Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (332)

Search Parameters:
Keywords = SoilCare

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 513 KiB  
Article
Impact of Dietary Inputs on Carbapenem Resistance Gene Dynamics and Microbial Safety During Bioconversion of Agri-Food Waste and Anaerobic Digestate by Hermetia illucens Larvae
by Andrea Marcelli, Alessio Ilari, Vesna Milanović, Ester Foppa Pedretti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Giorgia Rampanti, Andrea Osimani, Cristiana Garofalo and Lucia Aquilanti
Genes 2025, 16(8), 907; https://doi.org/10.3390/genes16080907 - 29 Jul 2025
Viewed by 174
Abstract
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of [...] Read more.
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of these genes and opportunistic pathogens, raises important safety concerns. This study aimed to assess the influence of different agri-food-based diets on Enterobacteriaceae loads and the CRG occurrence during the bioconversion process. Methods: Four experimental diets were formulated from agri-food residues and anaerobic digestate: Diet 1 (peas and chickpea waste), Diet 2 (peas and wheat waste), Diet 3 (onion and wheat waste), and Diet 4 (wheat waste and digestate). Enterobacteriaceae were quantified by viable counts, while five CRGs (blaKPC, blaNDM, blaOXA-48, blaVIM, and blaGES) were detected and quantified using quantitative PCRs (qPCRs). Analyses were performed on individual substrates, formulated diets, larvae (before and after bioconversion), and frass. Results: Plant-based diets sustained moderate Enterobacteriaceae loads. In contrast, the digestate-based diet led to a significant increase in Enterobacteriaceae in both the frass and mature larvae. CRGs were detected only in legume-based diets: blaVIM and blaGES were found in both mature larvae and frass, while blaOXA-48 and blaKPC were found exclusively in either larvae or frass. No CRGs were detected in onion- or digestate-based diets nor in young larvae or diet inputs. Conclusions: The findings suggest that the diet composition may influence the proliferation of Enterobacteriaceae and the persistence of CRGs. Careful substrate selection and process monitoring are essential to minimize antimicrobial resistance risks in insect-based bioconversion systems. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

