Understanding the Impact of Climatic Events on Optimizing Agricultural Production in Northeast China
Abstract
:1. Introduction
2. Research Framework and Theoretical Basis
3. Materials and Methods
3.1. Study Area
3.2. Data Sources and Their Overview
3.3. Methodology
3.3.1. Econometric Specification
3.3.2. Method-of-Moments Quantile Regression (MM-QR)
3.3.3. Estimation Roadmap
3.3.4. Matrix of Correlations
3.3.5. Pesaran’s CADF Unit Root Test
3.3.6. Panel Cointegration Test Outcomes
4. Results and Discussion
4.1. Method-of-Moments Quantile Regression Results
4.1.1. Comprehensive Grain Production Capacity (CGPC)
4.1.2. Total Sown Area of Crops (TSACs)
4.2. Dumitrescu & Hurlin (2012) [73] Granger Non-Causality Test and Its Results
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faye, B.; Du, G.; Li, Y.; Li, Q.; Diène, J.C.; Mbaye, E.; Kama, R. Connecting the farmers’ knowledge and behaviors: Detection of influencing factors to sustainable cultivated land protection in Thiès Region, Senegal. J. Rural Stud. 2025, 116, 103634. [Google Scholar] [CrossRef]
- Cheng, W.; Li, Y.; Zuo, W.; Du, G.; Stanny, M. Spatio-temporal detection of agricultural disaster vulnerability in the world and implications for developing climate-resilient agriculture. Sci. Total Environ. 2024, 928, 172412. [Google Scholar] [CrossRef] [PubMed]
- Fazal Choudhary, T.; Gupta, M.; Ali Chandio, A. Assessing the barriers to climate change adaptation: Evidence from Western Himalayan Region of India. Clim. Dev. 2025, 1–10. [Google Scholar] [CrossRef]
- Gunapala, R.; Gangahagedara, R.; Wanasinghe, W.C.S.; Samaraweera, A.U.; Gamage, A.; Rathnayaka, C.; Hameed, Z.; Baki, Z.A.; Madhujith, T.; Merah, O. Urban agriculture: A strategic pathway to building resilience and ensuring sustainable food security in cities. Farming Syst. 2025, 3, 100150. [Google Scholar] [CrossRef]
- Onyeaka, H.; Nwauzoma, U.M.; Akinsemolu, A.A.; Tamasiga, P.; Duan, K.; Al-Sharify, Z.T.; Siyanbola, K.F. The ripple effects of climate change on agricultural sustainability and food security in Africa. Food Energy Secur. 2024, 13, e567. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Leip, D.; Rovenskaya, E.; Wildemeersch, M. Risk-adjusted decision making can help protect food supply and farmer livelihoods in West Africa. Commun. Earth Environ. 2024, 5, 101. [Google Scholar] [CrossRef]
- Nor, B.A.; Yusof, Y. Environmental degradation and food security in Somalia. Discov. Sustain. 2025, 6, 75. [Google Scholar] [CrossRef]
- Dai, Z.Z.; Chang, S.; Zhao, G.R.; Duan, J.J.; Liang, H.Y.; Zhu, Z.Y.; Liu, S.L.; Feng, Y.Z.; Wang, X. Unlocking China’s grain yield potential: Harnessing technological and spatial synergies in diverse cropping systems. Agric. Syst. 2025, 226, 104308. [Google Scholar] [CrossRef]
- Feng, X.; Liu, D.; Zhao, J.; Si, W.; Fan, S. Impact of climate change on farmers’ crop production in China: A panel Ricardian analysis. Humanit. Soc. Sci. Commun. 2025, 12, 250. [Google Scholar] [CrossRef]
- Viet Ha, T.T.; Zhou, W. Response of the Northeast China grain market to climate change based on the gravity model approach. Heliyon 2024, 10, e36139. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Faye, B.; Zhang, R.; Gong, X.; Du, G. Farmers’ Willingness to Engage in Ecological Compensation for Crop Rotation in China’s Black Soil Regions. Agriculture 2024, 14, 1320. [Google Scholar] [CrossRef]
- Du, G.; Yao, L.; Han, L.; Bonoua, F. What Should Be Learned from the Dynamic Evolution of Cropping Patterns in the Black Soil Region of Northeast China? A Case Study of Wangkui County, Heilongjiang Province. Land 2023, 12, 1574. [Google Scholar] [CrossRef]
- Dong, M.; Zhao, J.; Li, E.; Liu, Z.; Guo, S.; Zhang, Z.; Cui, W.; Yang, X. Effects of Changing Climate Extremes on Maize Grain Yield in Northeast China. Agronomy 2023, 13, 1050. [Google Scholar] [CrossRef]
