Characterizing Drought Patterns and Vegetation Responses in Northeast China: A Multi-Temporal-Scale Analysis Using the SPI and NDVI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Regionfour Distinct Seasons: Warm and Rainy Summers and Cold and Dry Winters
2.2. Data Source
2.2.1. Precipitation Data
2.2.2. Land Use Type
2.2.3. Normalized Difference Vegetation Index (NDVI)
2.3. Methods
2.3.1. Standardized Precipitation Index (SPI)
2.3.2. Run Theory
2.3.3. Trend Analysis
2.3.4. Correlation Analysis
3. Results
3.1. Evaluation of Precision of Precipitation Data
3.2. Drought Evolution Trends and Response to Precipitation
3.3. Characteristics of Spatial and Temporal Changes in Drought
3.3.1. Characteristics of Spatial and Temporal Changes in Drought Frequency
3.3.2. Characteristics of Spatial and Temporal Changes in Drought Duration
3.3.3. Characteristics of Spatial and Temporal Changes in Drought Intensity
3.3.4. Characteristics of Spatial and Temporal Changes in Drought Severity
4. Discussion
4.1. Response of Different Land Use Types to Drought Characteristics
4.2. Trends in Vegetation and Response to Drought Trends in Vegetation and Response to Drought
5. Conclusions
- The SPI-30 index is most sensitive to drought identification. In terms of drought characteristics, the Liaohe Plain, Sanjiang Plain, and Songnen Plain experienced the most frequent, severe, and prolonged droughts in 2009 and 2011, with less severe droughts in 2018 and 2021. These findings correlate with the trends in total annual precipitation across the three plains. Spatially, drought trends were more pronounced in the northern part of the Northeast region, while drought conditions eased in the central and southern parts.
- From the perspective of different land use types, grasslands exhibit greater overall changes and are more sensitive to drought, while wetlands show relatively slower changes and weaker responses to drought. In comparison, dry cropland and grasslands collectively experience a slightly more severe state of drought, whereas woodlands and wetlands are less severely affected.
- Since 2008, vegetation in Northeast China has exhibited a significant greening trend. During the crop growth period, the vegetation cover of the three plains (Liaohe Plain, Sanjiang Plain, and Songnen Plain) has shown a significant increasing trend, with R2 values of 0.78, 0.62, and 0.59, respectively. The correlation between the SPI and NDVI was stronger during the crop growth period. Specifically, the correlation was most significant between grassland and dry cropland and slightly weaker between woodland and wetland, and the most significant correlation was observed between the SPI and NDVI with a one-month lag.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, S.; Singh, V.P.; Song, X.; Kang, Y. A probability distribution for hydrological drought duration. J. Hydrol. 2021, 599, 126370. [Google Scholar] [CrossRef]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Gampe, D.; Zscheischler, J.; Reichstein, M.; O’Sullivan, M.; Smith, W.K.; Sitch, S.; Buermann, W. Increasing impact of warm droughts on northern ecosystem productivity over recent decades. Nat. Clim. Chang. 2021, 11, 772–779. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Mary, N.; Deborah, B.; Brian, F.; Denise, G.; Tonya, H.; Michael, H.; Markéta, P.; Claire, S.; Kelly, S.; Mark, S. Linking drought impacts to drought severity at the state level. Bull. Am. Meteorol. Soc. 2020, 101, E1312–E1321. [Google Scholar]
- Obasi, G.O.P. WMO’s role in the international decade for natural disaster reduction. Bull. Am. Meteorol. Soc. 1994, 75, 1655–1661. [Google Scholar] [CrossRef]
- Su, B.; Huang, J.; Mondal, S.K.; Zhai, J.; Wang, Y.; Wen, S.; Gao, M.; Lv, Y.; Jiang, S.; Jiang, T. Insight from CMIP6 SSP-RCP scenarios for future drought characteristics in China. Atmos. Res. 2021, 250, 105375. [Google Scholar] [CrossRef]