20 pages, 342 KiB  
Review
Grassy and Herbaceous Interrow Cover Crops in European Vineyards: A Review of Their Short-Term Effects on Water Management and Regulating Ecosystem Services
by Mihály Zalai, Olimpia Bujtás, Miklós Sárospataki and Zita Dorner
Land 2025, 14(8), 1526; https://doi.org/10.3390/land14081526 - 24 Jul 2025
Viewed by 244
Abstract
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition [...] Read more.
Interrow management in vineyards significantly contributes to sustainable viticulture, particularly in water-scarce European regions. Grassy and herbaceous cover crops have been proven to enhance multiple regulating ecosystem services, including soil conservation, carbon sequestration, and improved water infiltration. However, the potential for water competition with vines necessitates region-specific approaches. This review aims to analyze the effects of different cover crop types and interrow tillage methods on water management and regulating ecosystem services, focusing on main European vineyard areas. The research involved a two-stage literature review by Google Scholar and Scopus, resulting in the identification of 67 relevant scientific publications, with 11 offering experimental data from European contexts. Selected studies were evaluated based on climate conditions, soil properties, slope characteristics, and interrow treatments. Findings highlight that the appropriate selection of cover crop species, sowing and mowing timing, and mulching practices can optimize vineyard resilience under climate stress. Practical recommendations are offered to help winegrowers adopt cost-effective and environmentally adaptive strategies, especially on sloped or shallow soils, where partial cover cropping is often the most beneficial for both yield and ecological balance. Cover crops and mulching reduce erosion, enhance vineyard soil moisture, relieve water stress consequences, and, as a result, these cover cropping techniques can improve yield and nutritional values of grapes (e.g., Brix, pH, K concentration), but effects vary; careful, site-specific, long-term management is essential for best results. Full article
12 pages, 249 KiB  
Data Descriptor
Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji
by Poasa Nauluvula, Bruce L. Webber, Roslyn M. Gleadow, William Aalbersberg, John N. G. Hargreaves, Bianca T. Das, Diogenes L. Antille and Steven J. Crimp
Data 2025, 10(8), 120; https://doi.org/10.3390/data10080120 - 23 Jul 2025
Viewed by 594
Abstract
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen [...] Read more.
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen cyanide (HCN) before its consumption, but HCN concentrations can vary considerably between varieties. Climate change and low inputs, particularly carbon and nutrients, affect agriculture in Pacific Island countries where cassava is commonly grown alongside traditional crops (e.g., taro). Despite increasing popularity in this region, there is limited experimental data about cassava crop management for different local varieties, their relative toxicity and nutritional value for human consumption, and their interaction with changing climate conditions. To help address this knowledge gap, three field experiments were conducted at the Koronivia Research Station of the Fiji Ministry of Agriculture. Two varieties of cassava with contrasting HCN content were planted at three different times coinciding with the start of the wet (September-October) or dry (April) seasons. A time series of measurements was conducted during the full 18-month or differing 6-month durations of each crop, based on destructive harvests and phenological observations. The former included determination of total biomass, HCN potential, carbon isotopes (δ13C), and elemental composition. Yield and nutritional value were significantly affected by variety and time of planting, and there were interactions between the two factors. Findings from this work will improve cassava management locally and will provide a valuable dataset for agronomic and biophysical model testing. Full article
16 pages, 1049 KiB  
Article
Limited Short-Term Impact of Annual Cover Crops on Soil Carbon and Soil Enzyme Activity in Subtropical Tree Crop Systems
by Abraham J. Gibson, Lee J. Kearney, Karina Griffin, Michael T. Rose and Terry J. Rose
Agronomy 2025, 15(7), 1750; https://doi.org/10.3390/agronomy15071750 - 21 Jul 2025
Viewed by 272
Abstract
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in [...] Read more.
In wet subtropical environments, perennial groundcovers are common in horticultural plantations to protect the soil from erosion. However, there has been little investigation into whether seeding annual cover crops into the perennial groundcovers provides additional soil services including carbon and nutrient cycling in these systems. To investigate this, farmer participatory field trials were conducted in commercial avocado, macadamia, and coffee plantations in the wet Australian subtropics. Cover crops were direct-seeded into existing inter-row groundcovers in winter (cool season cover crops), and into the same plots the following summer (warm season cover crops). Inter-row biomass was quantified at the end of winter and summer in the control (no cover crop) and cover crops treatments. Soil carbon and nutrient cycling parameters including hot water extractable carbon, water soluble carbon, autoclavable citrate-extractable protein and soil enzyme activities were quantified every two months from early spring (September) 2021 to late autumn (May) 2022. Seeded cover crops produced 500 to 800 kg ha−1 more total inter-row biomass over winter at the avocado coffee sites, and 3000 kg ha−1 biomass in summer at the coffee site. However, they had no effect on biomass production in either season at the macadamia site. Soil functional parameters changed with season (i.e., time of sampling), with few significant effects of cover crop treatments on soil function parameters across the three sits. Growing a highly productive annual summer cover crop at the coffee site led to suppression and death of perennial groundcovers, exposing bare soil in the inter-row by 3 weeks after termination of the summer cover crop. Annual cover crops seeded into existing perennial groundcovers in tree crop systems had few significant impacts on soil biological function over the 12-month period, and their integration needs careful management to avoid investment losses and exacerbating the risk of soil erosion on sloping lands in the wet subtropics. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

