The Mechanism Involved in High-Lycopene Tomato Mutants for Broomrape Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Pot Experiments
2.3. Root Extract Collection
2.4. Broomrape Seed Germination Assay
2.5. Carotenoid Content Analysis
2.6. RNA Extraction and Gene Expression Analysis by qRT-PCR
2.7. Statistical Analysis
3. Results
3.1. Susceptibility of High-Lycopene Tomato Mutants to Broomrape Parasitism
3.2. The Effect of Tomato Mutants’ Root Extract on Broomrape Germination
3.3. Resistance Signaling Pathways in High-Lycopene Tomato Mutants
3.3.1. Expression of Lycopene Biosynthesis Pathway Genes
3.3.2. Carotenoid Content in Roots of ogc and hp-1 Mutants
3.3.3. Expression of Strigolactone Biosynthesis and Signaling Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karimmojeni, H.; Ehtemam, M.H.; Javadimoghadam, S.; Shahbazi, S.; Bazrafshan, A.H. Egyptian Broomrape (Phelipanche Aegyptiaca) Response to Silicon Nutrition in Tomato (Solanum lycopersicum L.). Arch. Agron. Soil Sci. 2017, 63, 612–618. [Google Scholar] [CrossRef]
- Xu, Y.X.; Zhang, J.X.; Ma, C.R.; Lei, Y.T.; Shen, G.J.; Jin, J.J.; Eaton, D.A.R.; Wu, J.Q. Comparative Genomics of Orobanchaceous Species with Different Parasitic Lifestyles Reveals the Origin and Stepwise Evolution of Plant Parasitism. Mol. Plant 2022, 15, 1384–1399. [Google Scholar] [CrossRef]
- Gibot-Leclerc, S.; Sallé, G.; Reboud, X.; Moreau, D. What Are the Traits of Phelipanche Ramosa (L.) Pomel That Contribute to the Success of Its Biological Cycle on Its Host Brassica napus L.? Morphol. Distrib. Funct. Ecol. Plants 2012, 207, 512–521. [Google Scholar] [CrossRef]
- López-Ráez, J.A.; Charnikhova, T.; Gómez-Roldán, V.; Matusova, R.; Kohlen, W.; De Vos, R.; Verstappen, F.; Puech-Pages, V.; Bécard, G.; Mulder, P.; et al. Tomato Strigolactones Are Derived from Carotenoids and Their Biosynthesis Is Promoted by Phosphate Starvation. New Phytol. 2008, 178, 863–874. [Google Scholar] [CrossRef]
- Alder, A.; Jamil, M.; Marzorati, M.; Bruno, M.; Vermathen, M.; Bigler, P.; Ghisla, S.; Bouwmeester, H.; Beyer, P.; Al-Babili, S. The Path from β-Carotene to Carlactone, a Strigolactone-like Plant Hormone. Science 2012, 335, 1348–1351. [Google Scholar] [CrossRef]
- Seto, Y.; Sado, A.; Asami, K.; Hanada, A.; Umehara, M.; Akiyama, K.; Yamaguchi, S. Carlactone Is an Endogenous Biosynthetic Precursor for Strigolactones. Proc. Natl. Acad. Sci. USA 2014, 111, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.-H.; Zhou, X.E.; Wu, Z.-S.; Yi, W.; Xu, Y.; Li, S.L.; Xu, T.-H.; Liu, Y.; Chen, R.-Z.; Kovach, A.; et al. Crystal Structures of Two Phytohormone Signal-Transducing α/β Hydrolases: Karrikin-Signaling KAI2 and Strigolactone-Signaling DWARF14. Cell Res. 2013, 23, 436–439. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.J.; Park, Y.H.; Kang, J.S.; Choi, Y.W.; Son, B.G. A Gene-Based dCAPS Marker for Selecting Old-Gold-Crimson (Ogc) Fruit Color Mutation in Tomato. J. Life Sci. 2009, 19, 152–155. [Google Scholar] [CrossRef]