- Asadnabizadeh, M. Status of impacts of extreme climate events. Weather Clim. Extrem. 2020, 13, 1. [Google Scholar]
- Parry, M.; Canziani, O.; Palutikof, J.; van der Linden, P.; Hanson, C. Climate Change 2007: Impacts, Adaptation and Vulnerability; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; pp. 551–712. [Google Scholar]
- Intergovernmental Panel on Climate Change. Climate Change 2021: The Physical Science Basis; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021; Volume 49. [Google Scholar]
- Wilhite, D.A.; Glantz, M. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef]
- Ho, S.; Tian, L.; Disse, M.; Tuo, Y. A new approach to quantify propagation time from meteorological to hydrological drought. J. Hydrol. 2021, 603, 127056. [Google Scholar] [CrossRef]
- Liu, X.F.; Zhu, X.F.; Pan, Y.Z.; Bai, J.J.; Li, S.S. Performance of different drought indices for agriculture drought in the North China Plain. J. Arid Land 2018, 10, 507–516. [Google Scholar] [CrossRef]
- Li, Y.; Zhuang, J.; Bai, P.; Yu, W.; Zhao, L.; Huang, M.; Xing, Y. Evaluation of three long-term remotely sensed precipitation estimates for meteorological drought monitoring over China. Remote Sens. 2023, 15, 86. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Shao, X. A tree-ring-based drought reconstruction from 1466 to 2013 CE for the Aksu area, western China. Clim. Chang. 2021, 165, 39. [Google Scholar] [CrossRef]
- Yinke, Y.; Qiang, S.; Pengkun, S. Reconstruction of PDSI sequence in central part of Yellow River based on tree rings density data. Water 2022, 40, 1–4. [Google Scholar]
- Ying, D.; Wen, W.; Xiao-Jun, C. Applied Analyses on Palmer, SPEI and CI indices of drought process in Yangtze-Huaihe River basins during winter of 2010/spring of 2011. J. Plateau Meteorol. 2013, 32, 1126–1139. [Google Scholar]
- Liu, C.; Yang, C.; Yang, Q.; Wang, J.J.S.R. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef]
- Xue, L.; Bai, Q.; Liu, Y. Propagation law from meteorological drought to hydrological drought in the Tarim River Basin under the impact of human activities. Water Resour. Prot. 2023, 39, 57. [Google Scholar]
- Wang, Q.; Zhang, R.; Qi, J.; Zeng, J.; Wu, J.; Shui, W.; Wu, X.; Li, J. An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Sci. Data 2022, 9, 124. [Google Scholar] [CrossRef]
- Rahimzadeh-Bajgiran, P.; Berg, A.A.; Champagne, C.; Omasa, K. Estimation of soil moisture using optical/thermal infrared remote sensing in the Canadian Prairies. ISPRS J. Photogramm. Remote Sens. 2013, 83, 94–103. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, S. Drought monitoring and analysis of Huanghuai Hai plain based on TRMM precipitation data. Remote Sens. Nat. Resour. 2016, 28, 122–129. [Google Scholar]
- Shao-E, Y.; Bing-fang, W. Calculation of monthly precipitation anomaly percentage using web-serviced remote sensing data. In Proceedings of the 2010 2nd International Conference on Advanced Computer Control, Shenyang, China, 27–29 March 2010; pp. 621–625. [Google Scholar]
- Carlson, T.N.; Gillies, R.R.; Perry, E.M. A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sens. Rev. 1994, 9, 161–173. [Google Scholar] [CrossRef]
- Tucker, C.J.; Justice, C.O.; Prince, S.D. Monitoring the grasslands of the Sahel 1984-1985. Int. J. Remote Sens. 1986, 7, 1571–1581. [Google Scholar] [CrossRef]
- Wang, H.; Lin, H.; Liu, D. Remotely sensed drought index and its responses to meteorological drought in Southwest China. Remote Sens. Lett. 2014, 5, 413–422. [Google Scholar] [CrossRef]
- Kidd, C.; Huffman, G.; Maggioni, V.; Chambon, P.; Oki, R. The global satellite precipitation constellation: Current status and future requirements. Bull. Am. Meteorol. Soc. 2021, 102, E1844–E1861. [Google Scholar] [CrossRef]