- Shah, H.; Hellegers, P.; Siderius, C. Climate risk to agriculture: A synthesis to define different types of critical moments. Clim. Risk Manag. 2021, 34, 100378. [Google Scholar] [CrossRef]
- Zhu, H.; Zhu, X.; Li, Y.; Ao, Y.; Jia, X.; Peng, P.; Li, M.; Li, J. The Spatiotemporal Evolution of Geo-Disaster Resilience in China and the Impact Mechanism of Environmental Governance. Atmosphere 2025, 16, 247. [Google Scholar] [CrossRef]
- Du, G.; Han, L.; Yao, L.; Faye, B. Spatiotemporal Dynamics and Evolution of Grain Cropping Patterns in Northeast China: Insights from Remote Sensing and Spatial Overlay Analysis. Agriculture 2024, 14, 1443. [Google Scholar] [CrossRef]
- He, Q.J.; Zhou, G.S. The climatic suitability for maize cultivation in China. Chin. Sci. Bull. 2012, 57, 395–403. [Google Scholar] [CrossRef]
- Song, Z.; Feng, X.; Lal, R.; Fan, M.; Ren, J.; Qi, H.; Qian, C.; Guo, J.; Cai, H.; Cao, T.; et al. Optimized agronomic management as a double-win option for higher maize productivity and less global warming intensity: A case study of Northeastern China. Adv. Agron. 2019, 157, 251–292. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z. Improving Northeast China’s soybean and maize planting structure through subsidy optimization considering climate change and comparative economic benefit. Land Use Policy 2024, 146, 107319. [Google Scholar] [CrossRef]
- Yin, J.; Wei, D. Study on the Crop Suitability and Planting Structure Optimization in Typical Grain Production Areas under the Influence of Human Activities and Climate Change: A Case Study of the Naoli River Basin in Northeast China. Sustainability 2023, 15, 16090. [Google Scholar] [CrossRef]
- Long, S.; Zhou, S.; He, H.; Zhang, L. Optimizing food crop layout considering precipitation uncertainty: Balancing regional water, carbon, and economic pressures with food security. J. Clean. Prod. 2024, 467, 142881. [Google Scholar] [CrossRef]
- Shun Chan, F.K.; Zhu, Y.-G.; Wang, J.; Chen, J.; Johnson, M.F.; Li, G.; Chen, W.-Q.; Wang, L.; Li, P.; Wang, J. Food security in climatic extremes: Challenges and opportunities for China. Cell Rep. Sustain. 2024, 1, 100013. [Google Scholar] [CrossRef]
- Shirazi, S.Z.; Liu, B.; Liu, Y.; Han, R.; Zhu, Y.; Qiao, O.; Che, H.; Zhang, Y.; Mei, X. Understanding climate variability and its impact on drought occurrences in maize producing regions: Evidence from north of China. Agric. Water Manag. 2024, 306, 109150. [Google Scholar] [CrossRef]
- Diallo, S.; Faye, M.; Nacro, H.B. The rainfall Variability and its Impacts on Yields and Cultivated Areas in Thies region, Senegal. VertigO 2022. [Google Scholar] [CrossRef]
- Heikonen, S.; Heino, M.; Jalava, M.; Siebert, S.; Viviroli, D.; Kummu, M. Climate change threatens crop diversity at low latitudes. Nat. Food 2025, 6, 331–342. [Google Scholar] [CrossRef]
- Yuan, X.; Li, S.; Chen, J.; Yu, H.; Yang, T.; Wang, C.; Huang, S.; Chen, H.; Ao, X. Impacts of Global Climate Change on Agricultural Production: A Comprehensive Review. Agronomy 2024, 14, 1360. [Google Scholar] [CrossRef]
- Furtak, K.; Wolińska, A. The impact of extreme weather events as a consequence of climate change on the soil moisture and on the quality of the soil environment and agriculture—A review. CATENA 2023, 231, 107378. [Google Scholar] [CrossRef]
- Saleem, A.; Anwar, S.; Nawaz, T.; Fahad, S.; Saud, S.; Ur Rahman, T.; Khan, M.N.R.; Nawaz, T. Securing a sustainable future: The climate change threat to agriculture, food security, and sustainable development goals. J. Umm Al-Qura Univ. Appl. Sci. 2024, 1–17. [Google Scholar] [CrossRef]
- Ge, Y.; Fan, L.; Li, Y.; Guo, J.; Niu, H. Gender differences in smallholder farmers’ adoption of crop diversification: Evidence from Shaanxi Plain, China. Clim. Risk Manag. 2023, 39, 100482. [Google Scholar] [CrossRef]
- Dorrío, V.; Queiruga-Dios, A.; Filipe, M.; Costa, P.C.M.; Ángel, M.; Dios, Q.; Yu, Y.; Appiah, D.; Zulu, B.; Asamoah, K.; et al. Integrating Rural Development, Education, and Management: Challenges and Strategies. Sustainability 2024, 16, 6474. [Google Scholar] [CrossRef]
