Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (119)

Search Parameters:
Keywords = Solanaceous

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2736 KiB  
Article
Bioherbicidal Evaluation of Methanol Extract of Sorghum halepense L. Rhizome and Its Bioactive Components Against Selected Weed Species
by Jasmina Nestorović Živković, Milica Simonović, Danijela Mišić, Marija Nešić, Vladan Jovanović, Uroš Gašić, Ivana Bjedov and Slavica Dmitrović
Molecules 2025, 30(15), 3060; https://doi.org/10.3390/molecules30153060 - 22 Jul 2025
Viewed by 753
Abstract
Sorghum halepense (L.) Pers. (common name Johnson grass) is a perennial invasive weed that causes great harm worldwide, and its allelopathy has been demonstrated in a series of experiments. The present study offers new insights into its organ-specific phytochemical profiles using state-of-the-art metabolomic [...] Read more.
Sorghum halepense (L.) Pers. (common name Johnson grass) is a perennial invasive weed that causes great harm worldwide, and its allelopathy has been demonstrated in a series of experiments. The present study offers new insights into its organ-specific phytochemical profiles using state-of-the-art metabolomic technology and explores the effects of a methanol extract of S. halepense rhizomes (ShER) and its major bioactive compounds (p-hydroxybenzoic acid and chlorogenic acid) on three noxious weed species. The phytotoxic effects of ShER are reflected through the inhibition of seed germination and reduced seedling growth, which are accompanied by changes in the antioxidant system of seedlings. Phytotoxicity is species specific and concentration dependent, and it is more pronounced against Chenopodiastrum murale (L.) S. Fuentes, Uotila & Borsch and Datura stramonium L. than highly tolerant Amaranthus retroflexus L. Catalase (CAT) is most likely the major mediator in the removal of reactive oxygen species, which are generated during germination and early seedling growth of Ch. murale exposed to ShER. The results of the present study imply the high potential of ShER in the management of amaranthaceous and solanaceous weeds, such as Ch. murale and D. stramonium, respectively. The present study offers an environmentally friendly solution for the biological control of weeds belonging to the families Amaranthaceae and Solanaceae. Also, the results of this research highlight the possibility of effective management of S. halepense by using it as a feedstock for bioherbicide production. Full article
Show Figures

Figure 1

17 pages, 2226 KiB  
Article
Transcriptome-Wide Identification of Neuropeptides and Neuropeptide Receptors in the Twenty-Eight-Spotted Ladybird Henosepilachna vigintioctopunctata
by Quanxing Lei, Ziming Wang, Shuangyan Yao, Aili Lin, Yunhui Zhang, Chengxian Sun, Xiaoguang Liu, Mengfang Du, Xiaoming Liu and Shiheng An
Insects 2025, 16(6), 624; https://doi.org/10.3390/insects16060624 - 13 Jun 2025
Viewed by 695
Abstract
The ladybird beetle, Henosepilachna vigintioctopunctata, is an oligophagous pest with significant economic impact. This pest causes considerable economic damage on numerous Solanaceae crops. Neuropeptides, along with their designated receptors, play a pivotal role in regulating diverse biological processes in insects, presenting a [...] Read more.
The ladybird beetle, Henosepilachna vigintioctopunctata, is an oligophagous pest with significant economic impact. This pest causes considerable economic damage on numerous Solanaceae crops. Neuropeptides, along with their designated receptors, play a pivotal role in regulating diverse biological processes in insects, presenting a promising avenue for innovative pest management strategies. Herein, the transcriptome of the central nervous system (CNS) of H. vigintioctopunctata was sequenced. Overall, our analysis identified 58 neuropeptide precursor genes, from which 98 diverse mature peptides were predicted. Furthermore, 31 neuropeptide receptor genes belonging to three distinct classes were discovered, along with predictions for their potential ligands. Moreover, the expression patterns of these 58 neuropeptide genes across larval brain tissue, ventral nerve cord, and gut were evaluated using quantitative real-time PCR. Collectively, these findings will significantly contribute to future research focused on understanding the physiological functions and pharmacological characteristics of neuropeptides and their receptors in H. vigintioctopunctata. Ultimately, these insights may facilitate the development of targeted neuropeptide-based solutions for managing this pest affecting solanaceous plants. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

