Integrative Analysis of Differentially Expressed miRNAs and Noncoding RNA Networks Reveals Molecular Mechanisms Underlying Metritis in Postpartum Dairy Cows
Abstract
1. Introduction
2. Materials and Methods
2.1. Conserved Nucleotide Sequences
2.2. Prediction and Analysis of Target Genes of Differentially Expressed miRNAs
2.3. Construction of Protein–Protein Interaction Network and Screening of Hub Gene
2.4. Gene Ontology and Functional Annotation Analysis
2.5. miRNA, circRNA, lncRNA, snRNA, and mRNA Interaction Network
3. Results
3.1. miRNA, Gene, and Protein–Protein Interactions
3.2. Interaction Network Among miRNA, circRNA, lncRNA, snRNA, and mRNA
4. Discussion
Key miRNAs and Their Functional Roles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bondurant, R.H. Inflammation in the bovine female reproductive tract. J. Anim. Sci. 1999, 77 (Suppl. S2), 101–110. [Google Scholar] [CrossRef]
- Bartlett, P.C.; Kirk, J.H.; Wilke, M.A.; Kaneene, J.B.; Mather, E.C. Metritis complex in Michigan Holstein-Friesian cattle: Incidence, descriptive epidemiology and estimated economic impact. Prev. Vet. Med. 1986, 4, 235–248. [Google Scholar] [CrossRef]
- LeBlanc, S.J.; Duffield, T.F.; Leslie, K.E.; Bateman, K.G.; Keefe, G.P.; Walton, J.S.; Johnson, W.H. Defining and diagnosing postpartum clinical endometritis and its impact on reproductive performance in dairy cows. J. Dairy Sci. 2002, 85, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, R.; Duffield, T.F.; Foster, R.A.; Gartley, C.J.; Leslie, K.E.; Walton, J.S.; Johnson, W.H. Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology 2004, 62, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Machado, V.S.; Celestino, M.L.; Oliveira, E.B.; Lima, F.S.; Ballou, M.A.; Galvão, K.N. The association of cow-related factors assessed at metritis diagnosis with metritis cure risk, reproductive performance, milk yield, and culling for untreated and ceftiofur-treated dairy cows. J. Dairy Sci. 2020, 103, 9261–9276. [Google Scholar] [CrossRef] [PubMed]
- Piccardi, M.; Romero, G.; Veneranda, G.; Castello, E.; Romero, D.; Balzarini, M.; Bó, G.A. Effect of puerperal metritis on reproductive and productive performance in dairy cows in Argentina. Theriogenology 2016, 85, 887–893. [Google Scholar] [CrossRef]
- Credille, B.C.; Woolums, A.R.; Overton, M.W.; Hurley, D.J.; Giguère, S. Expression of inflammation-associated genes in circulating leukocytes and activity of indoleamine-2,3-dioxygenase in dairy cattle with acute puerperal metritis and bacteremia. Res. Vet. Sci. 2015, 101, 6–10. [Google Scholar] [CrossRef]
- Magata, F.; Kitaoka, R.; Morino, I.; Teramura, M.; Kawashima, C.; Haneda, S.; Shimizu, T. Long-term impact of puerperal metritis on the profiles of peripheral blood leukocytes in peripartum dairy cows. Anim. Sci. 2016, 87, 151–155. [Google Scholar] [CrossRef]
- Kasimanickam, R.K.; Kasimanickam, V.R. IFNT, ISGs, PPARs, RXRs and MUC1 in day 16 embryo and endometrium of repeat-breeder cows, with or without subclinical endometritis. Theriogenology 2020, 158, 39–49. [Google Scholar] [CrossRef]
- Kasimanickam, R.K.; Kasimanickam, V.R. mRNA expressions of candidate genes in gestational day 16 conceptus and corresponding endometrium in repeat breeder dairy cows with suboptimal uterine environment following transfer of different quality day 7 embryos. Animals 2021, 11, 1092. [Google Scholar] [CrossRef]
- Kasimanickam, R.K.; Kasimanickam, V.R.; Kumar, N.; Reisenauer, C. Day 7 embryo quality and suboptimal uterine environment influence morphometry of Day 16 conceptus in dairy cows. Theriogenology 2021, 163, 10–17. [Google Scholar] [CrossRef]
- Chegini, N. Uterine microRNA signature and consequence of their dysregulation in uterine disorders. Anim. Reprod. 2010, 7, 117–128. [Google Scholar]
- Hailemariam, D.; Ibrahim, S.; Hoelker, M.; Drillich, M.; Heuwieser, W.; Looft, C.; Cinar, M.U.; Tholen, E.; Schellander, K.; Tesfaye, D. MicroRNA-regulated molecular mechanism underlying bovine subclinical endometritis. Reprod. Fertil. Dev. 2014, 26, 898–913. [Google Scholar] [CrossRef]
- Salilew-Wondim, D.; Ibrahim, S.; Gebremedhn, S.; Tesfaye, D.; Heppelmann, M.; Bollwein, H.; Pfarrer, C.; Tholen, E.; Neuhoff, C.; Schellander, K.; et al. Clinical and subclinical endometritis induced alterations in bovine endometrial transcriptome and miRNome profile. BMC Genom. 2016, 17, 218. [Google Scholar] [CrossRef]
- Oyelami, F.O.; Usman, T.; Suravajhala, P.; Ali, N.; Do, D.N. Emerging Roles of Noncoding RNAs in Bovine Mastitis Diseases. Pathogens 2022, 11, 1009. [Google Scholar] [CrossRef] [PubMed]