- Ronen, G.; Carmel-Goren, L.; Zamir, D.; Hirschberg, J. An Alternative Pathway to Beta -Carotene Formation in Plant Chromoplasts Discovered by Map-Based Cloning of Beta and Old-Gold Color Mutations in Tomato. Proc. Natl. Acad. Sci. USA 2000, 97, 11102–11107. [Google Scholar] [CrossRef]
- Andrade, T.M.; Maluf, W.R.; de Oliveira, C.M.; Gomes, L.A.A.; Santos, D.C.; Carvalho, R.d.C.; Gonçalves, R.J.d.S.; Gonçalves Neto, Á.C. Interaction of the Mutant Genes B, Ogc, Hp and t in the Coloring of Tomato Fruit. Euphytica 2015, 205, 773–783. [Google Scholar] [CrossRef]
- Lieberman, M.; Segev, O.; Gilboa, N.; Lalazar, A.; Levin, I. The Tomato Homolog of the Gene Encoding UV-Damaged DNA Binding Protein 1 (DDB1) Underlined as the Gene That Causes the High Pigment-1 Mutant Phenotype. Theor. Appl. Genet. 2004, 108, 1574–1581. [Google Scholar] [CrossRef] [PubMed]
- Rohrmann, J.; Tohge, T.; Alba, R.; Osorio, S.; Caldana, C.; McQuinn, R.; Arvidsson, S.; van der Merwe, M.J.; Riaño-Pachón, D.M.; Mueller-Roeber, B.; et al. Combined Transcription Factor Profiling, Microarray Analysis and Metabolite Profiling Reveals the Transcriptional Control of Metabolic Shifts Occurring during Tomato Fruit Development. Plant J. Cell Mol. Biol. 2011, 68, 999–1013. [Google Scholar] [CrossRef] [PubMed]
- Tokasi, S.; Aval, M.B.; Mashhadi, H.R.; Ghanbari, A. Screening of Resistance to Egyptian Broomrape Infection in Tomato Varieties. Planta Dan. 2014, 32, 109–116. [Google Scholar] [CrossRef]
- Bai, J.R.; Wei, Q.; Shu, J.S.; Gan, Z.X.; Li, B.J.; Yan, D.L.; Huang, Z.J.; Guo, Y.M.; Wang, X.X.; Zhang, L.X.; et al. Exploration of Resistance to Phelipanche Aegyptiaca in Tomato. Pest Manag. Sci. 2020, 76, 3806–3821. [Google Scholar] [CrossRef] [PubMed]
- Lang, M.; Yu, R.; Ma, Y.; Zhang, W.; McErlean, C.S.P. Extracts from Cotton over the Whole Growing Season Induce Orobanche Cumana (Sunflower Broomrape) Germination with Significant Cultivar Interactions. Front. Agric. Sci. Eng. 2017, 4, 228. [Google Scholar] [CrossRef]
- Yoneyama, K.; Xie, X.N.; Kusumoto, D.; Sekimoto, H.; Sugimoto, Y.; Takeuchi, Y.; Yoneyama, K. Nitrogen Deficiency as Well as Phosphorus Deficiency in Sorghum Promotes the Production and Exudation of 5-Deoxystrigol, the Host Recognition Signal for Arbuscular Mycorrhizal Fungi and Root Parasites. Planta 2007, 227, 125–132. [Google Scholar] [CrossRef]
- Rotenberg, D.; Thompson, T.S.; German, T.L.; Willis, D.K. Methods for Effective Real-Time RT-PCR Analysis of Virus-Induced Gene Silencing. J. Virol. Methods 2006, 138, 49–59. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Wang, A.Q.; Chen, D.Y.; Ma, Q.Y.; Rose, J.K.C.; Fei, Z.J.; Liu, Y.S.; Giovannoni, J.J. The Tomato HIGH PIGMENT1/DAMAGED DNA BINDING PROTEIN 1 Gene Contributes to Regulation of Fruit Ripening. Hortic. Res. 2019, 6, 15. [Google Scholar] [CrossRef]
- Bino, R.J.; De Vos, C.H.R.; Lieberman, M.; Hall, R.D.; Bovy, A.; Jonker, H.H.; Tikunov, Y.; Lommen, A.; Moco, S.; Levin, I. The Light-Hyperresponsive High Pigment-2dg Mutation of Tomato: Alterations in the Fruit Metabolome. New Phytol. 2005, 166, 427–438. [Google Scholar] [CrossRef]