18 pages, 4803 KiB  
Article
Global Health as Vector for Agroecology in Collective Gardens in Toulouse Region (France)
by Wilkens Jules, Stéphane Mombo and Camille Dumat
Urban Sci. 2025, 9(7), 272; https://doi.org/10.3390/urbansci9070272 - 15 Jul 2025
Viewed by 731
Abstract
Agroecological transitions in collective urban gardens in Toulouse region were studied through the prism of global health (2011–2022). The specific meaning of “global health” in the context of urban gardens concerns the health of gardeners (well-being and physical health), plants, soil, and animals, [...] Read more.
Agroecological transitions in collective urban gardens in Toulouse region were studied through the prism of global health (2011–2022). The specific meaning of “global health” in the context of urban gardens concerns the health of gardeners (well-being and physical health), plants, soil, and animals, as well as the interactions between humans and non-humans, which are crucial for gardeners. A sociotechnical research project was developed on four different collective gardening sites, consisting of the following: 1. surveys issued to 100 garden stakeholders to highlight issues and practices, participation in meetings with the social centers in charge of events, and focus groups; 2. participative agronomic and environmental measurements and field observations, including soil quality analyses; and 3. analysis of the available documentary corpus. In order to produce the results, these three research methods (surveys, agronomy, document analysis) were combined through a transdisciplinary approach, in that both the field experimentation outcomes and retrieved scientific publications and technical documents informed the discussions with gardeners. Consideration of the four different sites enabled the exploration of various contextual factors—such as soil or air quality—affecting the production of vegetables. A rise in the concerns of gardeners about the impacts of their activities on global health was observed, including aspects such as creating and enjoying landscapes, taking care of the soil and biodiversity, developing social connections through the transmission of practices, and regular outside physical activity and healthier eating. The increased consideration for global health issues by all stakeholders promotes the implementation of agroecological practices in gardens to improve biodiversity and adherence to circular economy principles. Four concepts emerged from the interviews: health, production of vegetables, living soil, and social interactions. Notably, nuances between the studied sites were observed, according to their history, environment, and organization. These collective gardens can thus be considered as accessible laboratories for social and agroecological experimentation, being areas that can strongly contribute to urban ecosystem services. Full article
(This article belongs to the Special Issue Social Evolution and Sustainability in the Urban Context)
Show Figures

Figure 1

20 pages, 9284 KiB  
Article
Tunnels in Gediminas Hill (Vilnius, Lithuania): Evaluation of a New Tunnel Found in 2019
by Šarūnas Skuodis, Mykolas Daugevičius, Jurgis Medzvieckas, Arnoldas Šneideris, Aidas Jokūbaitis, Justinas Rastenis and Juozas Valivonis
Buildings 2025, 15(14), 2383; https://doi.org/10.3390/buildings15142383 - 8 Jul 2025
Viewed by 249
Abstract
This article provides a concise overview of the existing tunnels located within the historic cultural heritage site of Gediminas Hill in Vilnius, with particular emphasis on the implications of a recently discovered tunnel. This newly identified tunnel is of particular interest due to [...] Read more.
This article provides a concise overview of the existing tunnels located within the historic cultural heritage site of Gediminas Hill in Vilnius, with particular emphasis on the implications of a recently discovered tunnel. This newly identified tunnel is of particular interest due to its location beneath a retaining wall in close proximity to an adjacent structure. Long-term structural monitoring data indicate that the building has experienced displacement away from the retaining wall. Although the precise cause of this movement remains undetermined, the discovery of the tunnel adjacent to the structure has raised concerns regarding its potential role in the observed displacements. To investigate this hypothesis, a previously developed numerical model was employed to simulate the tunnel’s impact. The simulation results suggest that the tunnel’s construction was executed with careful consideration. During the excavation phase, the retaining wall exhibited displacements in a direction opposite to the expected ground pressure, indicating effective utilization of the wall’s gravitational mass. However, historical records indicate that no retaining structures were present in the area during the tunnel’s initial period of existence. Consequently, an additional simulation phase was introduced to model the behavior of the surrounding loose soil in the absence of retaining support. The results from this phase revealed that the deformations of the retaining wall and the adjacent building were elastically interdependent. The simulated deformation patterns closely matched the temporal trends observed in the monitoring data. These findings support the hypothesis that the tunnel’s construction may have contributed to the displacement of the nearby building. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