- Panir, K.; Schjenken, J.E.; Robertson, S.A.; Hull, M.L. Non-coding RNAs in endometriosis: A narrative review. Hum. Reprod. Update 2018, 24, 497–515. [Google Scholar] [CrossRef]
- Aljubran, F.; Nothnick, W.B. Long non-coding RNAs in endometrial physiology and pathophysiology. Mol. Cell. Endocrinol. 2021, 525, 111190. [Google Scholar] [CrossRef]
- Kasimanickam, V.; Kastelic, J. Circulating cell-free mature microRNAs and their target gene prediction in bovine metritis. Sci. Rep. 2016, 6, 29509. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Kozomara, A.; Griffiths-Jones, S. miRBase: Annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014, 42, D68–D73. [Google Scholar] [CrossRef]
- Chang, L.; Zhou, G.; Soufan, O.; Xia, J. miRNet 2.0: Network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020, 48, W244–W251. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Gustavsen, J.A.; Pai, S.; Isserlin, R.; Demchak, B.; Pico, A.R. RCy3: Network biology using Cytoscape from within R. F1000Res 2019, 8, 1774. [Google Scholar] [CrossRef]
- Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. Cytohubba: Identifying hub objects and sub-networks from complex interactome. BMC Sys. Biol. 2014, 8 (Suppl. S4), S11. [Google Scholar] [CrossRef]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.H.; Pagès, F.; Trajanoski, Z.; Galon, J. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef]
- Jeong, H.; Mason, S.P.; Barabási, A.L.; Oltvai, Z.N. Lethality and centrality in protein networks. Nature 2001, 411, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Mikulková, K.; Kadek, R.; Filípek, J.; Illek, J. Evaluation of oxidant/antioxidant status, metabolic profile and milk production in cows with metritis. Ir. Vet. J. 2020, 73, 8. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.C.; Guerreiro, B.M.; Morais Junior, N.N.; Araujo, R.L.; Pereira, R.A.; Pereira, M.N. Supplementation of prepartum dairy cows with β-carotene. J. Dairy. Sci. 2015, 98, 6304–6314. [Google Scholar] [CrossRef] [PubMed]
- Kaewlamun, W.; Okouyi, M.; Humblot, P.; Techakumphu, M.; Ponter, A.A. Does supplementing dairy cows with β-carotene during the dry period affect postpartum ovarian activity, progesterone, and cervical and uterine involution? Theriogenology 2011, 75, 1029–1038. [Google Scholar] [CrossRef]
- Wichtel, J.J.; Craigie, A.L.; Thompson, K.G.; Williamson, N.B. Effect of selenium and a-tocopherol supplementation on postpartum reproductive function of dairy heifers at pasture. Theriogenology 1996, 46, 491–502. [Google Scholar] [CrossRef]
- Bayril, T.; Yildiz, A.S.; Akdemir, F.; Yalcin, C.; Köse, M.; Yilmaz, O. The technical and financial effects of parenteral supplementation with selenium and vitamin E during late pregnancy and the early lactation period on the productivity of dairy cattle. Asian-Australas. J. Anim. Sci. 2015, 28, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.H.; Hancock, D.D.; St Pierre, N.; Conrad, H.R.; Harvey, W.R. Effect of prepartum selenium treatment on uterine involution in the dairy cow. J. Dairy. Sci. 1986, 69, 1421–1425. [Google Scholar] [CrossRef]
- Silvestre, F.T.; Carvalho, T.S.; Francisco, N.; Santos, J.E.; Staples, C.R.; Jenkins, T.C.; Thatcher, W.W. Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: I. Uterine and metabolic responses, reproduction, and lactation. J. Dairy. Sci. 2011, 94, 189–204. [Google Scholar] [CrossRef]
- Silvestre, F.T.; Carvalho, T.S.; Crawford, P.C.; Santos, J.E.; Staples, C.R.; Jenkins, T.; Thatcher, W.W. Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: II. Neutrophil fatty acids and function, and acute phase proteins. J. Dairy. Sci. 2011, 94, 2285–2301. [Google Scholar] [CrossRef]
- Ambrose, D.J.; Kastelic, J.P.; Corbett, R.; Pitney, P.A.; Petit, H.V.; Small, J.A.; Zalkovic, P. Lower pregnancy losses in lactating dairy cows fed a diet enriched in alpha-linolenic acid. J. Dairy. Sci. 2006, 89, 3066–3074. [Google Scholar] [CrossRef]
- Thangavelu, G.; Colazo, M.G.; Ambrose, D.J.; Oba, M.; Okine, E.K.; Dyck, M.K. Diets enriched in unsaturated fatty acids enhance early embryonic development in lactating Holstein cows. Theriogenology 2007, 68, 949–957. [Google Scholar] [CrossRef]
- Colazo, M.G.; Hayirli, A.; Doepel, L.; Ambrose, D.J. Reproductive performance of dairy cows is influenced by prepartum feed restriction and dietary fatty acid source. J. Dairy. Sci. 2009, 92, 2562–2571. [Google Scholar] [CrossRef]
- Matsuzaki, S.; Canis, M.; Vaurs-Barrière, C.; Boespflug-Tanguy, O.; Dastugue, B.; Mage, G. DNA microarray analysis of gene expression in eutopic endometrium from patients with deep endometriosis using laser capture microdissection. Fertil. Steril. 2005, 84 (Suppl. S2), 1180–1190. [Google Scholar] [CrossRef] [PubMed]