11 pages, 855 KiB  
Article
Microbial Biopesticides to Control Whiteflies in Eggplant Solanum melongena, in Greenhouse
by Héctor Cabrera-Mireles, Magali Jiménez-Jiménez, Juan Ruiz-Ramírez, Félix David Murillo-Cuevas, Jacel Adame-García, Jorge Jiménez-Zilli, Andrés Vásquez Hernández and Rubén Uriel Herrera-Bonilla
Insects 2025, 16(6), 578; https://doi.org/10.3390/insects16060578 - 30 May 2025
Viewed by 747
Abstract
The whitefly is among the main pests of crops, especially solanaceous and cucurbitaceous plants. The massive use of pesticides for its control has led to an increase in the pest’s resistance to different groups of insecticides and to environmental contamination. The use of [...] Read more.
The whitefly is among the main pests of crops, especially solanaceous and cucurbitaceous plants. The massive use of pesticides for its control has led to an increase in the pest’s resistance to different groups of insecticides and to environmental contamination. The use of biopesticides for its control is a sustainable alternative for the environment. The objective of this study was to evaluate the efficiency of two biopesticides based on entomopathogenic fungi against eggs, nymphs, and adults of whitefly in eggplant in a greenhouse. The treatments consisted of Cordyceps javanica, Beauveria bassiana, a commercial insecticide (i.e., Spirotetramat), and a control (no application). A completely randomized design was used with 16 repetitions per treatment, and the non-parametric Kruskal–Wallis test was applied. Mortality was recorded on five dates after application (DAA). The sampling data were transformed to efficiency (%). The biopesticides were found to be effective in controlling whiteflies in all developmental stages during the evaluation days. Full article
Show Figures