24 pages, 2408 KiB  
Article
Multi-Criteria Analysis of Three Walkable Surface Configurations for Healthy Urban Trees: Suspended Grating Systems, Modular Boxes, and Structural Soils
by Magdalena Wojnowska-Heciak, Olga Balcerzak and Jakub Heciak
Sustainability 2025, 17(13), 6195; https://doi.org/10.3390/su17136195 - 6 Jul 2025
Viewed by 391
Abstract
The conflicting demands of urban trees and walkable surfaces result in significant financial burdens for municipal administrators who understand that urban residents want tree-lined walkable surfaces. This study investigates three methodologies for mitigating this tension: suspended grating systems, modular box systems, and structural [...] Read more.
The conflicting demands of urban trees and walkable surfaces result in significant financial burdens for municipal administrators who understand that urban residents want tree-lined walkable surfaces. This study investigates three methodologies for mitigating this tension: suspended grating systems, modular box systems, and structural soils. A Multi-Criteria Analysis (MCA) was conducted to evaluate their suitability in dense urban areas, employing criteria categorized into Environmental, Economical, and Other considerations. The comparison focused on critical aspects such as the impact on tree health (root growth, water availability), installation complexity, initial costs, and overall suitability for diverse urban contexts. The MCA indicates that, under the given weighting of criteria, suspended grating systems (especially those suited for existing trees) rank the highest, primarily due to their superior root protection and minimal disturbance to established root systems. In contrast, modular box systems and structural soils emerge as particularly strong contenders for new tree plantings. Structural soils may have application at sites with existing trees, but the costs of removing native soil are a consideration. Sensitivity analysis suggests that modular box systems may become the preferred option when greater emphasis is placed on stormwater management and new plantings, rather than on challenges for existing trees or underground infrastructure. Structural soils score well in cost-effectiveness and installation speed but require careful implementation to address their lower root protection performance and long-term maintenance concerns. Ultimately, the optimal solution depends on unique site-specific conditions and budgetary constraints, emphasizing the necessity of tailored approaches to balance urban infrastructure with tree health. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

24 pages, 1779 KiB  
Article
Carbon Metabolism Characteristics of Rhizosphere Soil Microbial Communities in Different-Aged Alfalfa (Medicago sativa L.) and Their Covarying Soil Factors in the Semi-Arid Loess Plateau
by Xianzhi Wang, Bingxue Zhou and Qian Yang
Agronomy 2025, 15(7), 1602; https://doi.org/10.3390/agronomy15071602 - 30 Jun 2025
Viewed by 384
Abstract
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of [...] Read more.
The carbon metabolism activity of rhizosphere soil microbial communities is an essential indicator for assessing soil ecosystem health, as it directly affects soil nutrient cycling and the stability of organic matter. However, there is a limited understanding of the carbon metabolism characteristics of rhizosphere soil microorganisms in alfalfa (Medicago sativa L.) of different ages and their relationships with soil physicochemical properties. This study used Biolog EcoPlates to evaluate the carbon metabolism activity, functional diversity, and carbon-source utilization preferences of rhizosphere soil microbial communities in 5-, 7-, and 9-year-old alfalfa grasslands on the semi-arid Loess Plateau of western China. We analyzed the relationships between soil physicochemical properties and microbial carbon metabolism characteristics, considering their potential covariation. The results showed that, with the extension of alfalfa planting years, the rhizosphere soil water content decreased significantly, pH decreased slightly, but soil organic carbon, total nitrogen, and total phosphorus contents increased significantly. The rhizosphere soil microbial community of 9-year-old alfalfa exhibited the highest carbon metabolism activity, Shannon diversity index, and carbon-source utilization. Rhizosphere soil microorganisms from different-aged alfalfa showed significantly different preferences for carbon-source utilization, with microorganisms from 9-year-old alfalfa preferentially utilizing carbon sources such as N-acetyl-D-glucosamine, D-mannitol, and D-cellobiose. Redundancy analysis revealed that soil water content was among the most important factors influencing the carbon metabolism activity of rhizosphere soil microbial communities while acknowledging that the relative contributions of soil water content, organic carbon, and nitrogen require careful interpretation, owing to their potential collinearity. This study demonstrates that, under rain-fed conditions in the semi-arid Loess Plateau, the continuous cultivation of alfalfa for nine years led to a significant decrease in soil water content but enhanced the rhizosphere soil nutrient status and microbial carbon metabolism activity, with no apparent signs of microbial functional degradation, although soil water depletion was observed. These findings highlight the complex interactions among multiple soil factors in influencing microbial carbon metabolism, providing valuable microbiological insights for understanding the sustainability of alfalfa grasslands and a theoretical basis for the scientific management of alfalfa grasslands in the semi-arid Loess Plateau region. Future research should consider longer planting periods to determine the critical age of alfalfa grassland degradation under semi-arid conditions and its associated microbial mechanisms. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