- Cinar, O.; Seval, Y.; Uz, Y.H.; Cakmak, H.; Ulukus, M.; AKayisli, U.; Arici, A. Differential regulation of Akt phosphorylation in endometriosis. Reprod. Biomed. Online 2009, 19, 864–871. [Google Scholar] [CrossRef] [PubMed]
- Honda, H.; Barrueto, F.F.; Gogusev, J.; Im, D.D.; Morin, P.J. Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis. Reprod. Biol. Endocrinol. 2008, 6, 59. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, X.; Liu, S.; Li, J.; Wen, Z.; Li, M. 17betaE2 promotes cell proliferation in endometriosis by decreasing PTEN via NFkappaB-dependent pathway. Mol. Cell Endocrinol. 2010, 317, 31–43. [Google Scholar] [CrossRef]
- Jiang, K.; Yang, J.; Song, C.; He, F.; Yang, L.; Li, X. Enforced expression of miR-92b blunts E. coli lipopolysaccharide-mediated inflammatory injury by activating the PI3K/AKT/Œ≤-catenin pathway via targeting PTEN. Int. J. Biol. Sci. 2021, 17, 1289–1301. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Hernández, J.; Benedito, J.L.; Castillo, C. Association of oxidative status and insulin sensitivity in periparturient dairy cattle: An observational study. J. Anim. Physiol. Anim. Nutr. 2016, 100, 279–286. [Google Scholar] [CrossRef]
- Galvão, K.N.; Flaminio, M.J.; Brittin, S.B.; Sper, R.; Fraga, M.; Caixeta, L.; Ricci, A.; Guard, C.L.; Butler, W.R.; Gilbert, R.O. Association between uterine disease and indicators of neutrophil and systemic energy status in lactating Holstein cows. J. Dairy. Sci. 2010, 93, 2926–2937. [Google Scholar] [CrossRef] [PubMed]
- Cimmino, A.; Calin, G.A.; Fabbri, M.; Iorio, M.V.; Ferracin, M.; Shimizu, M.; Wojcik, S.E.; Aqeilan, R.I.; Zupo, S.; Dono, M.; et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 2005, 102, 13944–13949. [Google Scholar] [CrossRef]
- Adammek, M.; Greve, B.; Kässens, N.; Schneider, C.; Brüggemann, K.; Schüring, A.N.; Starzinski-Powitz, A.; Kiesel, L.; Götte, M. MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil. Steril. 2013, 99, 1346–1355, e5. [Google Scholar] [CrossRef]
- Nakamura, K.; Kusama, K.; Hori, M.; Imakawa, K. The effect of bta-miR-26b in intrauterine extracellular vesicles on maternal immune system during the implantation period. Biochem. Biophys. Res. Commun. 2021, 573, 100–106. [Google Scholar] [CrossRef]
- Jiang, K.; Yang, J.; Yang, C.; Zhang, T.; Shaukat, A.; Yang, X.; Dai, A.; Wu, H.; Deng, G. miR-148a suppresses inflammation in lipopolysaccharide-induced endometritis. J. Cell Mol. Med. 2020, 24, 405–417. [Google Scholar] [CrossRef] [PubMed]
- van de Vosse, E.; Hoeve, M.A.; Ottenhoff, T.H. Human genetics of intracellular infectious diseases: Molecular and cellular immunity against mycobacteria and salmonellae. Lancet Infect. Dis. 2004, 4, 739–749. [Google Scholar] [CrossRef]
- Zhang, R.; Qin, L.; Shi, J. MicroRNA-199a-3p suppresses high glucose-induced apoptosis and inflammation by regulating the IKKβ/NF-κB signaling pathway in renal tubular epithelial cells. Int. J. Mol. Med. 2020, 46, 2161–2171. [Google Scholar] [CrossRef]
- Papari, E.; Noruzinia, M.; Kashani, L.; Foster, W.G. Identification of candidate microRNA markers of endometriosis with the use of next-generation sequencing and quantitative real-time polymerase chain reaction. Fertil. Steril. 2020, 113, 1232–1241. [Google Scholar] [CrossRef]
- Nothnick, W.B. The role of micro-RNAs in the female reproductive tract. Reproduction 2012, 143, 559–576. [Google Scholar] [CrossRef]
- Lee, J.W.; Park, Y.A.; Choi, J.J.; Lee, Y.Y.; Kim, C.J.; Choi, C.; Kim, T.J.; Lee, N.W.; Kim, B.G.; Bae, D.S. The expression of the miRNA-200 family in endometrial endometrioid carcinoma. Gynecol. Oncol. 2011, 120, 56–62. [Google Scholar] [CrossRef]
- Suryawanshi, A.; Tadagavadi, R.K.; Swafford, D.; Manicassamy, S. Modulation of inflammatory responses by Wnt/β-Catenin signaling in dendritic cells: A novel immunotherapy target for autoimmunity and cancer. Front. Immunol. 2016, 7, 460. [Google Scholar] [CrossRef]
- Ling, K.; Doughman, R.L.; Firestone, A.J.; Bunce, M.W.; Anderson, R.A. Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 2002, 420, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Porciello, N.; Kunkl, M.; Viola, A.; Tuosto, L. Phosphatidylinositol 4-phosphate 5-kinases in the regulation of T cell activation. Front. Immunol. 2016, 7, 186. [Google Scholar] [CrossRef]
- Lillico, D.; Pemberton, J.G.; Stafford, J.L. Selective regulation of cytoskeletal dynamics and filopodia formation by teleost leukocyte immune-type receptors differentially contributes to target capture during the phagocytic process. Front. Immunol. 2018, 9, 1144. [Google Scholar] [CrossRef]