Figure 1

12 pages, 1320 KiB  
Article
The Mechanism Involved in High-Lycopene Tomato Mutants for Broomrape Resistance
by Lianfeng Shi, Xin Li, Jinrui Bai, Xiaoxiao Lu, Chunyang Pan, Junling Hu, Chen Zhang, Can Zhu, Yanmei Guo, Xiaoxuan Wang, Zejun Huang, Yongchen Du, Lei Liu and Junming Li
Agronomy 2025, 15(5), 1250; https://doi.org/10.3390/agronomy15051250 - 21 May 2025
Viewed by 515
Abstract
The root parasitic weed Phelipanche aegyptiaca (Pers.) Pomel poses a serious threat to solanaceous crops, leading to yield losses of up to 80% in tomato (Solanum lycopersicum L.). Strigolactones (SLs), derived from the carotenoid metabolic pathway, serve as key host-recognition signals for [...] Read more.
The root parasitic weed Phelipanche aegyptiaca (Pers.) Pomel poses a serious threat to solanaceous crops, leading to yield losses of up to 80% in tomato (Solanum lycopersicum L.). Strigolactones (SLs), derived from the carotenoid metabolic pathway, serve as key host-recognition signals for root-parasitic plants. This study investigated the molecular mechanisms of host resistance, focusing on the suppression of SL biosynthesis through altered carotenoid metabolism in the high-pigment tomato mutants hp-1 and ogc. Both pot experiment and in vitro seed germination assays demonstrated that the mutants exhibited reduced susceptibility to P. aegyptiaca and triggered lower germination rates in broomrape seeds compared to the wild-type cultivar AC. Quantitative RT-PCR analysis revealed a significant downregulation of SL biosynthesis genes (SlD27, SlCCD7, SlCCD8, SlMAX1, SlP450, SlDI4) in hp-1 at various parasitic stages post-inoculation, with a more pronounced suppression observed in hp-1 than in ogc. Notably, the extent of downregulation correlated with the enhanced resistance phenotype in hp-1. These findings highlight a synergistic resistance mechanism involving the coordinated regulation of carotenoid metabolism and SL biosynthesis, providing new insights into the molecular defense network underlying tomato-broomrape interactions. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 10644 KiB  
Article
Investigation of HCPro-Mediated Ethylene Synthesis Pathway Through RNA-Seq Approaches
by Xinpeng Jiang, Lan Dong, Renjing Wan, Changli Zeng and Ting Yang
Viruses 2025, 17(5), 602; https://doi.org/10.3390/v17050602 - 23 Apr 2025
Viewed by 395
Abstract
Chilli veinal mottle virus (ChiVMV) severely compromises the quality and yield of solanaceous crops. The helper component protease (HCPro) of ChiVMV functions as a multifunctional RNA silencing suppressor that subverts host antiviral defenses through diverse strategies, However, the underlying mechanisms remain mechanistically unresolved. [...] Read more.
Chilli veinal mottle virus (ChiVMV) severely compromises the quality and yield of solanaceous crops. The helper component protease (HCPro) of ChiVMV functions as a multifunctional RNA silencing suppressor that subverts host antiviral defenses through diverse strategies, However, the underlying mechanisms remain mechanistically unresolved. In this study, HCPro-overexpressing (HCPro-OX) and wild-type (WT) plants were inoculated with ChiVMV to monitor the physiological and molecular changes. Transcriptome analysis identified 11,815 differentially expressed genes (DEGs) under viral infection, among which 1115 genes were specifically regulated by HCPro. KEGG enrichment analysis revealed that the DEGs were significantly associated with plant hormone signal transduction pathways, indicating their crucial role in host–virus interactions. Furthermore, functional clustering of HCPro-regulated DEGs specifically identified key components in ethylene biosynthesis pathways. GO analysis of DEGs between virus-inoculated WT and HCPro-OX plants annotated ethylene biosynthesis-related genes NtACO and NtACS. qPCR validation confirmed that the expression of ethylene biosynthesis-related genes was suppressed by HCPro. Exogenous treatments with the ethylene precursor ACC demonstrated that ethylene suppressed viral accumulation, enhanced POD activity, and reduced the ROS accumulation induced by viral infection. In conclusion, our results demonstrate that HCPro promotes viral infection by suppressing ethylene biosynthesis, which in turn attenuates peroxidase activity, leading to ROS accumulation. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

18 pages, 4313 KiB  
Article
The First High-Throughput Sequencing-Based Study of Viruses Infecting Solanaceous Crops in Kosovo Reveals Multiple Infections in Peppers by Six Plant Viruses
by Burim Ismajli, Zsuzsanna N. Galbács, András Péter Takács and Éva Várallyay
Plants 2025, 14(9), 1273; https://doi.org/10.3390/plants14091273 - 22 Apr 2025
Viewed by 907
Abstract
High-throughput sequencing (HTS) was employed for the first time to investigate plant viruses infecting solanaceous crops, including potato (Solanum tuberosum), tomato (Solanum lycopersicum), and pepper (Capsicum annuum), in Kosovo. Leaf samples showing virus-like symptoms were collected from [...] Read more.
High-throughput sequencing (HTS) was employed for the first time to investigate plant viruses infecting solanaceous crops, including potato (Solanum tuberosum), tomato (Solanum lycopersicum), and pepper (Capsicum annuum), in Kosovo. Leaf samples showing virus-like symptoms were collected from various regions during the summer of 2023. Based on ribodepleted RNA sequencing and bioinformatics analysis, six viruses were identified: cucumber mosaic virus, broad bean wilt virus 2 (BBWV2), potato virus Y, pepper cryptic virus 2 (PCV2), bell pepper endornavirus (BPEV), and ranunculus white mottle virus. BBWV2, PCV2, and BPEV are reported for the first time in the Balkan region. Virus presence was validated using RT-PCR. Phylogenetic analyses revealed that the identified viral strains did not cluster according to their hosts and geographical origins. CMV and BBWV2 variants exhibited reassortment events, indicating possible local evolution or novel virus introductions. This research highlights the widespread occurrence of mixed infections in pepper plants and highlights the need for additional research into the virus transmission dynamics and potential reservoir hosts. These findings emphasize the need for continuous surveillance and integrated plant protection strategies to mitigate the impacts of viral infections on pepper and other economically important crops in Kosovo. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

