error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (267)

Search Parameters:
Keywords = Soil Moisture Active Passive (SMAP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 19207 KB  
Article
The Global 9 km Soil Moisture Estimation by Downscaling of European Space Agency Climate Change Initiative Data from 1978 to 2020
by Hongtao Jiang, Hao Liu, Huanfeng Shen, Xinghua Li, Jingan Wu, Tianyi Song and Sanxiong Chen
Water 2025, 17(24), 3471; https://doi.org/10.3390/w17243471 - 7 Dec 2025
Viewed by 408
Abstract
The spatial resolution of current microwave remote sensing soil moisture (SM) data is about 25 km in global scale. The coarse scale hinders the application of SM product at regional scale. The global 9 km SM can be released by radar observations of [...] Read more.
The spatial resolution of current microwave remote sensing soil moisture (SM) data is about 25 km in global scale. The coarse scale hinders the application of SM product at regional scale. The global 9 km SM can be released by radar observations of Soil moisture Active and Passive (SMAP) satellite since 2015. For the failed radar sensor, SMAP 9 km SM is less than three months. Therefore, European Space Agency Climate Change Initiative (CCI) SM data is downscaled to 9 km using spatial temporal fusion model in the study. And the 43-year 9 km SM is downscaled by CCI data from 1978 to 2020. Results display that downscaled 9 km SM gets more detailed spatial information than CCI data. Moreover, temporal variation of CCI data in anomaly can be well captured by downscaled data. The evaluations against in-situ data indicate that temporal accuracies of downscaled data (r = 0.676, μbRMSE = 0.069 m3/m3) are comparable with CCI data (r = 0.670, μbRMSE = 0.070 m3/m3). Overall, downscaled data improves the spatial resolution of CCI data and inherits the temporal accuracy with slight improvement. Higher spatial resolution SM offers greater application potential. Additionally, the model herein enriches SM downscaling techniques. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

17 pages, 4932 KB  
Article
Validation of Soil Temperature Sensing Depth Estimates Using High-Temporal Resolution Data from NEON and SMAP Missions
by Shaoning Lv, Edward Ayres and Yin Hu
Remote Sens. 2025, 17(23), 3845; https://doi.org/10.3390/rs17233845 - 27 Nov 2025
Viewed by 356
Abstract
Passive microwave remote sensing of soil moisture is crucial for monitoring the Earth’s water cycle and surface dynamics. The penetration depth during this process is significant, as it influences the accuracy of retrieved soil moisture data. Within L-band remote sensing, tools such as [...] Read more.
Passive microwave remote sensing of soil moisture is crucial for monitoring the Earth’s water cycle and surface dynamics. The penetration depth during this process is significant, as it influences the accuracy of retrieved soil moisture data. Within L-band remote sensing, tools such as the τ-z model interpret microwave emissions to estimate soil moisture, taking into account the complex interactions between soil and radiation. However, in validating these models against high-temporal-resolution, ground-based measurements, especially from extensive networks like the Terrestrial National Ecological Observatory Network (NEON), further research and validation efforts are needed. This study comprehensively validates the τ-z model’s ability to estimate the soil temperature sensing depth (zTeff) using data from the NEON and Soil Moisture Active Passive (SMAP) satellite missions. A harmonization process was conducted to align the spatial and temporal scales of the two datasets, enabling rigorous validation. We compared soil optical depth (τ)—a parameter capable of theoretically unifying sensing depth representations across wet soil (~0.05 m) to extreme dry/frozen conditions (e.g., up to ~1500 m in ice-equivalent scenarios)—and geometric depth (z) frameworks against outputs from the τ-z model and NEON’s in situ profiles. The results show that: (1) for the profiles that satisfy the monotonic assumption by the τ-z model, zTeff fits the prediction well at about 0.2 τ for the average; (2) Combining SMAP’s soil moisture, the τ-z model achieves high accuracy in estimating zTeff, with RMSD (0.05 m) and unRMSD (0.03 m), and correlations (0.67) between estimated and observed values. The findings are expected to advance remote sensing techniques in various fields, including agriculture, hydrology, and climate change research. Full article
Show Figures