- Ribatti, D.; Crivellato, E. Immune cells and angiogenesis. J. Cell Mol. Med. 2009, 13, 2822–2833. [Google Scholar] [CrossRef] [PubMed]
- Giannone, G.; Tuninetti, V.; Ghisoni, E.; Genta, S.; Scotto, G.; Mittica, G.; Valabrega, G. Role of cyclin-dependent kinase inhibitors in endometrial cancer. Int. J. Mol. Sci. 2019, 20, 2353. [Google Scholar] [CrossRef] [PubMed]
- Oguejiofor, C.F.; Cheng, Z.; Abudureyimu, A.; Fouladi-Nashta, A.A.; Wathes, D.C. Global transcriptomic profiling of bovine endometrial immune response in vitro. I. Effect of lipopolysaccharide on innate immunity. Biol. Reprod. 2015, 93, 100. [Google Scholar] [CrossRef]
- Xia, F.; Wang, Y.; Xue, M.; Zhu, L.; Jia, D.; Shi, Y.; Gao, Y.; Li, L.; Li, Y.; Chen, S.; et al. LncRNA KCNQ1OT1: Molecular mechanisms and pathogenic roles in human diseases. Genes Dis. 2021, 9, 1556–1565. [Google Scholar] [CrossRef]
- Yue, T.; Li, J.; Liang, M.; Yang, J.; Ou, Z.; Wang, S.; Ma, W.; Fan, D. Identification of the KCNQ1OT1/ miR-378a-3p/ RBMS1 axis as a novel prognostic biomarker associated with immune cell infiltration in gastric cancer. Front. Genet. 2022, 13, 928754. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, T.; Zhao, Z.; Wei, W.; Yang, X.; Wang, X.; Xin, W. Novel Insights into the emerging role of Neat1 and its effects downstream in the regulation of inflammation. J. Inflamm. Res. 2022, 15, 557–571. [Google Scholar] [CrossRef]
- Dong, Y.; Fan, G.; Li, Y.; Zhou, Q. TUG1 Represses Apoptosis, Autophagy, and Inflammatory Response by Regulating miR-27a-3p/SLIT2 in Lipopolysaccharide-Treated Vascular Endothelial Cells. J. Surg. Res. 2020, 256, 345–354. [Google Scholar] [CrossRef]
- Yu, B.; Qi, Y.; Li, R.; Shi, Q.; Satpathy, A.T.; Chang, H.Y. B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells. Cell 2021, 184, 1790–1803.e17. [Google Scholar] [CrossRef]
- Ganapathy, K.; Ngo, C.; Andl, T.; Coppola, D.; Park, J.; Chakrabarti, R. Anticancer function of microRNA-30e is mediated by negative regulation of HELLPAR, a noncoding macroRNA, and genes involved in ubiquitination and cell cycle progression in prostate cancer. Mol. Oncol. 2022, 16, 2936–2958. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, M.; Visser, A.; Buabeng, K.M.; Poutsma, A.; van der Schors, R.C.; Oudejans, C.B. Mutations within the LINC-HELLP non-coding RNA differentially bind ribosomal and RNA splicing complexes and negatively affect trophoblast differentiation. Hum. Mol. Genet. 2015, 24, 5475–5485. [Google Scholar] [CrossRef]
- Guo, C.; Qi, Y.; Qu, J.; Gai, L.; Shi, Y.; Yuan, C. Pathophysiological functions of the lncRNA TUG1. Curr. Pharm. Des. 2020, 26, 688–700. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Sun, L.; Wan, F. Molecular mechanisms of TUG1 in the proliferation, apoptosis, migration and invasion of cancer cells. Oncol. Lett. 2019, 18, 4393–4402. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Su, L.; Jiang, J.; Wang, Y.E.; Ling, Y.; Qiu, Y.; Yu, H.; Huang, Y.; Wu, J.; Jiang, S.; et al. RanBP2/Nup358 Mediates Sumoylation of STAT1 and Antagonizes Interferon-α-Mediated Antiviral Innate Immunity. Int. J. Mol. Sci. 2023, 25, 299. [Google Scholar] [CrossRef]
- Zang, X.; He, X.Y.; Xiao, C.M.; Lin, Q.; Wang, M.Y.; Liu, C.Y.; Kong, L.Y.; Chen, Z.; Xia, Y.Z. Circular RNA-encoded oncogenic PIAS1 variant blocks immunogenic ferroptosis by modulating the balance between SUMOylation and phosphorylation of STAT1. Mol. Cancer 2024, 23, 207. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, Q.; Sun, W.; Yang, X.; Huang, H.; Xu, Z. Exome sequencing link mutation in RGPD4 with systemic sclerosis-associated interstitial lung disease and the low level of testosterone-an exploration study. Front. Oncol. 2022, 12, 956552. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, S.; Chen, J. Development of an Inflammation-Related lncRNA-miRNA-mRNA Network Based on Competing Endogenous RNA in Breast Cancer at Single-Cell Resolution. Front. Cell Dev. Biol. 2022, 10, 839876. [Google Scholar] [CrossRef]
- Li, W.; Li, K.; Zhao, L.; Zou, H. Bioinformatics analysis reveals disturbance mechanism of MAPK signaling pathway and cell cycle in Glioblastoma multiforme. Gene 2014, 547, 346–350. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Li, G.; Liao, J.; Huang, Z.; Wen, J.; Wang, Y.; Chen, Z.; Cai, G.; Xu, W.; Ding, Z.; et al. Non-coding small nucleolar RNA SNORD17 promotes the progression of hepatocellular carcinoma through a positive feedback loop upon p53 inactivation. Cell Death Diff. 2022, 29, 988–1003. [Google Scholar] [CrossRef]
