune responses in both health and disease. PIEZO1 and PIEZO2, two mechanosensitive ion channels, have emerged as critical transducers of these forces, influencing inflammation, pain, fibrosis, and neuroimmune regulation. This review aims to synthesize the current evidence on the role of PIEZO channels in mechano-inflammation, with a specific focus on their regulatory function in neuroimmune crosstalk. A comprehensive narrative synthesis was performed using the literature from PubMed, Scopus, and Web of Science up to June 2025. Experimental, translational, and mechanistic studies involving PIEZO channels in inflammatory, fibrotic, and neuroimmune processes were included. PIEZO1 is broadly expressed in immune cells, fibroblasts, and endothelial cells, where it regulates calcium-dependent activation of pro-inflammatory pathways, such as NF-kB and STAT1. PIEZO2, enriched in sensory neurons, contributes to mechanosensory amplification of inflammatory pain. Both channels are mechanistically involved in neuroinflammation, glial activation, blood–brain barrier dysfunction, connective tissue fibrosis, and visceral hypersensitivity. PIEZO channels act as integrators of biomechanical and immunological signaling. Their roles as context-dependent gatekeepers of neuroimmune crosstalk make them attractive targets for novel therapies. Full article
Show Figures

Figure 1

16 pages, 5081 KiB  
Article
Using Geometric Approaches to the Common Transcriptomics in Acute Lymphoblastic Leukemia and Rhabdomyosarcoma: Expanding and Integrating Pathway Simulations
by Christos Tselios, Ioannis Vezakis, Apostolos Zaravinos and George I. Lambrou
BioMedInformatics 2025, 5(3), 45; https://doi.org/10.3390/biomedinformatics5030045 - 15 Aug 2025
Abstract
Background: The amount of data produced from biological experiments has increased geometrically, posing a challenge for the development of new methodologies that could enable their interpretation. We propose a novel approach for the analysis of transcriptomic data derived from acute lymphoblastic leukemia [...] Read more.
Background: The amount of data produced from biological experiments has increased geometrically, posing a challenge for the development of new methodologies that could enable their interpretation. We propose a novel approach for the analysis of transcriptomic data derived from acute lymphoblastic leukemia (ALL) and rhabdomyosarcoma (RMS) cell lines, using bioinformatics, systems biology and geometrical approaches. Methods: The expression profile of each cell line was investigated using microarrays, and identified genes were used to create a systems pathway model, which was then simulated using differential equations. The transcriptomic profile used involved genes with similar expression levels. The simulated results were further analyzed using geometrical approaches to identify common expressional dynamics. Results: We simulated and analyzed the system network using time series, regression analysis and helical functions, detecting predictable structures after iterating the modelled biological network, focusing on TIE1, STAT1, MAPK14 and ADAM17. Our results show that such common attributes in gene expression patterns can lead to more effective treatment options and help in the discovery of universal tumor biomarkers. Discussion: Our approach was able to identify complex structures in gene expression patterns, indicating that such approaches could prove useful towards the understanding of the complex tumor dynamics. Full article
(This article belongs to the Section Methods in Biomedical Informatics)
Show Figures

Figure 1

16 pages, 1412 KiB  
Review
Polyphenols and Chronic Myeloid Leukemia: Emerging Therapeutic Opportunities
by Claudia Moriello, Chiara De Rosa, Stefania D’Angelo and Perrone Pasquale
Hemato 2025, 6(3), 28; https://doi.org/10.3390/hemato6030028 - 15 Aug 2025
Abstract
Background/Objectives: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the BCR–ABL fusion gene, whose constitutive tyrosine kinase activity drives leukemogenesis. Although tyrosine kinase inhibitors (TKIs) have revolutionized treatment, drug resistance and leukemic stem cell persistence remain major challenges. Natural compounds such [...] Read more.
Background/Objectives: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm characterized by the BCR–ABL fusion gene, whose constitutive tyrosine kinase activity drives leukemogenesis. Although tyrosine kinase inhibitors (TKIs) have revolutionized treatment, drug resistance and leukemic stem cell persistence remain major challenges. Natural compounds such as polyphenols have shown potential in modulating key oncogenic pathways in CML. Results: Polyphenols such as resveratrol, quercetin, curcumin, and epigallocatechin gallate (EGCG) demonstrated significant antiproliferative and pro-apoptotic effects in CML cell lines, including imatinib-resistant models. These effects were mediated through the modulation of signaling pathways, including PI3K/Akt, STAT5, and MAPK; inhibition of BCR–ABL expression; induction of oxidative stress; and the enhancement of apoptosis via mitochondrial and caspase-dependent mechanisms. Some polyphenols also showed synergistic activity with TKIs, potentiating their efficacy and overcoming resistance. Conclusions: Preclinical evidence supports the role of polyphenols as potential adjuvants in CML therapy, particularly in drug-resistant contexts. Their pleiotropic molecular actions and low toxicity profile make them promising candidates for integrative oncology. Nonetheless, clinical translation requires further investigation through well-designed trials assessing efficacy, safety, and pharmacokinetics. Full article
Show Figures