Figure 1

18 pages, 3591 KB  
Article
Decadal-Scale Warming Signals in Antarctic Ice Sheet Interior Revealed by L-Band Passive Microwave Observations from 2015 to 2025
by Shaoning Lv, Yin Hu and Jun Wen
Remote Sens. 2025, 17(22), 3757; https://doi.org/10.3390/rs17223757 - 19 Nov 2025
Cited by 1 | Viewed by 480
Abstract
The Antarctic ice sheet, Earth’s largest ice mass, is vital to the global climate system. Analyzing its thermal behavior is crucial for sea-level projections and ice shelf assessments; however, internal temperature studies remain challenging due to the harsh environment and limited access to [...] Read more.
The Antarctic ice sheet, Earth’s largest ice mass, is vital to the global climate system. Analyzing its thermal behavior is crucial for sea-level projections and ice shelf assessments; however, internal temperature studies remain challenging due to the harsh environment and limited access to the site. Using ten years of Soil Moisture Active Passive (SMAP) satellite passive microwave brightness temperature (TB) data (2015–2025), we examined changes in TB across Antarctica. Results show a stronger warming trend in West Antarctica, with TB increasing by over 1.5 K over a decade, while East Antarctica remains relatively stable, showing only seasonal summer warming and winter cooling. Furthermore, TB in the Antarctic region correlates best with internal temperatures at depths of 500–2000 m, as indicated by the effective soil temperature, as demonstrated by the modeling data and the τ-z model’s inference. However, the total enthalpy is inconsistent with the TB trend and exhibits the opposite effect when combined with the sensing depth. By comparing the weak trend in surface ice temperature changes, we conclude that the TB warming trend observed on the western side of the Antarctic over the past decade does not originate from the increasing temperatures within the internal ice shelves, which differs from the increase in temperatures at the Antarctic margins. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

22 pages, 57638 KB  
Article
Comparison of a Semiempirical Algorithm and an Artificial Neural Network for Soil Moisture Retrieval Using CYGNSS Reflectometry Data
by Hamed Izadgoshasb, Emanuele Santi, Flavio Cordari, Leila Guerriero, Leonardo Chiavini, Veronica Ambrogioni and Nazzareno Pierdicca
Remote Sens. 2025, 17(21), 3636; https://doi.org/10.3390/rs17213636 - 3 Nov 2025
Viewed by 717
Abstract
This research, carried out within the framework of the European Space Agency’s second Scout mission (HydroGNSS), seeks to utilize CYGNSS Level 1B products over land for soil moisture estimation. The approach involves a novel physically based algorithm, which inverts a semiempirical forward model [...] Read more.
This research, carried out within the framework of the European Space Agency’s second Scout mission (HydroGNSS), seeks to utilize CYGNSS Level 1B products over land for soil moisture estimation. The approach involves a novel physically based algorithm, which inverts a semiempirical forward model of surface reflectivity proposed in the literature. An Artificial Neural Network (ANN) algorithm has also been developed. Both methods are implemented in the frame of the HydroGNSS mission to make the most of the reliability of an approach rooted in a physical background and the power of a data-driven approach that may suffer from limited training data, especially right after launch. The study aims to compare the results and performance of these two methods. Additionally, it intends to evaluate the impact of auxiliary data. The static auxiliary data include topography, Above Ground Biomass (AGB), land cover, and surface roughness. Dynamic auxiliary data include Vegetation Water Content (VWC) and Vegetation Optical Depth (VOD) from Soil Moisture Active Passive (SMAP), as well as Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI) from Moderate Resolution Imaging Spectroradiometer (MODIS), on enhancing the accuracy of retrievals. The algorithms were trained and validated using target soil moisture values derived from SMAP L3 global daily products and in situ measurements from the International Soil Moisture Network (ISMN). In general, the ANN approach outperformed the semiempirical model with RMSE = 0.047 m3 m−3 and R = 0.91. We also introduced a global stratification framework by intersecting land cover classes with climate regimes. Results show that the ANN consistently outperforms the semiempirical model in most strata, achieving around RMSE = 0.04 m3 m−3 and correlations above 0.8. The semiempirical model, however, remained more stable in data-scarce conditions, highlighting complementary strengths for HydroGNSS. Full article
Show Figures