22 pages, 1537 KiB  
Review
Breeding of Solanaceous Crops Using AI: Machine Learning and Deep Learning Approaches—A Critical Review
by Maria Gerakari, Anastasios Katsileros, Konstantina Kleftogianni, Eleni Tani, Penelope J. Bebeli and Vasileios Papasotiropoulos
Agronomy 2025, 15(3), 757; https://doi.org/10.3390/agronomy15030757 - 20 Mar 2025
Cited by 2 | Viewed by 2199
Abstract
This review discusses the potential of artificial intelligence (AI), particularly machine learning (ML) and its subset, deep learning (DL), in advancing the genetic improvement of Solanaceous crops. AI has emerged as a powerful solution to overcome the limitations of traditional breeding techniques, which [...] Read more.
This review discusses the potential of artificial intelligence (AI), particularly machine learning (ML) and its subset, deep learning (DL), in advancing the genetic improvement of Solanaceous crops. AI has emerged as a powerful solution to overcome the limitations of traditional breeding techniques, which often involve time-consuming, resource-intensive processes with limited predictive accuracy. Through advanced algorithms and predictive models, ML and DL facilitate the identification and optimization of key traits, including higher yield, improved quality, pest resistance, and tolerance to extreme climatic conditions. By integrating big data analytics and omics, these methods enhance genomic selection (GS), support gene-editing technologies like CRISPR-Cas9, and accelerate crop breeding, thus enabling the development of resilient and adaptable crops. This review highlights the role of ML and DL in improving Solanaceae crops, such as tomato, potato, eggplant, and pepper, with the aim of developing novel varieties with superior agronomic and quality traits. Additionally, this study examines the advantages and limitations of AI-driven breeding compared to traditional methods in Solanaceae, emphasizing its contribution to agricultural resilience, food security, and environmental sustainability. Full article
Show Figures

Figure 1

19 pages, 14024 KiB  
Article
Silencing of Putative Plasmodesmata-Associated Genes PDLP and SRC2 Reveals Their Differential Involvement during Plant Infection with Cucumber Mosaic Virus
by Richita Saikia, Athanasios Kaldis, Carl Jonas Spetz, Basanta Kumar Borah and Andreas Voloudakis
Plants 2025, 14(3), 495; https://doi.org/10.3390/plants14030495 - 6 Feb 2025
Viewed by 1265
Abstract
Plant viruses utilize a subset of host plasmodesmata-associated proteins to establish infection in plants. In the present study, we aimed to understand the role of two plant genes, one encoding a putative plasmodesma located protein (PDLP) and a homolog of soybean gene regulated [...] Read more.
Plant viruses utilize a subset of host plasmodesmata-associated proteins to establish infection in plants. In the present study, we aimed to understand the role of two plant genes, one encoding a putative plasmodesma located protein (PDLP) and a homolog of soybean gene regulated by cold 2 protein (SRC2) during Cucumber mosaic virus (CMV) infection. Virus-induced gene silencing (VIGS) was used to silence PDLP and SRC2 genes in Nicotiana benthamiana and in two related solanaceous plants, N. tabacum and Capsicum chinense Jacq. (Bhut Jolokia). Up to 50% downregulation in the expression of the PDLP gene using the TRV2-PDLP VIGS construct was observed in N. benthamiana and N. tabacum while, using the same gene construct, 30% downregulation of the target mRNA was observed in C. chinense. Similarly, using the TRV2-SRC2 VIGS construct, a 60% downregulation of the SRC2 mRNA was observed in N. benthamiana, N. tabacum, and a 40% downregulation in C. chinense as confirmed by qRT-PCR analysis. Downregulation of the PDLP gene in N. benthamiana resulted in delayed symptom appearance up to 7–12 days post inoculation with reduced CMV accumulation compared to the control plants expressing TRV2-eGFP. In contrast, SRC2-silenced plants showed enhanced susceptibility to CMV infection compared to the control plants. Our data suggest that the PDLP gene might facilitate infection of CMV, thus being a susceptibility factor, while the SRC2 gene could play a role in resistance to CMV infection in N. benthamiana. Full article
Show Figures