Figure 1

16 pages, 4945 KiB  
Article
The AURKA-Selective Inhibitor Alisertib Attenuates Doxorubicin-Induced Hepatotoxicity in Mice via Modulation of IL-17A/NF-κB and STAT3 Signaling Pathways
by Faisal Alqussair, Mahmoud Elshal, Mirhan N. Makled and Nashwa M. Abu-Elsaad
Pharmaceuticals 2025, 18(8), 1201; https://doi.org/10.3390/ph18081201 - 14 Aug 2025
Abstract
Background/Objectives: Doxorubicin (DOXO) is effective against various types of cancer; however, it is associated with hepatotoxicity that may eventually lead to liver fibrosis, limiting its clinical use. Aurora kinase A (AURKA) has emerged as a crucial regulator of essential cellular processes and a [...] Read more.
Background/Objectives: Doxorubicin (DOXO) is effective against various types of cancer; however, it is associated with hepatotoxicity that may eventually lead to liver fibrosis, limiting its clinical use. Aurora kinase A (AURKA) has emerged as a crucial regulator of essential cellular processes and a promising target to overcome tumors resistant to some anticancer drugs, including DOXO. However, the potential beneficial effect of targeting AURKA on DOXO-induced toxicities has not been explored yet. Therefore, the current study aimed to explore the potential protective effect of the AURKA-selective inhibitor alisertib on DOXO-induced hepatotoxicity in mice and address the possible underlying mechanism. Methods: Mice were treated with alisertib (10 and 20 mg/kg) daily for five consecutive days and challenged with DOXO (20 mg/kg, i.p.) once on day two. Results: Our findings revealed that alisertib significantly reduced biomarkers of liver dysfunction and oxidative stress elevated by the DOXO challenge. Interestingly, alisertib suppressed DOXO-induced IL-17A upsurge along with NF-κB and STAT3 activation. Alisertib also suppressed the upregulated expression of HIF-1α and VEGF-A as well as PERK activation associated with the DOXO challenge. Moreover, alisertib counteracted DOXO-induced TGF-β1 and α-SMA overexpression in the liver. These beneficial effects of alisertib were further reflected in the histopathological findings, which indicated the ability of alisertib to ameliorate DOXO-induced hepatic necroinflammation and fibrosis. Conclusions: Alisertib mitigates DOXO-induced hepatotoxicity in mice via targeting the IL-17A/NF-κB and IL-17A/STAT3/HIF-1α/VEGF-A signaling pathways, attenuating oxidative stress, inflammation, ER stress, and fibrosis. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