- Teklewold, H.; Adam, R.I.; Marenya, P. What explains the gender differences in the adoption of multiple maize varieties? Empirical evidence from Uganda and Tanzania. World Dev. Perspect. 2020, 18, 100206. [Google Scholar] [CrossRef]
- Cabeza-Ramírez, L.J.; Guerrero-Baena, M.D.; Luque-Vílchez, M.; Sánchez-Cañizares, S.M. Assessing farmers’ intention to adopt drought insurance. A combined perspective from the extended theory of planned behavior and behavioral reasoning theory. Int. J. Disaster Risk Reduct. 2024, 113, 104818. [Google Scholar] [CrossRef]
- Hou, D.; Wang, X. How does agricultural insurance influence grain production scale? An income-mediated perspective. Front. Sustain. Food Syst. 2025, 9, 1524874. [Google Scholar] [CrossRef]
- Centrone, F.A.; Mosso, A.; Busato, P.; Calvo, A. Water Gender Indicators in Agriculture: A Study of Horticultural Farmer Organizations in Senegal. Water 2017, 9, 972. [Google Scholar] [CrossRef]
- Nosov, V.; Chai, Z.; Zhang, X. The Impact of Agricultural Insurance on Planting Structure Adjustment—An Empirical Study from Inner Mongolia Autonomous Region, China. Agriculture 2023, 14, 41. [Google Scholar] [CrossRef]
- Brunelle, T.; Chakir, R.; Carpentier, A.; Dorin, B.; Goll, D.; Guilpart, N.; Maggi, F.; Makowski, D.; Nesme, T.; Roosen, J.; et al. Reducing chemical inputs in agriculture requires a system change. Commun. Earth Environ. 2024, 5, 369. [Google Scholar] [CrossRef]
- Yu, X.; Ma, Y. Spatial and Temporal Analysis of Extreme Climate Events over Northeast China. Atmosphere 2022, 13, 1197. [Google Scholar] [CrossRef]
- Blanco, C.; Raurich, X. Agricultural composition and labor productivity. J. Dev. Econ. 2022, 158, 102934. [Google Scholar] [CrossRef]
- Chiarella, C.; Meyfroidt, P.; Abeygunawardane, D.; Conforti, P. Balancing the trade-offs between land productivity, labor productivity and labor intensity. Ambio 2023, 52, 1618–1634. [Google Scholar] [CrossRef]
- Li, J.; Fei, L.; Li, S.; Xue, C.; Shi, Z.; Hinkelmann, R. Development of “water-suitable” agriculture based on a statistical analysis of factors affecting irrigation water demand. Sci. Total Environ. 2020, 744, 140986. [Google Scholar] [CrossRef]
- Hua, M.; Zhou, Y.; Hao, C.; Yan, Q. Analyzing the Drivers of Agricultural Irrigation Water Demand in Water-Scarce Areas: A Comparative Study of Two Regions with Different Levels of Irrigated Agricultural Development. Sustainability 2023, 15, 14951. [Google Scholar] [CrossRef]
- Qorri, D.; Pergéné Szabó, E.; Felföldi, J.; Kovács, K. The Role of Human Resource Management in Agricultural Labor-Saving Technologies: An Integrative Review and Science Mapping. Agriculture 2024, 14, 1144. [Google Scholar] [CrossRef]
- Shan, W.; Zhang, C.; Guo, Y.; Qiu, L. Mapping the Thermal State of Permafrost in Northeast China Based on the Surface Frost Number Model. Remote Sens. 2022, 14, 3185. [Google Scholar] [CrossRef]
- Du, G.; Wang, X.; Wang, J.; Liu, Y.; Zhang, H. Analysis of the Spatial–Temporal Pattern of the Newly Increased Cultivated Land and Its Vulnerability in Northeast China. Land 2023, 12, 796. [Google Scholar] [CrossRef]
- Yang, S.; Li, Z.; Zhou, J.; Gao, Y.; Cui, X. Evolving patterns of agricultural production space in China: A network-based approach. Geogr. Sustain. 2024, 5, 121–134. [Google Scholar] [CrossRef]
- Hu, J.; Lu, H.; Song, K.; Zhu, B. Vegetable Fields Mapping in Northeast China Based on Phenological Features. Agronomy 2025, 15, 307. [Google Scholar] [CrossRef]
- Guo, K.; Ji, Q.; Zhang, D. A dataset to measure global climate physical risk. Data Br. 2024, 54, 110502. [Google Scholar] [CrossRef]
- Climate Physical Risk Index (CPRI). Available online: https://figshare.com/articles/dataset/Climate_Physical_Risk_Index_CPRI_/25562229/1 (accessed on 28 May 2025).