31 pages, 1097 KiB  
Project Report
Assessment of Knowledge Gaps Related to Soil Literacy
by Roger Roca Vallejo, Anna Krzywoszynska, Loukas Katikas, Karen Naciph Mora, Marie Husseini, Sónia Morais Rodrigues, Roos van de Logt, Karen Johnson, Borut Vrščaj, Camilla Ramezzano, Katja Črnec and Almut Ballstaedt
Land 2025, 14(7), 1372; https://doi.org/10.3390/land14071372 - 30 Jun 2025
Viewed by 502
Abstract
Soil literacy, defined as the combination of attitudes, behaviours, and competencies necessary to make informed decisions that promote soil health, is increasingly recognised as a crucial element for sustainable development. This article presents the outcomes of the Soil Literacy Think Tank established under [...] Read more.
Soil literacy, defined as the combination of attitudes, behaviours, and competencies necessary to make informed decisions that promote soil health, is increasingly recognised as a crucial element for sustainable development. This article presents the outcomes of the Soil Literacy Think Tank established under the Soils for Europe (SOLO) project, which aims to identify research and innovation knowledge gaps to strengthen soil literacy in Europe. Drawing on literature reviews, stakeholder engagement, and interdisciplinary dialogue, the paper highlights 18 prioritised knowledge gaps across different topics. These include a lack of integrated pedagogical strategies, limited outreach to specific social groups, and underdeveloped communication methods linking soil knowledge to stewardship actions. The article proposes adaptive and inclusive approaches to soil education that respect multiple knowledge systems and values and emphasises the importance of embedding soil literacy into sustainability agendas and governance processes. By addressing these challenges, the paper contributes to broader efforts supporting the EU Soil Mission and the goals of World Soil Day by promoting public awareness, citizen engagement, and responsible soil care. Full article
(This article belongs to the Special Issue Celebrating World Soil Day)
Show Figures

Figure 1

19 pages, 3097 KiB  
Article
BLH3 Regulates the ABA Pathway and Lignin Synthesis Under Salt Stress in Lilium pumilum
by Wenhao Wan, Lingshu Zhang, Xingyu Liu, Huitao Cui, Miaoxin Shi, Hao Sun, Wei Yang, Xinran Wang, Fengshan Yang and Shumei Jin
Plants 2025, 14(12), 1860; https://doi.org/10.3390/plants14121860 - 17 Jun 2025
Viewed by 531
Abstract
BEL1-like homeodomain protein 3 (BLH3) plays a crucial role in plant development. However, its involvement in the salt stress response has not been studied. In this study, we investigated the molecular mechanism underlying the response of LpBLH3 to salt stress in Lilium pumilum [...] Read more.
BEL1-like homeodomain protein 3 (BLH3) plays a crucial role in plant development. However, its involvement in the salt stress response has not been studied. In this study, we investigated the molecular mechanism underlying the response of LpBLH3 to salt stress in Lilium pumilum (L. pumilum) using various techniques, including quantitative PCR (RT-qPCR), determination of physiological indices of plant after Saline-Alkali stress, yeast two-hybrid screening, luciferase complementation imaging (LCI), and chromosome walking to obtain the promoter sequence, analyzed by PlantCARE, electrophoretic mobility shift assay (EMSA), and then dual-luciferase reporter assay(LUC). RT-qPCR analysis revealed that LpBLH3 is most highly expressed in the leaves of L. pumilum. The expression of LpBLH3 peaks at 24 or 36 h in the leaves under different saline stress. Under various treatments, compared to the wild type (WT), the LpBLH3 overexpression lines exhibited less chlorosis and leaf curling and stronger photosynthesis. The overexpression of LpBLH3 can enhance lignin accumulation in root and stem by positively modulating the expression of crucial genes within the lignin biosynthesis pathway. Y2H and LCI analyses demonstrated that LpBLH3 interacts with LpKNAT3. Additionally, EMSA and LUC analyses confirmed that LpBLH3 can bind to the promoter of LpABI5 and upregulate the expression of ABI5 downstream genes (LpCAT1/LpATEM/LpRD29B). In summary, LpBLH3 enhances the plant’s salt tolerance through the ABA pathway and lignin synthesis. This study can enrich the functional network of the BLH transcription factor family, obtain Lilium pumilum lines with good saline-alkali resistance, expand the planting area of Lilium pumilum, and improve its medicinal and ornamental values. Additionally, the functional analysis of the BLH transcription factor family provides new insights into how crops adapt to the extreme growth environment of saline-alkali soils. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