13 pages, 839 KiB  
Review
Strategies of Classical Swine Fever Immune Evasion
by Yuanji Zhang, Fangtao Li and Yebing Liu
Int. J. Mol. Sci. 2025, 26(16), 7838; https://doi.org/10.3390/ijms26167838 - 14 Aug 2025
Viewed by 166
Abstract
Classical swine fever (CSF) is a highly contagious and lethal disease caused by classical swine fever virus (CSFV), and it is also a notifiable disease according to the World Organization for Animal Health. Owing to the continuous growth of the international trade in [...] Read more.
Classical swine fever (CSF) is a highly contagious and lethal disease caused by classical swine fever virus (CSFV), and it is also a notifiable disease according to the World Organization for Animal Health. Owing to the continuous growth of the international trade in pigs and pig products, pig farming has become the pillar industry of the global livestock industry and is the most important source of animal protein for mankind. As a single-stranded RNA virus, CSFV can avoid being recognized and cleared by the host immune system through a variety of immune evasion strategies so that it persists in the host body and causes multisystemic pathology. CSF has also become one of the most serious infectious diseases affecting the pig industry, resulting in considerable economic losses to the pig industry. Therefore, understanding the main immune evasion mechanism of CSFV is very important for the prevention and control of CSF infection. This article reviews the main immune evasion mechanisms of CSFV, including the suppression of nonspecific immune responses; evasion of adaptive immune responses; and the regulation of host cell apoptosis and cell autophagy. CSFV affects type I interferon regulatory signals; the JAK-STAT signaling pathway; the RIG-I and NF-κB signaling pathways; immune cell function; the mitochondrial apoptosis pathway; and the endoplasmic reticulum stress apoptosis pathway; the PI3K-Akt signaling mediated AMPK-mTOR macroautophagy pathway through its structural proteins Erns and E1 and E2; and the nonstructural proteins Npro, NS4B, and NS5A to achieve immune evasion. As our understanding of CSFV immune strategies continues to deepen, we believe that this understanding will provide new strategies for the development of new vaccines and novel diagnostic methods in the future. Full article
(This article belongs to the Special Issue Immune Responses to Viruses)
Show Figures

Figure 1

27 pages, 5167 KiB  
Article
Development of Glycyrrhizic Acid Nanoparticles for Modulating Gastric Ulcer Healing: A Comparative In Vivo Study Targeting Oxidative Stress and Inflammatory Pathways
by Mody Albalawi and Sahar Khateeb
Antioxidants 2025, 14(8), 990; https://doi.org/10.3390/antiox14080990 - 12 Aug 2025
Viewed by 191
Abstract
Gastric ulcer (GU) is a common gastrointestinal disorder that impacts quality of life. Currently, several drugs are available for GU treatment, including proton pump inhibitors like omeprazole (OMP); however, their use is limited by numerous potential adverse effects. Glycyrrhizic acid (GLY), a natural [...] Read more.
Gastric ulcer (GU) is a common gastrointestinal disorder that impacts quality of life. Currently, several drugs are available for GU treatment, including proton pump inhibitors like omeprazole (OMP); however, their use is limited by numerous potential adverse effects. Glycyrrhizic acid (GLY), a natural anti-inflammatory agent, exhibits promising gastroprotective properties; however, its use is likewise limited by numerous potential adverse effects. This study aimed to synthesize GLY nanoparticles (GLY-NPs) to enhance their therapeutic potential and to comparatively evaluate their efficacy against OMP in an ethanol-induced GU in male Wistar rats. GLY-NPs were synthesized via a hydrothermal method and characterized using TEM, XRD, FTIR, and zeta potential analyses. In vivo, GLY-NPs significantly attenuated gastric mucosal damage compared to OMP, as evidenced by macroscopic and histopathological analyses. Biochemical assays revealed that GLY-NPs markedly improved antioxidant defenses by elevating SOD, catalase, and glutathione peroxidase activities while reducing MDA levels, surpassing the effects of OMP. Furthermore, GLY-NPs modulated inflammatory responses by downregulating p38 MAPK, NF-κB, and TNF-α expression, concomitant with upregulation of the anti-inflammatory cytokine IL-10. Mechanistic insights indicated that GLY-NPs favorably regulated key signaling pathways implicated in gastric mucosal protection, including suppression of the JAK2/STAT3 and TGF-β1/Smad3 pathways, alongside activation of the SIRT1/FOXO1/PGC-1α axis. In conclusion, these findings indicate that GLY-NPs offer higher gastroprotective effects relative to traditional OMP therapy through comprehensive modulation of oxidative stress, inflammation, and molecular signaling pathways. This study highlights GLY-NPs as a potent nanotherapeutic candidate for the effective management of GU. Full article
Show Figures