Figure 1

10 pages, 635 KiB  
Article
Exploring the Life Cycle of Bactrocera latifrons: A Detailed Age-Stage, Two-Sex Life Table
by Yutong Zhai, Xianru Zeng, Dewei Wei, Xiaodong Jiang, Xiuzhen Long, Zhan He, Yonghao Yu and Xuyuan Gao
Insects 2025, 16(2), 132; https://doi.org/10.3390/insects16020132 - 29 Jan 2025
Cited by 1 | Viewed by 960
Abstract
Bactrocera latifrons (Hendel) is a serious pest requiring quarantine in many countries worldwide. It has caused huge economic losses to the cultivation of solanaceous plants, such as peppers and eggplants. In this study, we constructed an age-stage, two-sex life table using eggplant as [...] Read more.
Bactrocera latifrons (Hendel) is a serious pest requiring quarantine in many countries worldwide. It has caused huge economic losses to the cultivation of solanaceous plants, such as peppers and eggplants. In this study, we constructed an age-stage, two-sex life table using eggplant as the host to clarify the occurrence and damage patterns of B. latifrons on this crop for better field prevention and control in the laboratory. The results showed that the egg, larval, and pupal stages lasted 4.3, 11.3, and 9.3 days, respectively. The average lifespan of adult females and males was 101 and 102 days, respectively. The egg hatching rate, larval survival rate, and pupal emergence rate were 96%, 88%, and 84%, respectively. The average generation time was 43.96 days, with an intrinsic rate of increase of 0.097 d−1 and a net reproductive rate of 73.4. We established the life table based on group rearing. The research findings provide essential data for rearing B. latifrons in the laboratory, offer a reference for the dynamic prediction of field population dynamics, and offer a theoretical foundation for developing pest control strategies for B. latifrons. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

23 pages, 7653 KiB  
Article
Design and Experiment of Electric Uncrewed Transport Vehicle for Solanaceous Vegetables in Greenhouse
by Chunsong Guan, Weisong Zhao, Binxing Xu, Zhichao Cui, Yating Yang and Yan Gong
Agriculture 2025, 15(2), 118; https://doi.org/10.3390/agriculture15020118 - 7 Jan 2025
Viewed by 938
Abstract
Despite some rudimentary handling vehicles employed in the labor-intensive harvesting and transportation of greenhouse vegetables, research on intelligent uncrewed transport vehicles remains limited. Herein, an uncrewed transport vehicle was designed for greenhouse solanaceous vegetable harvesting. Its overall structure and path planning were tailored [...] Read more.
Despite some rudimentary handling vehicles employed in the labor-intensive harvesting and transportation of greenhouse vegetables, research on intelligent uncrewed transport vehicles remains limited. Herein, an uncrewed transport vehicle was designed for greenhouse solanaceous vegetable harvesting. Its overall structure and path planning were tailored to the greenhouse environment, with specially designed components, including the electric crawler chassis, unloading mechanism, and control system. A SLAM system based on fusion of LiDAR and inertial navigation ensures precise positioning and navigation with the help of an overall path planner using an A* algorithm and a 3D scanning constructed local virtual environment. Multi-sensor fusion localization, path planning, and control enable autonomous operation. Experimental studies demonstrated it can automatically move, pause, steer, and unload along predefined trajectories. The driving capacity and range of electric chassis reach the design specifications, whose walking speeds approach set speeds (<5% error). Under various loads, the vehicle closely follows the target path with very small tracking errors. Initial test points showed high localization accuracy at maximum longitudinal and lateral deviations of 9.5 cm and 6.7 cm, while the average value of the lateral deviation of other points below 5 cm. These findings contribute to the advancement of uncrewed transportation technology and equipment in greenhouse applications. Full article
(This article belongs to the Special Issue New Energy-Powered Agricultural Machinery and Equipment)
Show Figures