Figure 1

15 pages, 3133 KB  
Article
The Decadal Increase in Terrestrial Water Storage in a Region Experiencing Rapid Transitions from Dry to Wet Periods
by David F. Boutt, Gabriel Olland, Julianna C. Huba and Nicole Blin
Water 2025, 17(21), 3093; https://doi.org/10.3390/w17213093 - 29 Oct 2025
Viewed by 818
Abstract
Understanding the impact of climate change and altered hydrologic cycles on regional water storage trends is crucial for predicting changes in recharge and streamflow and informing decisions regarding drought resilience and flood mitigation. While many regions have become drier under global climate change, [...] Read more.
Understanding the impact of climate change and altered hydrologic cycles on regional water storage trends is crucial for predicting changes in recharge and streamflow and informing decisions regarding drought resilience and flood mitigation. While many regions have become drier under global climate change, the northeast United States has experienced an increased precipitation intensity, driving groundwater rise. This study integrates terrestrial water storage data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites and soil moisture data from Soil Moisture Active Passive (SMAP), as well as long-term instrumental groundwater records from USGS groundwater monitoring wells, to understand the nature of storage trends. The results show that while aquifer-wide groundwater storage anomalies have stabilized in recent years, shallow groundwater and certain surface water bodies have accumulated about 0.6 cm of water annually, adding over 10 cm to the landscape, since 2005. These findings indicate that excess water from heavy rainfall is mainly stored in the shallow subsurface as perched aquifers and temporary wetlands rather than deep (5–30 m) aquifers. Understanding this change in storage is crucial for improving water resource management and adapting more effectively to a changing climate in the region. Full article
Show Figures

Figure 1

23 pages, 4351 KB  
Article
Upscaling of Soil Moisture over Highly Heterogeneous Surfaces and Validation of SMAP Product
by Jiakai Qin, Zhongli Zhu, Qingxia Wu, Julong Ma, Shaomin Liu, Linna Chai and Ziwei Xu
Land 2025, 14(10), 2098; https://doi.org/10.3390/land14102098 - 21 Oct 2025
Viewed by 691
Abstract
Soil moisture (SM) is a critical component of the global water cycle, profoundly influencing carbon fluxes and energy exchanges between the land surface and the atmosphere. NASA’s Soil Moisture Active/Passive (SMAP) mission provides soil moisture products at the global scale; however, validation of [...] Read more.
Soil moisture (SM) is a critical component of the global water cycle, profoundly influencing carbon fluxes and energy exchanges between the land surface and the atmosphere. NASA’s Soil Moisture Active/Passive (SMAP) mission provides soil moisture products at the global scale; however, validation of SMAP faces significant challenges due to scale mismatches between in situ measurements and satellite pixels, particularly in highly heterogeneous regions such as the Qinghai–Tibet Plateau. This study leverages high-spatiotemporal-resolution Harmonized Landsat–Sentinel-2 (HLS v2.0) data and the QLB-NET observation network, employing multiple machine learning models to generate pixel-scale ground-truth soil moisture from in situ measurements. The results indicate that XGBoost performs best (R = 0.941, RMSE = 0.047 m3/m3), and SHAP analysis identifies elevation and DOY as the primary drivers of the spatial patterns and dynamics of soil moisture. The XGBoost-upscaled soil moisture was employed as a validation benchmark to assess the accuracy of the SMAP 9 km and 36 km products, with the following key findings: (1) the proposed upscaling method effectively bridges the scale gap, yielding a correlation of 0.858 between the 36 km SMAP product and the pixel-scale soil moisture reference derived from XGBoost, surpassing the 0.818 correlation obtained using the traditional in situ averaging approach; (2) descending-orbit data generally outperform ascending-orbit data. In the 9 km SMAP product, 15 descending-orbit grids meet the scientific standard, compared to 10 ascending-orbit grids. For the 36 km product, only descending orbits satisfy the scientific standard. Full article
Show Figures