12 pages, 709 KiB  
Article
Impacts of Nitrogen Fertilization on Hybrid Bermudagrass During Deficit Irrigation
by Reagan W. Hejl, Matthew M. Conley, Julia G. Farias, Desalegn D. Serba and Clinton F. Williams
Grasses 2025, 4(2), 25; https://doi.org/10.3390/grasses4020025 - 13 Jun 2025
Viewed by 494
Abstract
Fertilizer application is a critical component of turfgrass management as it influences growth, color, stress tolerance, and overall quality. However, limited information exists on how fertilizer application, particularly nitrogen (N), affects hybrid bermudagrass performance and actual plant evapotranspiration (ETa) in both [...] Read more.
Fertilizer application is a critical component of turfgrass management as it influences growth, color, stress tolerance, and overall quality. However, limited information exists on how fertilizer application, particularly nitrogen (N), affects hybrid bermudagrass performance and actual plant evapotranspiration (ETa) in both well-watered and deficit irrigation scenarios. A 7-week greenhouse experiment was conducted over two replicated runs to evaluate responses of ‘TifTuf’ hybrid bermudagrass (Cynodon dactylon × C. traansvalensis Burtt Davy) to three nitrogen rates (0, 2.4, and 4.8 g N m−2 month−1) and three irrigation levels (1.0, 0.65, and 0.30 × ETa). Fertilized turfgrass exhibited 11–12% greater ETa compared to unfertilized turfgrass, with no significant differences between the two fertilizer rates. Under well-watered conditions (1.0 × ETa), the high nitrogen rate significantly improved visual quality (7.8) relative to the unfertilized control (7.1) and the low-rate treatment (7.4). High-rate fertilizer application significantly enhanced visual quality at both deficit levels (7.2 and 6.6, at 0.65 and 0.30 × ETa, respectively) compared to the unfertilized control (6.2 and 5.9, at 0.65 and 0.30 × ETa, respectively). At 0.30 × ETa, low-rate fertilizer application also significantly improved visual quality (7.0) compared to the unfertilized control. Soil nitrate-N levels increased with higher nitrogen application (1.30 ppm, 0.48 ppm, and 0.37 ppm, respectively, for high-rate, low-rate, and unfertilized), and shoot tissue analysis revealed greater N concentration in fertilized turfgrass (1.51%, 1.24%, and 0.85%, respectively, for high-rate, low-rate, and unfertilized). Clipping production and water use efficiency (WUE) were also improved with fertilization, although root development was hindered at the 0.30 × ETa irrigation level. These findings demonstrate that nitrogen fertilization improves visual quality, shoot growth, WUE, and drought response; however, tradeoffs such as elevated water use and nitrate-N leaching risk necessitate careful management to balance turfgrass performance with water conservation and ecosystem service preservation. Full article
(This article belongs to the Special Issue Advances in Sustainable Turfgrass Management)
Show Figures