- Tarek, M.; Brissette, F.P.; Arsenault, R. Evaluation of the ERA5 reanalysis as a potential reference dataset for hydrological modelling over North America. Hydrol. Earth Syst. Sci. 2020, 24, 2527–2544. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Q.; Liu, X.; Sun, J.; Chen, L.; Wu, Y.; Hu, B.; Zhang, G. Flash droughts in a hotspot region: Spatiotemporal patterns, possible climatic drivings and ecological impacts. Weather Clim. Extrem. 2024, 45, 100690. [Google Scholar] [CrossRef]
- Qin, Z.; Tang, H.; Li, W.; Zhang, H.; Zhao, S.; Wang, Q. Modelling impact of agro-drought on grain production in China. Int. J. Disaster Risk Reduct. 2014, 7, 109–121. [Google Scholar] [CrossRef]
- Cong, D.; Zhao, S.; Chen, C.; Duan, Z. Characterization of droughts during 2001–2014 based on remote sensing: A case study of Northeast China. Ecol. Inform. 2017, 39, 56–67. [Google Scholar] [CrossRef]
- Ma, Z.; Fu, C.; Yang, Q.; Zheng, Z.; Lu, M.; Li, M.; Duan, Y.; Chen, L. Drying Trend in Northern China and Its Shift during 1951-2016. Chin. J. Atmos. Sci. 2018, 42, 951–961. [Google Scholar]
- Hu, Y.P.; Zhou, B.T.; Li, H.X.; Han, T.T.; Wang, H.J. Enhanced intensity of interannual variability of may drought in Northeast China after 2000 and its connection with the Barents Sea ice. J. Geophys. Res.-Atmos. 2023, 128, e2022JD038302. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Lu, X.; Rao, X.Q.; Dong, W.J. Model evaluation and uncertainties in projected changes of drought over northern China based on CMIP5 models. Int. J. Climatol. 2021, 41, E3085–E3100. [Google Scholar] [CrossRef]
- Zhang, M.; Yuan, X.; Zeng, Z.; Pan, M.; Wu, P.; Xiao, J.; Keenan, T.F. A pronounced decline in northern vegetation resistance to flash droughts from 2001 to 2022. Nat. Commun. 2025, 16, 2984. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Huang, S.Z.; Singh, V.P.; Huang, Q.; Zhang, H.B.; Leng, G.Y.; Gao, L.; Li, P.; Guo, W.W.; Peng, J. Terrestrial ecosystem resilience to drought stress and driving mechanisms thereof in the Yellow River Basin, China. J. Hydrol. 2025, 649, 132480. [Google Scholar] [CrossRef]
- Du, Y.; Lv, S.; Wang, F.; Xu, J.; Zhao, H.; Tang, L.; Wang, H.; Zhang, H. Investigation into the temporal impacts of drought on vegetation dynamics in China during 2000 to 2022. Sci. Rep. 2025, 15, 6351. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, Z.; Huang, F.; Yang, X.; Liu, Z.; Wan, W.; Wang, J.; Xu, Y.; Li, Z.; Ren, T. Ensuring National Food Security by Strengthening High-productivity Black Soil Granary in Northeast China. Bull. Chin. Acad. Sci. 2021, 36, 1184–1193. [Google Scholar]
- Nayyeri, M.; Hosseini, S.A.; Javadi, S.; Sharafati, A. Spatial differentiation characteristics of groundwater stress index and its relation to land use and subsidence in the Varamin Plain, Iran. Phys. Chem. Earth Parts A/B/C 2021, 30, 339–357. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, Z.; Feng, S.; Zhang, X.; Xu, Y.; Hao, F. Agricultural drought prediction in China based on drought propagation and large-scale drivers. Agric. Water Manag. 2021, 255, 107028. [Google Scholar] [CrossRef]
- Change, O.C. Climate Change 2001: Impacts, Adaptation and Vulnerability; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007; Volume 52, p. 1. [Google Scholar]
- Ceppi, A.; Achite, M.; Toubal, A.; Caloiero, T. Mapping drought characteristics in northern Algerian Basins using the ERA5-Land dataset. Sci. Rep. 2025, 15, 10720. [Google Scholar] [CrossRef]
- Ozocak, M.; Akay, A.O.; Esin, A.İ.; Yurtseven, H.; Akgul, M. A new framework to spatial and temporal drought analysis for 1990–2020 period with Mann–Kendall and innovative trend analysis methods in Turkey. Nat. Hazards 2024, 120, 1463–1517. [Google Scholar] [CrossRef]
- Piraei, R.; Niazkar, M.; Gangi, F.; Eryılmaz Türkkan, G.; Afzali, S. Short-term drought forecast across two different climates using machine learning models. Water 2024, 11, 163. [Google Scholar] [CrossRef]