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Halidu, O.B.; Mohammed, A.; William, C. Environmental tax and global income inequality: A method of moments quantile regression analysis. Cogent Bus. Manag. 2023, 10, 2181139. [Google Scholar] [CrossRef]
- Machado, J.A.F.; Santos Silva, J.M.C. Quantiles via moments. J. Econom. 2019, 213, 145–173. [Google Scholar] [CrossRef]
- Chandio, A.A.; Ozdemir, D.; Jiang, Y. Modelling the impact of climate change and advanced agricultural technologies on grain output: Recent evidence from China. Ecol. Modell. 2023, 485, 110501. [Google Scholar] [CrossRef]
- Sabzevari, Y.; Eslamian, S.; Pamula, A.S.P.; Bazrkar, M.H. Drought Trend Analysis Using Standardized Precipitation Evapotranspiration Index in Cold-Climate Regions. Atmosphere 2025, 16, 482. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, R.; Qi, J.; Zeng, J.; Wu, J.; Shui, W.; Wu, X.; Li, J. An improved daily standardized precipitation index dataset for mainland China from 1961 to 2018. Sci. Data 2022, 9, 124. [Google Scholar] [CrossRef]
- Xu, Q.; Liang, H.; Wei, Z.; Zhang, Y.; Lu, X.; Li, F.; Wei, N.; Zhang, S.; Yuan, H.; Liu, S.; et al. Assessing Climate Change Impacts on Crop Yields and Exploring Adaptation Strategies in Northeast China. Earth’s Futur. 2024, 12, e2023EF004063. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Priya, E.; Sarkar, S.; Maji, P.K. A review on slow-release fertilizer: Nutrient release mechanism and agricultural sustainability. J. Environ. Chem. Eng. 2024, 12, 113211. [Google Scholar] [CrossRef]
- Hua, W.; Luo, P.; An, N.; Cai, F.; Zhang, S.; Chen, K.; Yang, J.; Han, X. Manure application increased crop yields by promoting nitrogen use efficiency in the soils of 40-year soybean-maize rotation. Sci. Rep. 2020, 10, 14882. [Google Scholar] [CrossRef]
- Faye, B.; Diéne, J.C.; Du, G.; Liang, C.; Kouadio, Y.D.; Mbaye, E.; Li, Y. Decentralization Policies and Rural Socio-Economic Growth in Senegal: An Exploration of Their Contributions to Development and Transformation. World 2024, 5, 1054–1076. [Google Scholar] [CrossRef]
- Lankford, B.; Pringle, C.; McCosh, J.; Shabalala, M.; Hess, T.; Knox, J.W. Irrigation area, efficiency and water storage mediate the drought resilience of irrigated agriculture in a semi-arid catchment. Sci. Total Environ. 2023, 859, 160263. [Google Scholar] [CrossRef]
- Madugundu, R.; Al-Gaadi, K.A.; Tola, E.K.; Zeyada, A.M.; Alameen, A.A.; Edrris, M.K.; Edrees, H.F.; Mahjoop, O. Impact of Field Topography and Soil Characteristics on the Productivity of Alfalfa and Rhodes Grass: RTK-GPS Survey and GIS Approach. Agronomy 2022, 12, 2918. [Google Scholar] [CrossRef]
- Zuo, D.; Hou, W.; Wu, H.; Yan, P.; Zhang, Q. Feasibility of Calculating Standardized Precipitation Index with Short-Term Precipitation Data in China. Atmosphere 2021, 12, 603. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Z.; Su, K.; Zhou, Y.; Li, X.; Lin, A. Understanding the impact of cultivated land-use changes on China’s grain production potential and policy implications: A perspective of non-agriculturalization, non-grainization, and marginalization. J. Clean. Prod. 2024, 436, 140647. [Google Scholar] [CrossRef]