Figure 1

13 pages, 916 KiB  
Article
Environment Friendly Biodegradable Sprayable Shrimp Waste Fertilizer and Low-Cost Crab Waste Carbon Fixer
by Viral Sagar and Joan G. Lynam
Environments 2025, 12(6), 181; https://doi.org/10.3390/environments12060181 - 29 May 2025
Viewed by 1234
Abstract
Seafood waste is often landfilled and/or discarded into water, raising microbiological pollution and environment policy concerns. Repurposing this low-cost biomass collected at point-source processing centers can help reduce greenhouse gas emissions and support industrial progress in developing economies. Safe alternative methods to utilize [...] Read more.
Seafood waste is often landfilled and/or discarded into water, raising microbiological pollution and environment policy concerns. Repurposing this low-cost biomass collected at point-source processing centers can help reduce greenhouse gas emissions and support industrial progress in developing economies. Safe alternative methods to utilize seafood waste were investigated. Hydrothermal carbonization-enriched shrimp shell waste was converted into higher-value products, such as sprayable fertilizer and dry biochar fertilizer pellets. Environment friendly sprayable fertilizer from shrimp and crab shell waste as an inexpensive carbon fixer is a potential solution. An average spray coverage area of 0.12 m2 from only 300 mL of 1:10 shrimp shell waste to water mixture is reported. Characterization using N:P:K ratios from elemental analysis showed crustacean shell waste to comprise long-term organic carbon fixers in the soil with minor mineral enrichment, demonstrating potential for long-term soil care. Additionally, hydrothermally carbonized mineral rich shrimp shell and untreated crab shell waste were pelletized to test their friability and feasibility in transportation. Such a bio-investigation to promote economic goals for sustainability can improve biomass waste handling locally. Full article
(This article belongs to the Special Issue Preparation and Application of Biochar (Second Edition))
Show Figures