- Shen, L.P.; Zhang, W.C.; Deng, J.R.; Qi, Z.H.; Lin, Z.W.; Wang, Z.D. Advances in the mechanism of small nucleolar RNA and its role in DNA damage response. Mil. Med. Res. 2024, 11, 53. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, Z.; Wu, M.; Zhang, Y.; Hou, S.; Wang, X.; Peng, Y. LncRNA SNHG16 drives PD-L1-mediated immune escape in colorectal cancer through regulating miR-324-3p/ELK4 Signaling. Biochem. Genet. 2024. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; He, X.; Zhang, J.; Wang, X.; Lin, W.; Wang, X.; Wu, X. Long non-coding RNA SNHG16 silencing inhibits proliferation and inflammation in Mycobacterium tuberculosis-infected macrophages by targeting miR-140-5p expression. Infect. Genet. Evol. 2022, 103, 105325. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Wang, T.; Zhang, H.; Lu, X.; Liu, L.; Li, L.; Bo, C.; Kong, X.; Xu, S.; et al. Identification of the regulatory role of lncRNA HCG18 in myasthenia gravis by integrated bioinformatics and experimental analyses. J. Transl. Med. 2021, 19, 468. [Google Scholar] [CrossRef]
- Gremlich, S.; Damnon, F.; Reymondin, D.; Braissant, O.; Schittny, J.C.; Baud, D.; Gerber, S.; Roth-Kleiner, M. The long non-coding RNA NEAT1 is increased in IUGR placentas, leading to potential new hypotheses of IUGR origin/development. Placenta 2014, 35, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, R.; Yang, S.; Ma, Z.; Lin, S.; Nan, Y.; Li, Q.; Tang, Q.; Zhang, Y.J. Karyopherin alpha 6 is required for replication of Porcine Reproductive and Respiratory Syndrome virus and Zika virus. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef]
- Zhu, Y.; Duan, C.; Gui, Y.; Chen, D.; Su, X. Exosomal circMACF1 drives PI3K/AKT/mTOR-mediated autophagy suppression in laryngeal squamous cell carcinoma. Cell Mol. Biol. 2024, 70, 179–185. [Google Scholar] [CrossRef]
- Li, M.W.; Huang, F.X.; Xie, Z.C.; Hong, H.Y.; Xu, Q.Y.; Peng, Z.G. Identification of three small nucleolar RNAs (snoRNAs) as potential prognostic markers in diffuse large B-cell lymphoma. Cancer Med. 2023, 12, 3812–3829. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Dong, Y.; Wen, Y.; Shi, L.; Zhu, Z.; Ke, G.; Gu, Y. LncRNA KCNQ1OT1 knockdown inhibits viability, migration and epithelial-mesenchymal transition in human lens epithelial cells via miR-26a-5p/ITGAV/TGF-beta/Smad3 axis. Exp. Eye Res. 2000, 200, 108251. [Google Scholar] [CrossRef] [PubMed]
- Dong, P.; Xiong, Y.; Yue, J.; Hanley, S.J.B.; Kobayashi, N.; Todo, Y.; Watari, H. Long non-coding RNA NEAT1: A novel target for diagnosis and therapy in human tumors. Front. Genet. 2018, 9, 471. [Google Scholar] [CrossRef] [PubMed]
- Yan, F.; Wang, X.; Zeng, Y. 3D genomic regulation of lncRNA and Xist in X chromosome. Semin. Cell Dev. Biol. 2019, 90, 174–180. [Google Scholar] [CrossRef]
- Wang, W.; Min, L.; Qiu, X.; Wu, X.; Liu, C.; Ma, J.; Zhang, D.; Zhu, L. Biological function of long non-coding RNA (LncRNA) Xist. Front. Cell Dev. Biol. 2021, 9, 645647. [Google Scholar] [CrossRef]
(A) | |||
Top Hub Gene | Role | Human Tissue Expression | PPI |
AKT3 | cell growth and division; cell survival; immune and inflammation response | ovary, uterus | MAP3K5, MAP3K5, FOXO3, PRKCZ, HSP90 |
MAML3 | transcriptional coactivator for NOTCH proteins; regulation of retinoic acid | ovary, uterus | RA, NOTCH, IGF1R, AKT, IGF2, IL-1β |
TGBR1 | signal transduction; regulation of immune and inflammation responses | ovary, uterus, placenta | TGFB1, TGFBR2, ITGAV, LTBP1 |
TSHZ3 | cell differentiation | ovary, uterus | APBB1 |
VEGFA | endothelial cell proliferation; promotes cell migration; inhibits apoptosis | ovary, uterus | FLT1, KDR, DLL4, HIF1A, MYOD1, STAT3, RUNX2, MYC, |
CDK19 | regulates RNA polymerase II and transcriptional activity; immune and inflammation responses | ovary, uterus | CCNC, MED3, MED13L, MED14, MED15 |
DDX6 | cytoplasmic RNA regulation; negatively regulates immunity; proinflammation regulation | ovary, uterus | LSM14A, DCP1A, PATL1, CNOT1, EDC3, DDX6 |
LDLR | cell surface; cholesterol metabolism; promote inflammatory responses (Toll-Like Receptor, TLR) | ovary, uterus | DAB1, APOE, MYLIP, PCSK9, LRPAP1 |
MXD1 | protein coding; transcriptional repressor; cell proliferation and differentiation; regulation of inflammation | ovary, uterus | AKT1, SUDS3, SIN3A, SIN3A, MAX |
SOS2 | intracellular Na+ and K+ homeostasis; cell maturation, cell survival and regulation of immune function | ovary, uterus | EGFR, KRAS, HRAS, GRB2, RASGRF1 |
USP9X | cell survival; immune response; | ovary, uterus, placenta | MCL1, CTNNB1, YAP1, UBE2D1, UNK |