- Venturi, S.; Dunea, D.; Mateescu, E.; Virsta, A.; Petrescu, N.; Casadei, S.; Research, P. SPEI and SPI correlation in the study of drought phenomena in Umbria region (central Italy). Environ. Sci. Pollut. Res. 2025, 32, 168–188. [Google Scholar] [CrossRef]
- Yin, M.J.; Yin, Y.H.; Zong, X.Z.; Deng, H.Y. Global vegetation vulnerability to drought is underestimated due to the lagged effect. Agric. For. Meteorol. 2025, 364, 110451. [Google Scholar] [CrossRef]
- Li, C.; You, S.; Wu, Y. Drought characteristics and dominant meteorological factors driving drought in spring maize growing season in northeast China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 97–106. [Google Scholar]
- Bréda, N.; Huc, R.; Granier, A.; Dreyer, E. Temperate forest trees and stands under severe drought: A review of ecophysiological responses, adaptation processes and long-term consequences. Ann. For. Sci. 2006, 63, 625–644. [Google Scholar] [CrossRef]
- Li, W.; Pacheco-Labrador, J.; Migliavacca, M.; Miralles, D.; Hoek van Dijke, A.; Reichstein, M.; Forkel, M.; Zhang, W.; Frankenberg, C.; Panwar, A.; et al. Widespread and complex drought effects on vegetation physiology inferred from space. Nat. Commun. 2023, 14, 4640. [Google Scholar] [CrossRef]
- Fathi-Taperasht, A.; Shafizadeh-Moghadam, H.; Minaei, M.; Xu, T. Influence of drought duration and severity on drought recovery period for different land cover types: Evaluation using MODIS-based indices. Ecol. Indic. 2022, 141, 109093. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, J.; Wang, X.; Peng, X.; Cai, H. Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Sci. Total Environ. 2020, 716, 137166. [Google Scholar] [CrossRef]
- Lesk, C.; Coffel, E.; Winter, J.; Ray, D.; Zscheischler, J.; Seneviratne, S.I.; Horton, R. Stronger temperature–moisture couplings exacerbate the impact of climate warming on global crop yields. Nat. Food 2021, 2, 683–691. [Google Scholar] [CrossRef]
- Zhao, A.; Yu, Q.; Feng, L.; Zhang, A.; Pei, T. Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau. J. Environ. Manag. 2020, 261, 110214. [Google Scholar] [CrossRef] [PubMed]
- Avetisyan, D.; Borisova, D.; Velizarova, E. Integrated evaluation of vegetation drought stress through satellite remote sensing. Forests 2021, 12, 1691. [Google Scholar] [CrossRef]
- Tangjialeke, W.; Zou, J.; Ding, J.; Yahefujiang, H.; Huang, S.; Li, J. Analysis of drought response thresholds and drought-causing factors of central Asian vegetation. Ecol. Indic. 2024, 169, 111856. [Google Scholar] [CrossRef]
- Fathi-Taperasht, A.; Shafizadeh-Moghadam, H.; Sadian, A.; Xu, T.; Nikoo, M.R. Drought-induced vulnerability and resilience of different land use types using time series of MODIS-based indices. Int. J. Disaster Risk Reduct. 2023, 91, 103714. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, G. A review of hydrological regulation functions of watershed wetlands. Adv. Water Sci. 2021, 32, 458–469. [Google Scholar]
- Liu, J.; Ma, S.; Li, S. Changes in vegetation NDVI from 1982 to 2016 and its responses to climate change in the black-soil area of Northeast China. Remote Sens. 2018, 38, 7647–7657. [Google Scholar]
- Yang, Z.; Li, W.; Li, L.; Lei, S.; Tian, J.; Wang, G.; Sang, X. Spatiotemporal variation and influencing factors of vegetation growth in mining areas: A case study in a colliery in northern China. Sustainability 2022, 14, 9585. [Google Scholar] [CrossRef]
- Shi, S.; Li, W.; Ding, Y.; Lin, X.; Zhai, Y. Spatiotemporal evolution and influencing factors of vegetation in Northeast China. China Environ. Sci. 2023, 43, 276–289. [Google Scholar]
- Shao, Q.; Liu, S.; Ning, J.; Liu, G.; Yang, F.; Zhang, X.; Niu, L.; Huang, H.; Fan, J.; Liu, J. Remote sensing assessment of the ecological benefits provided by national key ecological projects in China during 2000–2019. J. Geogr. Sci. 2023, 33, 1587–1613. [Google Scholar] [CrossRef]