Figure 1

22 pages, 5427 KB  
Article
Contrasting Drydown Time Scales: SMAP L-Band vs. AMSR2 C-Band Brightness Temperatures Against Ground Observations and SMAP Products
by Hongxun Jiang, Shaoning Lv, Yin Hu and Jun Wen
Remote Sens. 2025, 17(19), 3307; https://doi.org/10.3390/rs17193307 - 26 Sep 2025
Cited by 1 | Viewed by 547
Abstract
Surface water loss, regulated by natural factors such as surface properties and atmospheric conditions, is a complex process across multiple spatiotemporal scales. This study compared the statistical characteristics of drydown time scale (τ) derived from multi-frequency microwave brightness temperatures (TB, including L-band and [...] Read more.
Surface water loss, regulated by natural factors such as surface properties and atmospheric conditions, is a complex process across multiple spatiotemporal scales. This study compared the statistical characteristics of drydown time scale (τ) derived from multi-frequency microwave brightness temperatures (TB, including L-band and C-band), SMAP (Soil Moisture Active Passive) soil moisture (SM) products, and in situ observation data. It mainly conducted a sensitivity analysis of τ to depth, climate type, vegetation coverage, and soil texture, and compared the sensitivity differences between signals of different frequencies. The statistical results of τ showed a pattern varying with sensing depth: C-band TB (0~3 cm) < L-band TB (0~5 cm) < in situ observation (4~8 cm), i.e., the shallower the depth, the faster the drying. τ was sensitive to Normalized Difference Vegetation Index (NDVI) when NDVI < 0.7 and climate types, but relatively insensitive to soil texture. The global median τ retrieved from TB aligned with the spatial pattern of climate classifications; drier climates and sparser vegetation coverage led to faster drying, and L-band TB was more sensitive to these factors than C-band TB. The attenuation magnitude of L-band TB was smaller than that of C-band TB, but the degree of change in its attenuation effect was greater than that of C-band TB, particularly regarding variations in NDVI and climate types. Furthermore, given the similar sensing depths of SMAP SM and L-band TB, their τ statistical characteristics were compared and found to differ, indicating that depth is not the sole reason SMAP SM dries faster than in situ observations. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Soil Property Mapping)
Show Figures

Figure 1

27 pages, 8010 KB  
Article
Deep Learning-Based Short- and Mid-Term Surface and Subsurface Soil Moisture Projections from Remote Sensing and Digital Soil Maps
by Saman Rabiei, Ebrahim Babaeian and Sabine Grunwald
Remote Sens. 2025, 17(18), 3219; https://doi.org/10.3390/rs17183219 - 18 Sep 2025
Cited by 1 | Viewed by 1228
Abstract
Accurate real-time information about soil moisture (SM) at a large scale is essential for improving hydrological modeling, managing water resources, and monitoring extreme weather events. This study presents a framework using convolutional long short-term memory (ConvLSTM) network to produce short- (1, 3, and [...] Read more.
Accurate real-time information about soil moisture (SM) at a large scale is essential for improving hydrological modeling, managing water resources, and monitoring extreme weather events. This study presents a framework using convolutional long short-term memory (ConvLSTM) network to produce short- (1, 3, and 7 days ahead) and mid-term (14 and 30 days ahead) forecasts of SM at surface (0–10 cm) and subsurface (10–40 and 40–100 cm) soil layers across the contiguous U.S. The model was trained with five-year period (2018–2022) datasets including Soil Moisture Active Passive (SMAP) level 3 ancillary covariables, North American Land Data Assimilation System phase 2 (NLDAS-2) SM product, shortwave infrared reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS), and terrain features (e.g., elevation, slope, curvature), as well as soil texture and bulk density maps from the Soil Landscape of the United States (SOLUS100) database. To develop and evaluate the model, the dataset was divided into three subsets: training (January 2018–January 2021), validation (2021), and testing (2022). The outputs were validated with observed in situ data from the Soil Climate Analysis Network (SCAN) and the United States Climate Reference Network (USCRN) soil moisture networks. The results indicated that the accuracy of SM forecasts decreased with increasing lead time, particularly in the surface (0–10 cm) and subsurface (10–40 cm) layers, where strong fluctuations driven by rainfall variability and evapotranspiration fluxes introduced greater uncertainty. Across all soil layers and lead times, the model achieved a median unbiased root mean square error (ubRMSE) of 0.04 cm3 cm−3 with a Pearson correlation coefficient of 0.61. Further, the performance of the model was evaluated with respect to both land cover and soil texture databases. Forecast accuracy was highest in coarse-textured soils, followed by medium- and fine-textured soils, likely because the greater penetration depth of microwave observations improves SM retrieval in sandy soils. Among land cover types, performance was strongest in grasslands and savannas and weakest in dense forests and shrublands, where dense vegetation attenuates the microwave signal and reduces SM estimation accuracy. These results demonstrate that the ConvLSTM framework provides skillful short- and mid-term forecasts of surface and subsurface soil moisture, offering valuable support for large-scale drought and flood monitoring. Full article
(This article belongs to the Special Issue Earth Observation Satellites for Soil Moisture Monitoring)
Show Figures