BRWD3 | regulation of cell morphology and cytoskeletal organization | ovary, uterus | UBR1, UBXN7, CUL4A, CUL4B, WDR26 |
COL3A1 | strengthen and support tissue; tissue repair | ovary, uterus, placenta | BMP1, PCOLCE, SPARC, DDR1, ERAL1 |
DNMT3A | DNA methylation | ovary, uterus, placenta | HISTIH3J, HISTIH3A, MPHOSPH8, H3F3B, DNMT3L |
ELN | elasticity and tensile ability of tissue; tissue repair | ovary, uterus, placenta | LOX, LGALS3, FBLN1, FBLN2, FBN1 |
FBN1 | cell formation; cell adhesion; fibrillogenesis; tissue repair | ovary, uterus, placenta | ELN, FBN1, FBN2, FBLN2, LTBP1, ZFP41 |
FBXW9 | protein coding, MHC mediated | ovary, uterus | CDC6, SKP1, CUL1, UBA52, ELP2 |
TET1 | immune response regulation | ovary, uterus | NANOG, OGT, ARID4B, SUDS3, SAP30 |
AFF4 | protein coding | ovary, uterus, placenta | ELL, ELL2, CDK9, AFF4, CCNT1, MLLT1 |
GAB1 | cellular growth; cell transformation; cellular apoptosis; regulation of immune (TLR) and inflammation responses | ovary, uterus, placenta | PTPN11, EGFR, PIK3R1, CRK, GRB2 |
PPARG | fatty acid storage and glucose metabolism; regulation of immune and inflammation responses | ovary, uterus, placenta | NCOA1, NCOR1, RXRA, PPRGC1A, MED1 |
ARFGEF1 | cell–cell interactions; cell adhesion; cell migration and innate immunity | ovary, uterus, placenta | ARFGEF2, ARL1, SGPL1, AGPAT1, AGPAT2 |
CCNT2 | protein coding | ovary, uterus, placenta | CDK9, CDK12, HEXIM1, AFF4, ELL3 |
DICER1 | gene function regulation | ovary, uterus, placenta | AGO1, AGO2, AGO4, PRKRA, TARBP2 |
BBX | cell cycle progression | ovary, uterus, placenta | FOXJ2, SUMO2, HDAC1, SCGN, NIFK |
CNOT2 | cell proliferation; angiogenesis | ovary, uterus, placenta | CNOT1, RQCD1, CNOT3, CNOT4, CNOT7 |
CTGF | cell proliferation; angiogenesis; and tissue repair | ovary, uterus | FN1, ESR1, VEGFA, ITGA5, HSPG2, FBLN1 |
HIF1A | inflammation regulators | ovary, uterus, placenta | CREBBP, HIF1AN, ARNT, VHL, EP300, SUMO1 |
INADL | inflammation regulators | ovary, uterus, placenta | HOMER2, MPP5, LIN7B, AMOT, PLCB4 |
NCOA1 | inflammatory and metabolic pathways | ovary, uterus, placenta | RARA, RXRA, PPARG, NR1I2, ESR1 |
(B) | |||
Top Hub Genes | Roles | Human Tissue Expressions | PPIs |
UBE3A | ubiquitination; cell survival; immune response; | ovary, uterus, placenta | UBE2L3, TP53, PSMD4, UBE2D2, MCM7 |
ZC3H14 | translation, mRNA stability; immune and inflammation response | ovary, uterus, placenta | SNIP1, RALYL, ARL61P4, LUC7L2, WRAP73 |
KDM5A | DNA methylation, apoptosis; immune response; inflammation (TLR) | ovary, uterus, placenta | RB1, HDAC1, TBP, RARA, GATAD1 |
CLIC4 | regulation of cellular process; innate immune response; inflammation response; | ovary, uterus, placenta | CLIC2, CLIC5, CLIC6, TPRN, ESR2 |
CLIC5 | regulation of cellular process; innate immune response; inflammation response; | ovary, uterus, placenta | CLIC2, CLIC4, EZR, FN1, TPRN |
FKBP5 | protein coding; promotes inflammation; immune response; | ovary, uterus, placenta | USP49, ESR1, PHLPP1, NR3C1, CDK9 |
LAMC1 | regulates attachment, migration, and organization of cells; immune response; inflammation (TGFβ) | ovary, uterus, placenta | PYHIN1, NID2, LAMB1, NID1, SNAPIN |
PIP4K2A | cell proliferation, differentiation, and motility; regulation of immune and inflammation response; | ovary, uterus, placenta | EPB41L3, CSNK2A2, ARL61P4, EAF1, ZRANB2 |
ZEB1 | transcriptional repressor; activator of immune and inflammatory responses; | ovary, uterus | EP300, CTBP2, DRAP1, CTBP1, USP7 |
ZEB2 | transcriptional repressor; activator of immune and inflammatory responses; | ovary, uterus, placenta | CTBP1, MTA1, MTA2, HDAC1, HDAC2 |
BDNF | cell proliferation and survival; regulation of immune and inflammation responses | ovary, uterus | NTRK2, NTF3, NTF4, SORCS2, SORT1 |
CLCC1 | cell integrity; inflammation response | ovary, uterus, placenta | SPNS3, CUL3, HNRNPL, COX15, PTPRG, RNF4 |
SON | regulation of cell cycle; inflammation response | ovary, uterus, placenta | SRPK2, YWHAB, YWHAG, TRIP6, PRPF40A |
ARID4A | DNA methylation; cell differentiation and proliferation | ovary, uterus, placenta | SAP30, BRMS1, ING2, RB1, HDAC1 |
ARID4B | DNA methylation; cell differentiation and proliferation | ovary, uterus, placenta | SIN3A, SAP130, HDAC1, HDAC2, ING2 |
EZH1 | innate immune response; promotes TLR-triggered inflammatory cytokine production | ovary, uterus, placenta | SUZ2, EED, PHF1, PHF19, JARID2 |
FGD4 | cell shape and integrity | ovary, uterus, placenta | ACTA1, GOLM1, FGD3, PRKCA, CAPZA2 |