- Levin, I.; De Vos, R.; Tadmor, Y.; Bovy, A.; Lieberman-Lazarovich, M.; Oren-Shamir, M.; Segev, O.; Kolotilin, I.; Keller, M.; Ovadia, R.; et al. High pigment tomato mutants—More than just lycopene (a review). Isr. J. Plant Sci. 2006, 54, 179–190. [Google Scholar] [CrossRef]
- Abe, S.; Sado, A.; Tanaka, K.; Kisugi, T.; Asami, K.; Ota, S.; Kim, H.I.; Yoneyama, K.; Xie, X.; Ohnishi, T.; et al. Carlactone Is Converted to Carlactonoic Acid by MAX1 in Arabidopsis and Its Methyl Ester Can Directly Interact with AtD14 In Vitro. Proc. Natl. Acad. Sci. USA 2014, 111, 18084–18089. [Google Scholar] [CrossRef]
- Wakabayashi, T.; Ueno, K.; Sugimoto, Y. Structure Elucidation and Biosynthesis of Orobanchol. Front. Plant Sci. 2022, 13, 835160. [Google Scholar] [CrossRef]
- López-Ráez, J.A.; Charnikhova, T.; Mulder, P.; Kohlen, W.; Bino, R.; Levin, I.; Bouwmeester, H. Susceptibility of the Tomato Mutant High Pigment-2dg (Hp-2dg) to Orobanche Spp. Infection. J. Agric. Food Chem. 2008, 56, 6326–6332. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Abuauf, H.; Song, S.; Wang, J.Y.; Alagoz, Y.; Moreno, J.C.; Mi, J.; Ablazov, A.; Jamil, M.; Ali, S.; et al. The Arabidopsis D27-LIKE1 Is a Cis/Cis/Trans-β-Carotene Isomerase That Contributes to Strigolactone Biosynthesis and Negatively Impacts ABA Level. Plant J. Cell Mol. Biol. 2023, 113, 986–1003. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Hu, Q.; Yan, J.; Sun, K.; Liang, Y.; Jia, M.; Meng, X.; Fang, S.; Wang, Y.; Jing, Y.; et al. ζ-Carotene Isomerase Suppresses Tillering in Rice through the Coordinated Biosynthesis of Strigolactone and Abscisic Acid. Mol. Plant 2020, 13, 1784–1801. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, K.; Awad, A.A.; Xie, X.N.; Yoneyama, K.; Takeuchi, Y. Strigolactones as Germination Stimulants for Root Parasitic Plants. Plant Cell Physiol. 2010, 51, 1095–1103. [Google Scholar] [CrossRef]
- Gobena, D.; Shimels, M.; Rich, P.J.; Ruyter-Spira, C.; Bouwmeester, H.; Kanuganti, S.; Mengiste, T.; Ejeta, G. Mutation in Sorghum LOW GERMINATION STIMULANT 1 Alters Strigolactones and Causes Striga Resistance. Proc. Natl. Acad. Sci. USA 2017, 114, 4471–4476. [Google Scholar] [CrossRef]
- Dor, E.; Yoneyama, K.; Wininger, S.; Kapulnik, Y.; Yoneyama, K.; Koltai, H.; Xie, X.N.; Hershenhorn, J. Strigolactone Deficiency Confers Resistance in Tomato Line SL-ORT1 to the Parasitic Weeds Phelipanche and Orobanche Spp. Phytopathology 2011, 101, 213–222. [Google Scholar] [CrossRef]
- Kohlen, W.; Charnikhova, T.; Lammers, M.; Pollina, T.; Tóth, P.; Haider, I.; Pozo, M.J.; de Maagd, R.A.; Ruyter-Spira, C.; Bouwmeester, H.J.; et al. The Tomato Carotenoid Cleavage Dioxygenase8 (SlCCD8) Regulates Rhizosphere Signaling, Plant Architecture and Affects Reproductive Development through Strigolactone Biosynthesis. New Phytol. 2012, 196, 535–547. [Google Scholar] [CrossRef]
- Bari, V.K.; Nassar, J.A.; Kheredin, S.M.; Gal-On, A.; Ron, M.; Britt, A.; Steele, D.; Yoder, J.; Aly, R. CRISPR/Cas9-Mediated Mutagenesis of CAROTENOID CLEAVAGE DIOXYGENASE 8 in Tomato Provides Resistance against the Parasitic Weed Phelipanche Aegyptiaca. Sci. Rep. 2019, 9, 11438. [Google Scholar] [CrossRef] [PubMed]