Figure 1

20 pages, 1457 KiB  
Article
Detailed Profiling of 17-Hydroxygeranyllinalool Diterpene Glycosides from Nicotiana Species Reveals Complex Reaction Networks of Conjugation Isomers
by Alina Ebert, Saleh Alseekh, Lucio D’Andrea, Ute Roessner, Ralph Bock and Joachim Kopka
Metabolites 2024, 14(10), 562; https://doi.org/10.3390/metabo14100562 - 20 Oct 2024
Viewed by 1290
Abstract
Background: Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana [...] Read more.
Background: Specialised anti-herbivory metabolites are abundant in the solanaceous genus Nicotiana. These metabolites include the large family of 17-hydroxygeranyllinalool diterpene glycosides (HGL-DTGs). Many HGL-DTGs occur exclusively within the Nicotiana genus, but information from the molecular model species N. tabacum, N. benthamiana, and the tree tobacco N. glauca is limited. Objectives: We studied HGL-DTG occurrence and complexity in these species with the aim of providing in-depth reference annotations and comprehensive HGL-DTG inventories. Methods: We analysed polar metabolite extracts in comparison to the previously investigated wild reference species N. attenuata using positive ESI(+) and negative ESI(-) mode electrospray ionisation LC-MS and MS/MS. Results: We provide annotations of 66 HGL-DTGs with in-source and MS/MS fragmentation spectra for selected HGL-DTGs with exemplary fragment interpretations of ESI(+) as well as less studied ESI(-) spectra. We assemble a potential biosynthesis pathway comparing the presence of HGL-DTGs in N. tabacum, N. glauca, and N. benthamiana to N. attenuata. Approximately one-third of HGL-DTGs are chromatographically resolved isomers of hexose, deoxyhexose, or malonate conjugates. The number of isomers is especially high for conjugates with low numbers of deoxyhexose moieties. Conclusions: We extend the number of known HGL-DTGs with a focus on Nicotiana model species and demonstrate that the HGL-DTG family of N. tabacum plants can be surprisingly complex. Our study provides an improved basis with detailed references to previous studies of wild Nicotiana species and enables inference of HGL-DTG pathways with required enzymes for the biosynthesis of this important family of specialised defence metabolites. Full article
(This article belongs to the Section Plant Metabolism)
Show Figures

Figure 1

21 pages, 8602 KiB  
Review
From Outside to Inside: The Subtle Probing of Globular Fruits and Solanaceous Vegetables Using Machine Vision and Near-Infrared Methods
by Junhua Lu, Mei Zhang, Yongsong Hu, Wei Ma, Zhiwei Tian, Hongsen Liao, Jiawei Chen and Yuxin Yang
Agronomy 2024, 14(10), 2395; https://doi.org/10.3390/agronomy14102395 - 16 Oct 2024
Cited by 1 | Viewed by 1810
Abstract
Machine vision and near-infrared light technology are widely used in fruits and vegetable grading, as an important means of agricultural non-destructive testing. The characteristics of fruits and vegetables can easily be automatically distinguished by these two technologies, such as appearance, shape, color and [...] Read more.
Machine vision and near-infrared light technology are widely used in fruits and vegetable grading, as an important means of agricultural non-destructive testing. The characteristics of fruits and vegetables can easily be automatically distinguished by these two technologies, such as appearance, shape, color and texture. Nondestructive testing is reasonably used for image processing and pattern recognition, and can meet the identification and grading of single features and fusion features in production. Through the summary and analysis of the fruits and vegetable grading technology in the past five years, the results show that the accuracy of machine vision for fruits and vegetable size grading is 70–99.8%, the accuracy of external defect grading is 88–95%, and the accuracy of NIR and hyperspectral internal detection grading is 80.56–100%. Comprehensive research on multi-feature fusion technology in the future can provide comprehensive guidance for the construction of automatic integrated grading of fruits and vegetables, which is the main research direction of fruits and vegetable grading in the future. Full article
Show Figures