RB1 | regulates cell growth; immune and inflammatory response; | ovary, uterus, placenta | CDK2, CDK6, CEBPB, AHR, PPP1CA, RBBP9 |
DNA2 | maintenance of mitochondrial and nuclear DNA stability; inflammation (ROS) | ovary, uterus | CIAO1, MMS19, RPA1, UPF1, FEN1 |
SMARCAD1 | cell stability; mediates inflammation; | ovary, uterus, placenta | NUMA1, TRIM28, SUMO2, ZNF562, SUPT16H, DOK4 |
TTLL4 | antiviral; immune and inflammation response | ovary, uterus | BRD7, NAE1, LZTS2, ATG16L1, KIAA12429 |
ZFYVE26 | autophagy | ovary, uterus, placenta | PNMA5, TDO2, TFIP11, ALAS1, CEP44 |
PIK3CB | cell adhesion; immune (PIK3) and inflammation responses | ovary, uterus, placenta | PIK3R1, PIK3R2, PIK3R3, HCK, IRS1 |
EGLN3 | hypoxia, immune and inflammation response | ovary, uterus | SIM1, SIM2, EPAS1, HIF1A, SIAH2 |
EZR | regulation of cytoskeleton and plasma membrane; immune response; proinflammation; | ovary, uterus, placenta | MSN, ARHGDIA, SLC9A3R1, SLC9A3R2, FADD |
MLLT4 | cell adhesion; innate immune response; chronic inflammation | ovary, uterus | PVRL1, PVRL2, PVRL3, SSX2IP, HRAS |
PLCB1 | mediates intercellular signaling; regulation of immune response; vascular inflammation | ovary, uterus, placenta | SLC9A3R1, KRAS, GNAQ, TRPC3, GNA11 |
Interferon Stimulated Genes | Upregulated miRNAs | Downregulated miRNAs |
ISG15 | miR-27b; | miR-148b; |
RSAD2 | miR-26b; miR-27b; | miR-17; |
CTSL | miR-15b; | miR-200b; let-7d; |
CXCL family | CXCL2; CXCL5; miR-15b; CXCL6; CXCL9; CXCL13; miR-26b; CXCL1; CXCL2; CXCL10; CXCL11; CXCL12; CXCL16; miR-27b; CXCL1; CXCL3; CXCL8; miR-101-3p; CXCL6; CXCL8; miR-106a; CXCL10; miR-139; CXCL3; miR-142; CXCL2; miR-215; | CXCL1; CXCL16; miR-205; CXCL1; miR-214; CXCL2; miR-192; CXCL6; CXCL11; miR30b; CXCL10; CXCL12; miR-31; CXCL1; CXCL2; CXCL5; CXCL8; miR-148b; CXCL8; miR-17; |
solute-carrier (SLC) gene family | miR-26b; miR-27b; miR-29b; miR-101; miR-106a; miR-139; miR-142; miR-145; miR-148; miR-15b; miR-17; miR-18b; miR-215; miR-218; miR-22; | miR-200b; miR-205; miR-214; miR-30b; miR-31; let-7a; let-7d; let-7g; miR-10a; miR-122; miR-148b; miR-17; miR-192; miR-199a; |
ID | Degree † | Betweenness ‡ | Endometrial Protein Expression * | Potential Role in Uterine Disease |
---|---|---|---|---|
Upregulated lncRNA | ||||
KCNQ1OT1 | 11 | 4996.728 | 4.7 | dysregulation could potentially affect the expression of genes involved in immune responses and tissue repair |
NEAT1 | 11 | 4392.385 | 34.6 | increased expression during uterine infections may contribute to chronic inflammation and impaired tissue repair, leading to subfertility |
XIST | 10 | 3645.005 | - | aberrant expression could influence the expression of genes involved in immune regulation and tissue remodeling in the uterus |
HELLPAR | 7 | 2116.966 | - | ubiquitination and cell cycle progression; upregulation during uterine infections may exacerbate inflammation and disrupt normal uterine function, contributing to fertility issues |
TUG1 | 7 | 2007.66 | 58.7 | altered TUG1 expression could affect epithelial cell function and immune responses, potentially leading to uterine disease and subfertility |
Upregulated circRNA | ||||
NBPF9 | 13 | 22,830.78 | 6.1 | not well-established, but dysregulation could potentially affect gene expression pathways related to immune responses and tissue repair |
NBPF10 | 13 | 22,830.78 | 4.9 | not well-established, but dysregulation could potentially affect gene expression pathways related to immune responses and tissue repair |
RANBP2 | 13 | 22,830.78 | 130.5 | altered expression could disrupt the transport of proteins and RNAs essential for uterine cell function, contributing to disease progression |
RGPD4 | 13 | 22,830.78 | 0.2 | upregulation during uterine infections may affect signaling pathways crucial for immune responses and tissue remodeling, leading to persistent inflammation and fertility issues |
RGPD6 | 13 | 22,830.78 | 0.0 | upregulation during uterine infections may affect signaling pathways crucial for immune responses and tissue remodeling, leading to persistent inflammation and fertility issues |
Upregulated sncRNA | ||||
SNORD17 | 2 | 1518 | - | upregulation during uterine disease could indicate an attempt to correct RNA modifications, but persistent changes may reflect ongoing cellular stress and dysfunction |
RNA5SP404 | 2 | 1450 | - | altered expression during uterine infections may disrupt protein synthesis in uterine cells, impairing their function and contributing to disease progression |
RN7SL571P | 2 | 858 | - | upregulation during uterine disease could indicate an attempt to enhance protein targeting to the endoplasmic reticulum, but persistent alterations may disrupt normal cellular processes |