Graphical abstract

36 pages, 12384 KB  
Article
A Soil Moisture-Informed Seismic Landslide Model Using SMAP Satellite Data
by Ali Farahani and Majid Ghayoomi
Remote Sens. 2025, 17(15), 2671; https://doi.org/10.3390/rs17152671 - 1 Aug 2025
Viewed by 2324
Abstract
Earthquake-triggered landslides pose significant hazards to lives and infrastructure. While existing seismic landslide models primarily focus on seismic and terrain variables, they often overlook the dynamic nature of hydrologic conditions, such as seasonal soil moisture variability. This study addresses this gap by incorporating [...] Read more.
Earthquake-triggered landslides pose significant hazards to lives and infrastructure. While existing seismic landslide models primarily focus on seismic and terrain variables, they often overlook the dynamic nature of hydrologic conditions, such as seasonal soil moisture variability. This study addresses this gap by incorporating satellite-based soil moisture data from NASA’s Soil Moisture Active Passive (SMAP) mission into the assessment of seismic landslide occurrence. Using landslide inventories from five major earthquakes (Nepal 2015, New Zealand 2016, Papua New Guinea 2018, Indonesia 2018, and Haiti 2021), a balanced global dataset of landslide and non-landslide cases was compiled. Exploratory analysis revealed a strong association between elevated pre-event soil moisture and increased landslide occurrence, supporting its relevance in seismic slope failure. Moreover, a Random Forest model was trained and tested on the dataset and demonstrated excellent predictive performance. To assess the generalizability of the model, a leave-one-earthquake-out cross-validation approach was also implemented, in which the model trained on four events was tested on the fifth. This approach outperformed comparable models that did not consider soil moisture, such as the United States Geological Survey (USGS) seismic landslide model, confirming the added value of satellite-based soil moisture data in improving seismic landslide susceptibility assessments. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Estimation, Assessment, and Applications)
Show Figures