Figure 1

16 pages, 3843 KiB  
Article
Biological and Molecular Characterization of a New Isolate of Tomato Mottle Mosaic Virus Causing Severe Shoestring and Fruit Deformities in Tomato Plants in India
by Prantik Mazumder, Firoz Mondal, Mehulee Sarkar, Anik Majumdar, Kajal Kumar Biswas, Susheel Kumar Sharma, Milan Kumar Lal, Rahul Kumar Tiwari, Ravinder Kumar and Anirban Roy
Plants 2024, 13(19), 2811; https://doi.org/10.3390/plants13192811 - 8 Oct 2024
Cited by 1 | Viewed by 2040
Abstract
Tomato (Solanum lycopersicum L.), the second most important vegetable crop globally, faces a significant threat from various viral diseases. A newly emerging disease, characterised by distinctive shoestring symptoms on leaves and the development of unripe, small, and hard fruit, poses a serious [...] Read more.
Tomato (Solanum lycopersicum L.), the second most important vegetable crop globally, faces a significant threat from various viral diseases. A newly emerging disease, characterised by distinctive shoestring symptoms on leaves and the development of unripe, small, and hard fruit, poses a serious challenge to tomato cultivation in India. An initial survey in an experimental field revealed more than 50% of the plants displayed symptoms of the shoestring disease, resulting in substantial reductions in fruit yield and quality. Transmission electron microscopy (TEM) and molecular analyses identified an isolate of the tomato mottle mosaic virus (ToMMV) in the affected plants. When the partially purified virus was mechanically inoculated into tomato cv. Pusa Ruby plants, it reproduced the characteristic shoestring symptoms, confirming its causal relationship with the disease. Notably, the present shoestring isolate of ToMMV (ToMMV-Tss) was found to induce similar shoestring symptoms in most of the major commercial tomato varieties when inoculated under controlled experimental conditions in the glasshouse, indicating its aggressive nature. Host range studies demonstrated that the ToMMV-Tss can infect several solanaceous species, while cucurbitaceous hosts remained unaffected. Moreover, the virus was found to be seed-transmissible, with a small percentage of seedlings from infected plants displaying symptoms. These findings underscore the significant impact of ToMMV on tomato production in India and emphasise the need for reliable diagnostic tools and effective management strategies to curb the spread and mitigate the impact of this virus on commercial tomato cultivation. Full article
Show Figures