- Zhang, R.; Li, Y.; Zhang, M.; Faye, B.; Du, G.; Zhang, R.; Li, Y.; Zhang, M.; Faye, B. How Different Land Systems Lead to Discrepancy of Rural Population–Land Relationships: Case Study of Heilongjiang Province, China. Land 2023, 13, 38. [Google Scholar] [CrossRef]
- Wang, J.; You, Z.; Song, P.; Fang, Z. Rainfall’s impact on agricultural production and government poverty reduction efficiency in China. Sci. Rep. 2024, 14, 9320. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Zhang, X.; Cai, H. Spatiotemporal Variation Patterns of Drought in Liaoning Province, China, Based on Copula Theory. Atmosphere 2024, 15, 1063. [Google Scholar] [CrossRef]
- Faiz, M.A.; Zhang, L.; Liu, D.; Ma, N.; Li, M.; Zhaoqiang, Z.; Baig, F.; Li, T.; Cui, S. Revisiting the composite drought index for improving drought monitoring. J. Hydrol. 2025, 652, 132707. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, Q.; Hu, S.; Wang, R.; Wang, H.; Zhang, K.; Zhao, H.; Ren, S.; Yang, Y.; Zhao, F.; et al. Effects of High Temperature and Drought Stresses on Growth and Yield of Summer Maize during Grain Filling in North China. Agriculture 2022, 12, 1948. [Google Scholar] [CrossRef]
- Carrillo-Carrillo, M.; Ibáñez-Castillo, L.; Arteaga-Ramírez, R.; Arévalo-Galarza, G. Spatio-Temporal Analysis of Drought with SPEI in the State of Mexico and Mexico City. Atmosphere 2025, 16, 202. [Google Scholar] [CrossRef]
- Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef]
- Xue, L.; Kappas, M.; Wyss, D.; Putzenlechner, B. Assessing the Drought Variability in Northeast China over Multiple Temporal and Spatial Scales. Atmosphere 2022, 13, 1506. [Google Scholar] [CrossRef]
- Khan, M.I.; Liu, D.; Fu, Q.; Saddique, Q.; Faiz, M.A.; Li, T.; Qamar, M.U.; Cui, S.; Cheng, C. Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China. Water Resour. Manag. 2017, 31, 3921–3937. [Google Scholar] [CrossRef]
- Ha, T.T.V.; Fan, H.; Shuang, L. Climate change impact assessment on Northeast China’s grain production. Environ. Sci. Pollut. Res. 2021, 28, 14508–14520. [Google Scholar] [CrossRef]
- Faye, B.; Du, G.; Li, Q.; Sané, T.; Mbaye, E.; Zhang, R. Understanding the characteristics of agricultural land transition in Thiès region, Senegal: An integrated analysis combining remote sensing and survey data. Front. Environ. Sci. 2023, 11, 1124637. [Google Scholar] [CrossRef]
Variable | Unit | Mean | Std. Dev. | Min | Max | Obs |
---|---|---|---|---|---|---|
Comprehensive Grain Production Capacity (CGPC) | 10,000 tons | 9.29 | 0.35 | 8.439 | 10.322 | 432 |
Total Sown Area of Crops (TSACs) | Thousand hectares | 6.14 | 0.91 | 3.93 | 7.74 | 432 |
Extreme Low-Temperature Days (LTDs) | Normalized index | 21.45 | 8.59 | 0.33 | 43.24 | 432 |
Extreme High-Temperature Days (HTDs) | Normalized index | 41.76 | 8.90 | 19.82 | 73.87 | 432 |
Extreme Rainfall Days (ERDs) | Normalized index | 28.97 | 27.01 | 0 | 268.75 | 432 |