RNA5SP505 | 2 | 182.5 | - | altered expression during uterine infections may disrupt protein synthesis in uterine cells, impairing their function and contributing to disease progression |
RNA5SP516 | 2 | 182.5 | - | altered expression during uterine infections may disrupt protein synthesis in uterine cells, impairing their function and contributing to disease progression |
Downregulated lncRNA | ||||
KCNQ1OT1 | 14 | 6142.142 | 4.7 | downregulation may lead to loss of imprinting and dysregulated gene expression, potentially affecting uterine cell function and immune responses |
NEAT1 | 14 | 6084.598 | 34.6 | downregulation of NEAT1 has been associated with impaired immune responses and tissue repair; in dairy cows, decreased NEAT1 expression during uterine infections may contribute to chronic inflammation and impaired tissue repair, leading to subfertility |
XIST | 13 | 5449.031 | - | aberrant expression of XIST could influence the expression of genes involved in immune regulation and tissue remodeling in the uterus; downregulation may disrupt these processes, contributing to uterine disease progression |
SNHG16 | 9 | 2011.856 | - | implicated in various biological processes, including cell proliferation and differentiation; altered expression could affect epithelial cell function and immune responses in the uterus, potentially leading to uterine disease and subfertility |
HCG18 | 8 | 1573.84 | - | downregulation of may impair trophoblast invasion and placental development, leading to uterine dysfunction and fertility issues |
Downregulated circRNA | ||||
NBPF9 | 14 | 30,638.8 | 6.1 | dysregulation could potentially affect gene expression pathways related to immune responses and tissue repair |
UBR4 | 11 | 30,638.8 | 23.8 | altered expression could disrupt the degradation of proteins essential for uterine cell function, contributing to disease progression |
KPNA6 | 10 | 30,638.8 | 41.6 | downregulation could disrupt the transport of proteins and RNAs essential for uterine cell function, contributing to disease progression |
MACF1 | 10 | 30,638.8 | 154 | altered expression could affect the structural integrity of uterine cells, impairing tissue repair and immune responses |
USP24 | 10 | 30,638.8 | 12.6 | downregulation could disrupt the regulation of protein degradation pathways, affecting uterine cell function and contributing to disease progression |
Downregulated sncRNA | ||||
RNY3P15 | 2 | 312 | - | downregulation may impair RNA processing and affect the expression of genes involved in immune responses and tissue repair in the uterus |
RNY1P2 | 2 | 217 | - | altered expression could affect the processing of precursor RNAs, leading to dysregulated gene expression and contributing to uterine disease |
RNU4ATAC4P | 2 | 183 | - | downregulation may impair RNA splicing, affecting the expression of genes involved in immune responses and tissue repair in the uterus |
SNORA66 | 2 | 183 | - | downregulation during uterine disease could indicate an attempt to correct RNA modifications, but persistent changes may reflect ongoing cellular stress and dysfunction |
RNY1P13 | 2 | 172 | - | altered expression could affect the processing of precursor RNAs, leading to dysregulated gene expression and contributing to uterine disease |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasimanickam, R.; Ferreira, J.; Kasimanickam, V. Integrative Analysis of Differentially Expressed miRNAs and Noncoding RNA Networks Reveals Molecular Mechanisms Underlying Metritis in Postpartum Dairy Cows. Curr. Issues Mol. Biol. 2025, 47, 643. https://doi.org/10.3390/cimb47080643
Kasimanickam R, Ferreira J, Kasimanickam V. Integrative Analysis of Differentially Expressed miRNAs and Noncoding RNA Networks Reveals Molecular Mechanisms Underlying Metritis in Postpartum Dairy Cows. Current Issues in Molecular Biology. 2025; 47(8):643. https://doi.org/10.3390/cimb47080643
Chicago/Turabian StyleKasimanickam, Ramanathan, Joao Ferreira, and Vanmathy Kasimanickam. 2025. "Integrative Analysis of Differentially Expressed miRNAs and Noncoding RNA Networks Reveals Molecular Mechanisms Underlying Metritis in Postpartum Dairy Cows" Current Issues in Molecular Biology 47, no. 8: 643. https://doi.org/10.3390/cimb47080643
APA StyleKasimanickam, R., Ferreira, J., & Kasimanickam, V. (2025). Integrative Analysis of Differentially Expressed miRNAs and Noncoding RNA Networks Reveals Molecular Mechanisms Underlying Metritis in Postpartum Dairy Cows. Current Issues in Molecular Biology, 47(8), 643. https://doi.org/10.3390/cimb47080643