- Sun, H.; Tian, X.; Yan, M.; Li, Z.; Chen, E.; Sun, S.; Wang, C. Analysis of dynamic changes of fractional vegetation coverage and influencing factors of the Genhe in the Great Khingan of Inner Mongolia. Remote Sens. Technol. Appl. 2018, 33, 1159–1169. [Google Scholar]
- Wang, G.; Han, L.; Zhang, Y. Temporal variation and spatial distribution of NDVI in northeastern China. J. Beijing For. Univ. 2012, 34, 86–91. [Google Scholar]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Trigo, R.; López-Moreno, J.I.; Azorín-Molina, C.; Pasho, E.; Lorenzo-Lacruz, J.; Revuelto, J.; et al. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2013, 110, 52–57. [Google Scholar] [CrossRef]
- Zhang, G.; Su, X.; Hao, L.; Wu, H. Response of vegetation to drought based on NDVI and scPDSI data sets from 1982 to 2015 across China. Trans. Chin. Soc. Agric. Eng. 2019, 35, 145–151. [Google Scholar]
- Liu, L.B.; Peng, S.S.; AghaKouchak, A.; Huang, Y.Y.; Li, Y.; Qin, D.H.; Xie, A.L.; Li, S.C. Broad consistency between satellite and vegetation model estimates of net primary productivity across global and regional scales. J. Geophys. Res.-Biogeosciences 2018, 123, 3603–3616. [Google Scholar] [CrossRef]
- Luo, X.; Li, Y.; Yin, H.; Sui, M. Response of NDVI to SPEI at different temporal scales in Northeast China. Chin. J. Ecol. 2020, 39, 412–421. [Google Scholar]
- Geng, G.; Yang, R.; Liu, L. Downscaled solar-induced chlorophyll fluorescence has great potential for monitoring the response of vegetation to drought in the Yellow River Basin, China: Insights from an extreme event. Ecol. Indic. 2022, 138, 108801. [Google Scholar] [CrossRef]
- Zou, D.; Zhou, Y.; Dong, X.; Lin, J.; Wang, H.; Liang, J. Spatiotemporal association and attribution analysis of vegetation and drought in the Yangtze River Basin. Remote Sens. Technol. Appl. 2024, 39, 1183–1195. [Google Scholar]
- Xu, H.J.; Wang, X.P.; Zhao, C.Y.; Yang, X.M. Assessing the response of vegetation photosynthesis to meteorological drought across northern China. Sci. Total Environ. 2021, 32, 20–34. [Google Scholar] [CrossRef]
- Craine, J.M.; Ocheltree, T.W.; Nippert, J.B.; Towne, E.G.; Skibbe, A.M.; Kembel, S.W.; Fargione, J.E. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Chang. 2012, 3, 63–67. [Google Scholar] [CrossRef]
- Fan, Y.; Miguez-Macho, G.; Jobbágy, E.G.; Jackson, R.B.; Otero-Casal, C. Hydrologic regulation of plant rooting depth. Proc. Natl. Acad. Sci. USA 2017, 114, 10572–10577. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; van der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [PubMed]
Drought Level | SPI |
---|---|
No Drought | SPI > −0.5 |
Light Drought | −1.0 < SPI ≤ −0.5 |
Moderate Drought | −1.5 < SPI ≤ −1.0 |
Severe Drought | −2.0 < SPI ≤ −1.5 |
Extreme Drought | SPI ≤ −2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Liu, Y.; Chen, L.; Sun, J.; Sun, Y.; Peng, C.; Wang, Y.; Du, M.; Wu, Y. Characterizing Drought Patterns and Vegetation Responses in Northeast China: A Multi-Temporal-Scale Analysis Using the SPI and NDVI. Sustainability 2025, 17, 5288. https://doi.org/10.3390/su17125288
Zhang Y, Liu Y, Chen L, Sun J, Sun Y, Peng C, Wang Y, Du M, Wu Y. Characterizing Drought Patterns and Vegetation Responses in Northeast China: A Multi-Temporal-Scale Analysis Using the SPI and NDVI. Sustainability. 2025; 17(12):5288. https://doi.org/10.3390/su17125288
Chicago/Turabian StyleZhang, Yuxuan, Yuanyuan Liu, Liwen Chen, Jingxuan Sun, Yingna Sun, Can Peng, Yangguang Wang, Min Du, and Yanfeng Wu. 2025. "Characterizing Drought Patterns and Vegetation Responses in Northeast China: A Multi-Temporal-Scale Analysis Using the SPI and NDVI" Sustainability 17, no. 12: 5288. https://doi.org/10.3390/su17125288
APA StyleZhang, Y., Liu, Y., Chen, L., Sun, J., Sun, Y., Peng, C., Wang, Y., Du, M., & Wu, Y. (2025). Characterizing Drought Patterns and Vegetation Responses in Northeast China: A Multi-Temporal-Scale Analysis Using the SPI and NDVI. Sustainability, 17(12), 5288. https://doi.org/10.3390/su17125288