Extreme Drought Days (EDDs) | Normalized index | 14.39 | 8.58 | 0 | 51.70 | 432 |
Standardized Precipitation Index (SPI) | Composite index | 0.004 | 0.048 | 0.001 | 1 | 432 |
Effective Irrigation Area (EIA) | Thousand hectares | 187.87 | 184.63 | 1.82 | 955.47 | 432 |
Agricultural Insurance Payout Expenditure (AIPE) | 10 thousand RMB | 102.10 | 159.42 | −13.57 | 1235.83 | 432 |
Total power of agricultural machinery per capita (TPAM) | 10 thousand kilowatts | 13,314.42 | 5062 | 4684.72 | 35,830.01 | 432 |
Agricultural Labor Productivity (ALP) | RMD per person | 2819.62 | 987.19 | 1222.23 | 6794.59 | 432 |
Fertilizer Usage (FEU) | 10,000 tons | 22.56 | 24.08 | 0.9 | 121.88 | 432 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
---|---|---|---|---|---|---|---|---|---|---|---|
logCGPC | |||||||||||
(1) logCGPC | 1.000 | ||||||||||
(2) LTD | −0.041 | 1.000 | |||||||||
(3) HTD | 0.025 | −0.092 | 1.000 | ||||||||
(4) ERD | 0.134 | −0.069 | −0.040 | 1.000 | |||||||
(5) EDD | −0.141 | −0.207 | −0.059 | −0.002 | 1.000 | ||||||
(6) SPI | −0.117 | −0.001 | 0.022 | −0.038 | −0.066 | 1.000 | |||||
(7) EIA | 0.295 | 0.017 | −0.069 | 0.090 | −0.069 | −0.051 | 1.000 | ||||
(8) AIPE | 0.374 | −0.154 | 0.036 | 0.373 | −0.009 | −0.032 | 0.452 | 1.000 | |||
(9) TPAM | 0.865 | −0.074 | 0.029 | 0.126 | −0.112 | −0.064 | 0.312 | 0.314 | 1.000 | ||
(10) ALP | 0.945 | −0.033 | 0.018 | 0.118 | −0.117 | −0.079 | 0.345 | 0.374 | 0.915 | 1.000 | |
(11) FEU | −0.187 | 0.033 | 0.058 | 0.138 | 0.194 | −0.042 | 0.485 | 0.219 | −0.147 | −0.149 | 1.000 |
logTSAC | |||||||||||
(1) logTSAC | 1.000 | ||||||||||
(2) LTD | 0.007 | 1.000 | |||||||||
(3) HTD | −0.108 | −0.092 | 1.000 | ||||||||
(4) ERD | 0.131 | −0.069 | −0.040 | 1.000 | |||||||
(5) EDD | −0.058 | −0.207 | −0.059 | −0.002 | 1.000 | ||||||
(6) SPI | −0.121 | −0.001 | 0.022 | −0.038 | −0.066 | 1.000 | |||||
(7) EIA | 0.710 | 0.017 | −0.069 | 0.090 | −0.069 | −0.051 | 1.000 | ||||
(8) AIPE | 0.396 | −0.154 | 0.036 | 0.373 | −0.009 | −0.032 | 0.452 | 1.000 | |||
(9) TPAM | 0.220 | −0.074 | 0.029 | 0.126 | −0.112 | −0.064 | 0.312 | 0.314 | 1.000 | ||
(10) ALP | 0.255 | −0.033 | 0.018 | 0.118 | −0.117 | −0.079 | 0.345 | 0.374 | 0.915 | 1.000 | |
(11) FEU | 0.549 | 0.033 | 0.058 | 0.138 | 0.194 | −0.042 | 0.485 | 0.219 | −0.147 | −0.149 | 1.000 |
Variable | At Level | At First Difference | ||
---|---|---|---|---|
t-Bar | p-Values | t-Bar | p-Values | |
logCGPC | −6.333 | 0.000 | ||
logTSAC | −2.385 | 0.009 | ||
LTD | −3.748 | 0.000 | ||
HTD | 0.324 | 0.627 | −7.039 | 0.000 |
ERD | −2.215 | 0.013 | ||
EDD | −4.270 | 0.000 | ||
SPI | −3.841 | 0.000 | ||
EIA | −2.333 | 0.010 | ||
AIPE | −2.700 | 0.003 | ||
TPAM | −7.398 | 0.000 | ||
ALP | −5.310 | 0.000 | ||
FEU | 0.357 | 0.640 | −2.756 | 0.003 |
Modified Dickey–Fuller t | Dickey–Fuller t | Augmented Dickey–Fuller t | Unadjusted Modified Dickey–Fuller t | Unadjusted Dickey–Fuller t | |
---|---|---|---|---|---|
logCGPC | |||||
Statistic | −1.2516 | −4.7996 | −0.7823 | −15.4260 | −11.7795 |
p-value | 0.1054 | 0.0000 | 0.2170 | 0.0000 | 0.0000 |