- Ban, X.W.; Qin, L.; Yan, J.J.; Wu, J.X.; Li, Q.J.; Su, X.; Hao, Y.R.; Hu, Q.L.; Kou, L.Q.; Yan, Z.Y.; et al. Manipulation of a Strigolactone Transporter in Tomato Confers Resistance to the Parasitic Weed Broomrape. Innovation 2025, 6, 100815. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, B.; Yu, H.; Guo, H.Y.; Lin, T.; Kou, L.Q.; Wang, A.Q.; Shao, N.; Ma, H.Y.; Xiong, G.S.; et al. Transcriptional Regulation of Strigolactone Signalling in Arabidopsis. Nature 2020, 583, 277–281. [Google Scholar] [CrossRef]
- Gomez-Roldan, V.; Fermas, S.; Brewer, P.B.; Puech-Pagès, V.; Dun, E.A.; Pillot, J.-P.; Letisse, F.; Matusova, R.; Danoun, S.; Portais, J.-C.; et al. Strigolactone Inhibition of Shoot Branching. Nature 2008, 455, 189–194. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Alam, P.; Chen, Y.; Ahmad, P. Strigolactones in Plants: From Development to Abiotic Stress Management. J. Plant Growth Regul. 2024, 43, 903–919. [Google Scholar] [CrossRef]
- Yuan, K.; Zhang, H.; Yu, C.; Luo, N.; Yan, J.; Zheng, S.; Hu, Q.; Zhang, D.; Kou, L.; Meng, X.; et al. Low Phosphorus Promotes NSP1–NSP2 Heterodimerization to Enhance Strigolactone Biosynthesis and Regulate Shoot and Root Architecture in Rice. Mol. Plant 2023, 16, 1811–1831. [Google Scholar] [CrossRef]
- Kodama, K.; Rich, M.K.; Yoda, A.; Shimazaki, S.; Xie, X.; Akiyama, K.; Mizuno, Y.; Komatsu, A.; Luo, Y.; Suzuki, H.; et al. An Ancestral Function of Strigolactones as Symbiotic Rhizosphere Signals. Nat. Commun. 2022, 13, 3974. [Google Scholar] [CrossRef]
- Omoarelojie, L.O.; Kulkarni, M.G.; Finnie, J.F.; Van Staden, J. Strigolactones and Their Crosstalk with Other Phytohormones. Ann. Bot. 2019, 124, 749–767. [Google Scholar] [CrossRef]
Tomato | Lutein (μg/g) | Violaxanthin (μg/g) | Neoxanthin (μg/g) | β-carotene (μg/g) |
---|---|---|---|---|
hp-1 | 27.60 ± 0.83 a | 1.22 ± 0.10 a | 2.82 ± 0.06 a | 2.62 ± 0.26 a |
ogc | 10.10 ± 1.94 b | 0.67 ± 0.14 b | 1.40 ± 0.29 b | 0.74 ± 0.05 b |
AC | 9.91 ± 0.68 b | 0.89 ± 0.13 b | 1.65 ± 0.20 b | 0.63 ± 0.11 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Li, X.; Bai, J.; Lu, X.; Pan, C.; Hu, J.; Zhang, C.; Zhu, C.; Guo, Y.; Wang, X.; et al. The Mechanism Involved in High-Lycopene Tomato Mutants for Broomrape Resistance. Agronomy 2025, 15, 1250. https://doi.org/10.3390/agronomy15051250
Shi L, Li X, Bai J, Lu X, Pan C, Hu J, Zhang C, Zhu C, Guo Y, Wang X, et al. The Mechanism Involved in High-Lycopene Tomato Mutants for Broomrape Resistance. Agronomy. 2025; 15(5):1250. https://doi.org/10.3390/agronomy15051250
Chicago/Turabian StyleShi, Lianfeng, Xin Li, Jinrui Bai, Xiaoxiao Lu, Chunyang Pan, Junling Hu, Chen Zhang, Can Zhu, Yanmei Guo, Xiaoxuan Wang, and et al. 2025. "The Mechanism Involved in High-Lycopene Tomato Mutants for Broomrape Resistance" Agronomy 15, no. 5: 1250. https://doi.org/10.3390/agronomy15051250
APA StyleShi, L., Li, X., Bai, J., Lu, X., Pan, C., Hu, J., Zhang, C., Zhu, C., Guo, Y., Wang, X., Huang, Z., Du, Y., Liu, L., & Li, J. (2025). The Mechanism Involved in High-Lycopene Tomato Mutants for Broomrape Resistance. Agronomy, 15(5), 1250. https://doi.org/10.3390/agronomy15051250