Drought is a complex and interconnected natural phenomenon, involving multiple drought types that mutually influence each other. To capture this complexity, various composite drought indices have been developed using diverse methodologies. Traditionally, Principal Component Analysis (PCA) has served as the primary method for
[...] Read more.
Drought is a complex and interconnected natural phenomenon, involving multiple drought types that mutually influence each other. To capture this complexity, various composite drought indices have been developed using diverse methodologies. Traditionally, Principal Component Analysis (PCA) has served as the primary method for extracting index weights, predominantly capturing linear relationships among variables. This study proposes an innovative approach by employing Independent Component Analysis (ICA) to develop an ICA-based Composite Drought Index (ICDI), capable of addressing both linear and nonlinear interdependencies. Three drought indices—representing meteorological, hydrological, and agricultural droughts—were integrated. Specifically, the Standardized Precipitation Index (SPI) was adopted as the meteorological drought indicator, whereas the Standardized Reservoir Supply Index (SRSI) was utilized to represent both hydrological (SRSI(H)) and agricultural (SRSI(A)) droughts. The ICDI was derived by extracting optimal weights for each drought index through ICA, leveraging the optimization of non-Gaussianity. Furthermore, constraints (referred to as ICDI-C) were introduced to ensure all index weights were positive and normalized to unity. These constraints prevented negative weight assignments, thereby enhancing the physical interpretability and ensuring that no single drought index disproportionately dominated the composite. To rigorously assess the performance of ICDI, a PCA-based Composite Drought Index (PCDI) was developed for comparative analysis. The evaluation was carried out through three distinct performance metrics: difference, model, and alarm performance. The difference performance, calculated by subtracting composite index values from individual drought indices, indicated that PCDI and ICDI-C outperformed ICDI, exhibiting comparable overall performance. Notably, ICDI-C demonstrated a superior preservation of SRSI(H) values, yielding difference values closest to zero. Model performance metrics (Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and correlation) highlighted ICDI’s comparatively inferior performance, characterized by lower correlations and higher RMSE and MAE. Conversely, PCDI and ICDI-C exhibited similar performance across these metrics, though ICDI-C showed notably higher correlation with SRSI(H). Alarm performance evaluation (False Alarm Ratio (FAR), Probability of Detection (POD), and Accuracy (ACC)) further confirmed ICDI’s weakest reliability, with notably high FAR (up to 0.82), low POD (down to 0.13), and low ACC (down to 0.46). PCDI and ICDI-C demonstrated similar results, although PCDI slightly outperformed ICDI-C as meteorological and agricultural drought indicators, whereas ICDI-C excelled notably in hydrological drought detection (SRSI(H)). The results underscore that ICDI-C is particularly adept at capturing hydrological drought characteristics, rendering it especially valuable for water resource management—a critical consideration given the significance of hydrological indices such as SRSI(H) in reservoir management contexts. However, ICDI and ICDI-C exhibited limitations in accurately capturing meteorological (SPI(6)) and agricultural droughts (SRSI(A)) relative to PCDI. Thus, while the ICA-based composite drought index presents a promising alternative, further refinement and testing are recommended to broaden its applicability across diverse drought conditions and management contexts.
Full article