Figure 1

17 pages, 6835 KiB  
Article
Host–Virus Interactions in Feline Kidney Cells Infected with a Chinese Epidemic Strain of Feline Panleukopenia Virus Analysed Using RNA-Seq
by Erkai Feng, Shun Wu, Shipeng Cheng and Yuening Cheng
Vet. Sci. 2025, 12(8), 748; https://doi.org/10.3390/vetsci12080748 - 12 Aug 2025
Viewed by 198
Abstract
Feline panleukopenia virus (FPLV) is a significant causative agent of disease in both domestic cats and wild carnivores that poses a considerable threat to their health. Despite its clinical importance, the mechanisms underlying FPLV–host interactions remain poorly understood. In this study, we conducted [...] Read more.
Feline panleukopenia virus (FPLV) is a significant causative agent of disease in both domestic cats and wild carnivores that poses a considerable threat to their health. Despite its clinical importance, the mechanisms underlying FPLV–host interactions remain poorly understood. In this study, we conducted a systematic analysis of transcriptomic changes in feline kidney cells (F81) infected with a Chinese FPLV strain using RNA-seq. The down-regulated differentially expressed genes (DEGs) were majorly enriched in the regulation of the cell cycle, cell growth, or cell senescence, while the up-regulated DEGs were found to be significantly associated with cellular pathways involved in cell cycle regulation, extrinsic apoptotic signaling, and key host immune responses, including Toll-like receptor, JAK-STAT, IL-17, and TNF signaling pathways. By validating the RNA-seq data with RT-qPCR (real-time quantitative PCR) results, we identified potentially important immune-associated genes involved in the host immune response to feline panleukopenia virus, including IGSF6, IFI44L, IFI6, IFITM10, IL1R1, and JAK3. Overall, our results provide valuable insights into the mechanisms underlying feline panleukopenia virus and its interactions with its host, laying the foundation for future research on this significant virus and its impact on feline health. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
Show Figures

Graphical abstract

29 pages, 1420 KiB  
Review
Immunomodulation in Respiratory Syncytial Virus Infection: Mechanisms, Therapeutic Targets, and Clinical Implications
by Vasiliki Epameinondas Georgakopoulou and Vassiliki C. Pitiriga
Microorganisms 2025, 13(8), 1876; https://doi.org/10.3390/microorganisms13081876 - 12 Aug 2025
Viewed by 328
Abstract
Respiratory syncytial virus (RSV) remains a leading cause of acute lower respiratory tract infections globally, particularly affecting infants, older adults, and immunocompromised individuals. While recent advances in prophylaxis, such as long-acting monoclonal antibodies and maternal immunization, offer promise for prevention, therapeutic options for [...] Read more.
Respiratory syncytial virus (RSV) remains a leading cause of acute lower respiratory tract infections globally, particularly affecting infants, older adults, and immunocompromised individuals. While recent advances in prophylaxis, such as long-acting monoclonal antibodies and maternal immunization, offer promise for prevention, therapeutic options for active infection remain limited. Severe RSV disease is often driven not solely by viral replication but by dysregulated host immune responses, including excessive cytokine production, T helper type 2 (Th2) and T helper type 17 (Th17) cell polarization, and impaired interferon signaling. RSV has evolved sophisticated immune evasion strategies, such as inhibition of dendritic cell maturation, degradation of signal transducer and activator of transcription 2 (STAT2) via nonstructural proteins 1 and 2 (NS1/NS2), and interference with pattern recognition receptor signaling, particularly Toll-like receptors (TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors. These mechanisms result in attenuated innate immune responses and defective adaptive immunity, contributing to viral persistence, immunopathology, and recurrent infections. Moreover, age-dependent vulnerabilities, such as immune immaturity in infants and immunosenescence in older adults, exacerbate disease severity. Excessive immune activation leads to bronchiolitis, airway remodeling, and long-term sequelae including wheezing and asthma. Emerging immunomodulatory therapies aim to restore immune balance, targeting cytokines (e.g., interleukin-6 [IL-6], interleukin-1 beta [IL-1β]), the Janus kinase–signal transducer and activator of the transcription (JAK-STAT) pathway, or inflammasome activity. Host-directed therapies and direct-acting antivirals are also under investigation. A better understanding of RSV–host immune interactions is critical for optimizing therapeutic strategies and designing effective vaccines. This review synthesizes current knowledge on RSV immunopathogenesis and highlights immunomodulation as a promising frontier for therapeutic intervention. Full article
(This article belongs to the Special Issue The Microbial Pathogenesis)
Show Figures