Figure 1

14 pages, 20250 KiB  
Article
Comparative Transcriptomics Revealed Physalis floridana Rydb. Influences on the Immune System of the 28-Spotted Ladybird Beetle (Henosepilachna vigintioctopunctata)
by Xianzhong Wang, Liwen Guan, Tianwen Wang, Liuhe Yu, Shuangle Wang, Biner He, Bin Tang and Jiangjie Lu
Plants 2024, 13(19), 2711; https://doi.org/10.3390/plants13192711 - 27 Sep 2024
Viewed by 953
Abstract
Physalis floridana Rydb., a member of the Solanaceae family, is renowned for its diverse secondary metabolites, including physalins and withanolides. The 28-spotted ladybird beetle (Henosepilachna vigintioctopunctata) is a notorious pest severely damaging Solanaceous crops. This study demonstrates that P. floridana Rydb. [...] Read more.
Physalis floridana Rydb., a member of the Solanaceae family, is renowned for its diverse secondary metabolites, including physalins and withanolides. The 28-spotted ladybird beetle (Henosepilachna vigintioctopunctata) is a notorious pest severely damaging Solanaceous crops. This study demonstrates that P. floridana Rydb. significantly impacts on the development and reproductive suppression of H. vigintioctopunctata. A comparative transcriptome analysis was performed by feeding H. vigintioctopunctata larvae on P. floridana Rydb., Solanum nigrum L., Solanum tuberosum L., and Solanum lycopersicum L. The results reveal that larvae fed on P. floridana Rydb. exhibit numerous differentially expressed genes, which are notably enriched in pathways related to energy metabolism, immunity, and detoxification. These functions and pathways are less enriched in larvae fed by other hosts. Weighted Gene Co-expression Network Analysis (WGCNA) indicates that feeding on P. floridana Rydb. influences the expression of specific genes involved in the Toll and IMD signaling pathways, impacting the immune system of H. vigintioctopunctata larvae. This study provides transcriptomic insights into larval responses to different diets and suggests that the effect of P. floridana Rydb. on the immune system of H. vigintioctopunctata is a key defense mechanism against herbivores. Full article
(This article belongs to the Special Issue Integrated Pest Management—from Chemicals to Green Management)
Show Figures

Figure 1

17 pages, 710 KiB  
Article
Correlation between Vegetable and Fruit Intake and Cognitive Function in Older Adults: A Cross-Sectional Study in Chongqing, China
by Yingjiao Deng, Jiaxin Deng, Ke Jiang, Ya Shi, Ziling Feng, Rongxin Wu, Ailin Zhou, Zumin Shi and Yong Zhao
Nutrients 2024, 16(18), 3193; https://doi.org/10.3390/nu16183193 - 21 Sep 2024
Cited by 2 | Viewed by 2467
Abstract
Objective: To explore the correlation between different types of vegetable and fruit intake and cognitive function among the older adults in Chongqing, China, and to provide a scientific basis for developing efficient lifestyle interventions for the prevention of Mild Cognitive Impairment (MCI). Method: [...] Read more.
Objective: To explore the correlation between different types of vegetable and fruit intake and cognitive function among the older adults in Chongqing, China, and to provide a scientific basis for developing efficient lifestyle interventions for the prevention of Mild Cognitive Impairment (MCI). Method: Approximately 728 older adults in urban and rural areas of Chongqing were surveyed using face-to-face questionnaires. Cognitive function was assessed with the Montreal Cognitive Assessment-Basic (MoCA-B) scale, and the vegetable and fruit intake groups were investigated with the Simple Food Frequency Counting Survey Scale. Binary logistic regression was used to explore the effect of the vegetable and fruit intake group on cognitive function. Subgroup analysis was used to demonstrate the robustness of the results. Result: Of the 728 participants in the study, 36.40% were likely to have MCI, which is higher than the national average for this condition. After adjusting for confounders, compared to the Q1 group, fruit and root vegetable intake was a protective factor for MCI, showing a dose–response relationship (p < 0.05). Only lower intake (Q2) of total vegetables, medium intake (Q2, Q3) of solanaceous vegetables, and medium–high intake (Q2, Q4) of fungi and algae was protective against MCI, whereas the leafy vegetables showed no relation to MCI. Apart from this, participants who were older, female, unmarried, non-smoking, and engaged in physical labor, and who had an average monthly income of less than 3000 RMB were more likely to suffer from cognitive impairment. Conclusion: This suggested that the fruit-intake groups and some vegetable-intake groups showed a protective effect on cognitive function, and might behave differently depending on their different intake and demographic characteristics. A sensible, healthy diet can help prevent MCI. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Graphical abstract

Back to TopTop