logTSAC | |||||
Statistic | −0.3420 | −1.2435 | −1.6560 | −4.0185 | −3.4347 |
p-value | 0.3662 | 0.1068 | 0.0489 | 0.0000 | 0.0003 |
Variables | Location | Scale | 10th | 25th | 50th | 75th | 95th |
---|---|---|---|---|---|---|---|
logCGPC | |||||||
LTD | 0.002 | 0.000 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.002) | |
HTD | 0.000 | −0.000 | 0.001 | 0.001 | 0.000 | 0.000 | 0.000 |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.002) | |
ERD | −0.000 | 0.000 | −0.000 | −0.000 | −0.000 | 0.000 | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.001) | |
EDD | −0.001 | 0.000 | −0.001 | −0.001 | −0.001 | −0.000 | 0.000 |
(0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.001) | (0.002) | |
SPI | −0.488 *** | −0.126 *** | −0.311 *** | −0.379 *** | −0.482 *** | −0.598 *** | −0.754 *** |
(0.024) | (0.014) | (0.032) | (0.025) | (0.025) | (0.029) | (0.039) | |
EIA | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
AIPE | 0.000 *** | 0.000 | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
TPAM | 0.000 *** | −0.000 * | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
FEU | −0.002 *** | −0.000 | −0.001 ** | −0.001 *** | −0.002 *** | −0.002 *** | −0.003 *** |
(0.000) | (0.000) | (0.001) | (0.000) | (0.000) | (0.000) | (0.001) | |
Constant | 8.530 *** | 0.146 *** | 8.325 *** | 8.405 *** | 8.522 *** | 8.657 *** | 8.836 *** |
(0.057) | (0.034) | (0.072) | (0.061) | (0.057) | (0.067) | (0.095) | |
logTSAC | |||||||
LTD | −0.003 | −0.001 | −0.001 | −0.002 | −0.003 | −0.003 | −0.004 |
(0.004) | (0.002) | (0.006) | (0.004) | (0.004) | (0.004) | (0.006) | |
HTD | −0.011 *** | 0.006 ** | −0.022 *** | −0.016 *** | −0.011 *** | −0.007 * | 0.003 |
(0.004) | (0.002) | (0.006) | (0.005) | (0.004) | (0.004) | (0.006) | |
ERD | −0.000 | 0.001 | −0.002 | −0.001 | −0.000 | 0.000 | 0.002 |
(0.001) | (0.001) | (0.002) | (0.001) | (0.001) | (0.001) | (0.002) | |
EDD | −0.011 *** | 0.003 | −0.015 ** | −0.013 *** | −0.010 *** | −0.009 ** | −0.004 |
(0.004) | (0.002) | (0.006) | (0.004) | (0.004) | (0.004) | (0.006) | |
SPI | −1.514 *** | −0.463 *** | −0.682 *** | −1.126 *** | −1.541 *** | −1.828 *** | −2.608 *** |
(0.100) | (0.066) | (0.166) | (0.129) | (0.098) | (0.108) | (0.172) | |
EIA | 0.002 *** | 0.000 ** | 0.002 *** | 0.002 *** | 0.002 *** | 0.003 *** | 0.003 *** |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
AIPE | 0.000 ** | −0.000 | 0.001 * | 0.001 ** | 0.000 ** | 0.000 ** | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
TPAM | 0.000 ** | −0.000 *** | 0.000 *** | 0.000 *** | 0.000 ** | 0.000 | −0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | |
FEU | 0.013 *** | −0.004 *** | 0.020 *** | 0.017 *** | 0.013 *** | 0.010 *** | 0.003 |
(0.001) | (0.001) | (0.002) | (0.002) | (0.001) | (0.001) | (0.002) | |
Constant | 5.850 *** | 0.315 ** | 5.284 *** | 5.586 *** | 5.869 *** | 6.064 *** | 6.595 *** |
(0.211) | (0.139) | (0.349) | (0.256) | (0.210) | (0.219) | (0.366) | |
Observations | 432 | 432 | 432 | 432 | 432 | 432 | 432 |
Pair and Direction | Region |