Figure 1

29 pages, 12966 KiB  
Article
Integrative Analysis of Differentially Expressed miRNAs and Noncoding RNA Networks Reveals Molecular Mechanisms Underlying Metritis in Postpartum Dairy Cows
by Ramanathan Kasimanickam, Joao Ferreira and Vanmathy Kasimanickam
Curr. Issues Mol. Biol. 2025, 47(8), 643; https://doi.org/10.3390/cimb47080643 - 11 Aug 2025
Viewed by 230
Abstract
Postpartum metritis in dairy cows compromises reproductive performance and leads to substantial economic losses. This study investigated the molecular mechanisms underlying metritis by integrating high-throughput circulating microRNA (miRNA) profiling with systems-level bioinformatics. Previously, 30 differentially expressed miRNAs, 16 upregulated and 14 downregulated, were [...] Read more.
Postpartum metritis in dairy cows compromises reproductive performance and leads to substantial economic losses. This study investigated the molecular mechanisms underlying metritis by integrating high-throughput circulating microRNA (miRNA) profiling with systems-level bioinformatics. Previously, 30 differentially expressed miRNAs, 16 upregulated and 14 downregulated, were identified in metritis-affected cows compared to healthy controls. Building on these findings, this study predicted miRNA target genes and constructed regulatory networks involving miRNAs, mRNAs, circRNAs, lncRNAs, and snRNAs, alongside protein–protein interaction networks. Functional annotation and KEGG pathway analysis revealed that upregulated miRNAs influenced genes involved in immune activation, apoptosis, and metabolism, while downregulated miRNAs were associated with angiogenesis, immune suppression, and tissue repair. Hub genes such as AKT3, VEGFA, and HIF1A were central to immune and angiogenic signaling, whereas UBE3A and ZEB1 were linked to immune inhibition. Interferon-stimulated genes (e.g., ISG15, RSAD2, CXCL chemokines) were shown to regulate solute carriers, contributing to immune dysregulation. Key pathways included PI3K-Akt, NF-κB, JAK-STAT, insulin resistance, and T cell receptor signaling. Noncoding RNAs such as NEAT1, KCNQ1OT1, and XIST, along with miRNAs like bta-miR-15b and bta-miR-148a, emerged as pro-inflammatory regulators, while bta-miR-199a-3p appeared to exert immunosuppressive effects. These findings offer new insights into the complex regulatory networks driving metritis and suggest potential targets for improving fertility in dairy cows. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Figure 1

16 pages, 2545 KiB  
Article
Transcriptomics Analysis of the Adipogenic Differentiation Mechanism of Bovine Adipose-Derived Neural Crest Stem Cells
by Kai Zhang, Xiaopeng Tang, Rui Zhao, Yibo Yan and Xianyi Song
Animals 2025, 15(16), 2353; https://doi.org/10.3390/ani15162353 - 11 Aug 2025
Viewed by 215
Abstract
The aim of the present study was to investigate the expression of related genes during the differentiation process of baNCSCs into adipocytes using transcriptomics technique, thereby clarifying the potential mechanism underlying baNCSCs differentiation into adipocytes and providing insights into lipid metabolism and regulation [...] Read more.
The aim of the present study was to investigate the expression of related genes during the differentiation process of baNCSCs into adipocytes using transcriptomics technique, thereby clarifying the potential mechanism underlying baNCSCs differentiation into adipocytes and providing insights into lipid metabolism and regulation of lipid deposition in ruminants. Transcriptomic analysis was conducted on the adipocytes of baNCSCs on days 0 (CON0), 3 (DIF3), and 9 (DIF9) of differentiation. The results showed that in the early stage of adipocyte differentiation of baNCSCs, differentially expressed genes (DEGs) are mainly involved in metabolic pathways such as chromosome modification, cell cycle progression, and regulation of stem cell pluripotency. In the middle and late stages of differentiation, DEGs are mainly involved in metabolic pathways such as changes in cell morphology and synthesis of fatty acids and triglycerides. Predicting the top 10 core hub genes (CHGs) in the protein–protein interaction (PPI) network that regulate various differentiation stages of adipocytes reveals that ERBB2, EGFR, and MYC are upregulated during the early differentiation stage. In contrast, ITGB1, KRAS, CCND1, ACTB, VEGFA, MET, and HRAS are downregulated. During the middle and late stages of differentiation, the expressions of TP53, CASP3, STAT3, CTNNB1, JUN, EGFR, and MYC are upregulated, while IGF1R, PTEN, and HRAS are downregulated. In conclusion, the primary enrichment pathways of DEGs vary at distinct stages of adipocyte induction and differentiation in baNCSCs. Full article
Show Figures

Figure 1

Back to TopTop