Graphical abstract

19 pages, 3867 KiB  
Article
A Comparative Analysis of Machine Learning and Pedotransfer Functions Under Varying Data Availability in Two Greek Regions
by Panagiotis Tziachris, Panagiota Louka, Eirini Metaxa, Miltiadis Iatrou and Konstantinos Tsiouplakis
Agriculture 2025, 15(11), 1134; https://doi.org/10.3390/agriculture15111134 - 24 May 2025
Viewed by 474
Abstract
The current study evaluates the performance of pedotransfer functions (PTFs) and machine learning (ML) algorithms in predicting the soil bulk density (BD) across two distinct regions in Greece—Kozani and Veroia—using both limited and extended sets of soil parameters. The results reveal significant regional [...] Read more.
The current study evaluates the performance of pedotransfer functions (PTFs) and machine learning (ML) algorithms in predicting the soil bulk density (BD) across two distinct regions in Greece—Kozani and Veroia—using both limited and extended sets of soil parameters. The results reveal significant regional differences in prediction accuracy. In the full dataset scenario, Veroia consistently exhibits superior predictive performance across all models (PDF RMSE: 0.104, ML RMSE: 0.095) compared to Kozani (PDF RMSE: 0.133, ML RMSE: 0.122). Generally, ML models outperform PTFs in terms of the RMSE and MAE in both regions with the full dataset. However, PTFs occasionally demonstrate higher R2 values (Veroia PTF R2: 0.35 vs. ML R2: 0.28), suggesting a better explanation of the overall variance despite larger errors. Notably, the effectiveness of ML appears to be affected by the availability of data. In Kozani, when restricted to basic soil properties, ML’s performance (RMSE: 0.129, R2: 0.16) becomes similar to that of PTFs (RMSE: 0.133, R2: 0.16). However, incorporating the full dataset substantially enhances ML’s predictive power (RMSE: 0.122, R2: 0.26). Conversely, in Veroia, the inclusion of more variables paradoxically results in a slight decline in ML performance (ML_min RMSE: 0.093, R2: 0.31 vs. ML RMSE: 0.095, R2: 0.28). These contrasting results emphasize the need for context-specific modeling strategies, careful feature selection, and caution against the assumption that more data or complexity inherently improves the predictive performance. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 5678 KiB  
Article
Properties and Biodegradation of Poly(lactic Acid)/Thermoplastic Alginate Biocomposites Prepared via a Melt Blending Technique
by Yodthong Baimark, Kansiri Pakkethati and Prasong Srihanam
Polymers 2025, 17(10), 1338; https://doi.org/10.3390/polym17101338 - 14 May 2025
Viewed by 467
Abstract
In this work, poly(L-lactic acid)/thermoplastic alginate (PLA/TPA) biocomposites were prepared through a melt blending method. The TPA was initially prepared using glycerol as a plasticizer. The effects of TPA content on the interactions between blend components, thermal properties, phase morphology, mechanical properties, hydrophilicity, [...] Read more.
In this work, poly(L-lactic acid)/thermoplastic alginate (PLA/TPA) biocomposites were prepared through a melt blending method. The TPA was initially prepared using glycerol as a plasticizer. The effects of TPA content on the interactions between blend components, thermal properties, phase morphology, mechanical properties, hydrophilicity, and biodegradation properties of biocomposites were systematically investigated. Fourier transform infrared (FTIR) spectroscopy analysis corroborated the interaction between the blend components. The addition of TPA enhanced the nucleating effect for PLA, as determined by differential scanning calorimetry (DSC). Scanning electron microscopy (SEM) revealed poor phase compatibility between the PLA and TPA phases. The thermal stability and mechanical properties of the biocomposites decreased with the addition of TPA, as demonstrated by thermogravimetric analysis (TGA) and tensile tests, respectively. The hydrophilicity and soil burial degradation rate of biocomposites increased significantly as the TPA content increased. These results indicated that PLA/TPA biocomposites degraded faster than pure PLA, making them suitable for single-use packaging, but this necessitates careful optimization of TPA content to balance mechanical properties and soil burial degradation rate for practical single-use applications. Full article
(This article belongs to the Special Issue Degradation of Plastics)
Show Figures

Figure 1

24 pages, 1664 KiB  
Review
Microextraction and Eco-Friendly Techniques Applied to Solid Matrices Followed by Chromatographic Analysis
by Attilio Naccarato, Rosangela Elliani and Antonio Tagarelli
Separations 2025, 12(5), 124; https://doi.org/10.3390/separations12050124 - 14 May 2025
Cited by 2 | Viewed by 708
Abstract
In this review, a 5-year overview on environmentally friendly approaches for the extraction of the most relevant organic pollutants in soil, sediment, particulate matter, and sewage sludge coupled with chromatographic analysis is reported. Organic contaminants encompass various compounds derived from personal care products, [...] Read more.
In this review, a 5-year overview on environmentally friendly approaches for the extraction of the most relevant organic pollutants in soil, sediment, particulate matter, and sewage sludge coupled with chromatographic analysis is reported. Organic contaminants encompass various compounds derived from personal care products, industrial chemicals, microplastics, organic matter combustion, agricultural practices, and plasticizer material. The principles of green analytical chemistry (GAC) and green sample preparation (GSP) serve as a guideline for the development of more environmentally sustainable analytical protocols. This study focuses attention on microwave-assisted extraction (MAE), ultrasound-assisted extraction (UAE), matrix solid-phase dispersion (MSPD), and microextraction techniques, such as solid-phase microextraction (SPME), stir bar sorptive extraction (SBSE), hollow-fiber liquid-phase microextraction (HF-LPME), spray-assisted droplet formation-based liquid-phase microextraction (SADF-LPME), and dispersive liquid–liquid extraction (DLLME). These approaches represent the most relevant eco-friendly sample preparation for the advanced extraction of target analytes from environmental solid samples. Full article
Show Figures

Figure 1

Back to TopTop