---|---|
logCGPC → HTD | Yes (p = 0.000) |
HTD → logTSAC | No |
EIA ↔ logTSAC | Bidirectional (p ≤ 0.05 both ways) |
AIPE ↔ logCGPC/logTSAC | Bidirectional with capacity; one-way logTSAC → AIPE |
TPAM ↔ logCGPC/logTSAC | Bidirectional for both margins |
FEU → logCGPC/logTSAC | Yes (p = 0.000) on both margins |
SPI and extremes (LTD, ERD, EDD) | Mostly no Granger causality either way (high p-values) |
Direction | W-Bar | Z-Bar | p-Value (Z) |
---|---|---|---|
logCGPC | |||
LTD → logCGPC | 0.8034 | −0.6809 | 0.4959 |
logCGPC → LTD | 0.7536 | −0.8535 | 0.3934 |
HTD → logCGPC | 1.1058 | 0.3666 | 0.7139 |
logCGPC → HTD | 2.3791 | 4.7774 | 0.0000 |
ERD → logCGPC | 1.0607 | 0.2103 | 0.8334 |
logCGPC → ERD | 1.4212 | 1.4592 | 0.1445 |
EDD → logCGPC | 0.9095 | −0.3134 | 0.7540 |
logCGPC → EDD | 1.0127 | 0.0440 | 0.9649 |
SPI → logCGPC | 1.3713 | 1.2862 | 0.1984 |
logCGPC → SPI | 2.2568 | 4.3536 | 0.0000 |
EIA → logCGPC | 4.4955 | 12.1087 | 0.0000 |
logCGPC → EIA | 2.8577 | 6.4354 | 0.0000 |
AIPE → logCGPC | 3.4317 | 8.4235 | 0.0000 |
logCGPC → AIPE | 5.7230 | 16.3609 | 0.0000 |
TPAM → logCGPC | 2.2462 | 4.3171 | 0.0000 |
logCGPC → TPAM | 4.5662 | 12.3537 | 0.0000 |
FEU → logCGPC | 4.6545 | 12.6596 | 0.0000 |
logCGPC → FEU | 1.4447 | 1.5406 | 0.1234 |
logTSAC | |||
LTD → logTSAC | 0.9352 | −0.2245 | 0.8224 |
logTSAC → LTD | 0.5049 | −1.7151 | 0.0863 |
HTD → logTSAC | 1.1874 | 0.6492 | 0.5162 |
logTSAC → HTD | 1.9166 | 3.1750 | 0.0015 |
ERD → logTSAC | 1.1153 | 0.3995 | 0.6895 |
logTSAC → ERD | 1.5363 | 1.8579 | 0.0632 |
EDD → logTSAC | 1.9119 | 3.1590 | 0.0016 |
logTSAC → EDD | 0.7246 | −0.9542 | 0.3400 |
SPI → logTSAC | 0.7238 | −0.9568 | 0.3387 |
logTSAC → SPI | 1.2780 | 0.9632 | 0.3355 |
EIA → logTSAC | 1.2051 | 0.7105 | 0.4774 |
logTSAC → EIA | 3.0453 | 7.0850 | 0.0000 |
AIPE → logTSAC | 1.8568 | 2.9680 | 0.0030 |
logTSAC → AIPE | 1.9756 | 3.3797 | 0.0007 |
TPAM → logTSAC | 1.4828 | 1.6725 | 0.0944 |
logTSAC → TPAM | 3.3126 | 8.0110 | 0.0000 |
FEU → logTSAC | 1.4275 | 1.4808 | 0.1387 |
logTSAC → FEU | 2.5104 | 5.2321 | 0.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Faye, B.; Tian, R.; Du, G.; Zhang, R.; Biot, F. Understanding the Impact of Climatic Events on Optimizing Agricultural Production in Northeast China. Atmosphere 2025, 16, 704. https://doi.org/10.3390/atmos16060704
Gao J, Faye B, Tian R, Du G, Zhang R, Biot F. Understanding the Impact of Climatic Events on Optimizing Agricultural Production in Northeast China. Atmosphere. 2025; 16(6):704. https://doi.org/10.3390/atmos16060704
Chicago/Turabian StyleGao, Junfeng, Bonoua Faye, Ronghua Tian, Guoming Du, Rui Zhang, and Fabrice Biot. 2025. "Understanding the Impact of Climatic Events on Optimizing Agricultural Production in Northeast China" Atmosphere 16, no. 6: 704. https://doi.org/10.3390/atmos16060704
APA StyleGao, J., Faye, B., Tian, R., Du, G., Zhang, R., & Biot, F. (2025). Understanding the Impact of Climatic Events on Optimizing Agricultural Production in Northeast China. Atmosphere, 16(6), 704. https://doi.org/10.3390/atmos16060704