Figure 1

17 pages, 3361 KB  
Technical Note
Noise Mitigation of the SMOS L1C Multi-Angle Brightness Temperature Based on the Lookup Table
by Ke Chen, Ruile Wang, Qian Yang, Jiaming Chen and Jun Gong
Remote Sens. 2025, 17(15), 2585; https://doi.org/10.3390/rs17152585 - 24 Jul 2025
Viewed by 539
Abstract
Owing to the inherently lower sensitivity of microwave aperture synthesis radiometers (ASRs), Soil Moisture and Ocean Salinity (SMOS) satellite brightness temperature (TB) measurements exhibit significantly greater system noise than real-aperture microwave radiometers do. This paper introduces a novel noise mitigation method for the [...] Read more.
Owing to the inherently lower sensitivity of microwave aperture synthesis radiometers (ASRs), Soil Moisture and Ocean Salinity (SMOS) satellite brightness temperature (TB) measurements exhibit significantly greater system noise than real-aperture microwave radiometers do. This paper introduces a novel noise mitigation method for the SMOS L1C multi-angle TB product. The proposed method develops a multi-angle sea surface TB relationship lookup table, enabling the mapping of SMOS L1C multi-angle TB data to any single-angle TB, thereby averaging to the measurements to reduce noise. Validation experiments demonstrate that the processed SMOS TB data achieve noise levels comparable to those of the Soil Moisture Active Passive (SMAP) satellite. Additionally, the salinity retrieval experiments indicate that the noise mitigation technique has a clear positive effect on SMOS salinity retrieval. Full article
(This article belongs to the Special Issue Recent Advances in Microwave and Millimeter-Wave Imaging Sensing)
Show Figures

Graphical abstract

29 pages, 6561 KB  
Article
Correction of ASCAT, ESA–CCI, and SMAP Soil Moisture Products Using the Multi-Source Long Short-Term Memory (MLSTM)
by Qiuxia Xie, Yonghui Chen, Qiting Chen, Chunmei Wang and Yelin Huang
Remote Sens. 2025, 17(14), 2456; https://doi.org/10.3390/rs17142456 - 16 Jul 2025
Viewed by 1320
Abstract
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly [...] Read more.
The Advanced Scatterometer (ASCAT), Soil Moisture Active Passive (SMAP), and European Space Agency-Climate Change Initiative (ESA–CCI) soil moisture (SM) products are widely used in agricultural drought monitoring, water resource management, and climate analysis applications. However, the performance of these SM products varies significantly across regions and environmental conditions, due to in sensor characteristics, retrieval algorithms, and the lack of localized calibration. This study proposes a multi-source long short-term memory (MLSTM) for improving ASCAT, ESA–CCI, and SMAP SM products by combining in-situ SM measurements and four key auxiliary variables: precipitation (PRE), land surface temperature (LST), fractional vegetation cover (FVC), and evapotranspiration (ET). First, the in-situ measured data from four in-situ observation networks were corrected using the LSTM method to match the grid sizes of ASCAT (0.1°), ESA–CCI (0.25°), and SMAP (0.1°) SM products. The RPE, LST, FVC, and ET were used as inputs to the LSTM to obtain loss data against in-situ SM measurements. Second, the ASCAT, ESA–CCI, and SMAP SM datasets were used as inputs to the LSTM to generate loss data, which were subsequently corrected using LSTM-derived loss data based on in-situ SM measurements. When the mean squared error (MSE) loss values were minimized, the improvement for ASCAT, ESA–CCI, and SMAP products was considered the best. Finally, the improved ASCAT, ESA–CCI, and SMAP were produced and evaluated by the correlation coefficient (R), root mean square error (RMSE), and standard deviation (SD). The results showed that the RMSE values of the improved ASCAT, ESA–CCI, and SMAP products against the corrected in-situ SM data in the OZNET network were lower, i.e., 0.014 cm3/cm3, 0.019 cm3/cm3, and 0.034 cm3/cm3, respectively. Compared with the ESA–CCI and SMAP products, the ASCAT product was greatly improved, e.g., in the SNOTEL network, the Root Mean-Square Deviation (RMSD) values of 0.1049 cm3/cm3 (ASCAT) and 0.0662 cm3/cm3 (improved ASCAT). Overall, the MLSTM-based algorithm has the potential to improve the global satellite SM product. Full article
(This article belongs to the Special Issue Remote Sensing for Terrestrial Hydrologic Variables)
Show Figures

Figure 1

19 pages, 7486 KB  
Article
Advancing GNOS-R Soil Moisture Estimation: A Multi-Angle Retrieval Algorithm for FY-3E
by Xuerui Wu, Junming Xia, Weihua Bai and Yueqiang Sun
Remote Sens. 2025, 17(13), 2325; https://doi.org/10.3390/rs17132325 - 7 Jul 2025
Cited by 2 | Viewed by 732
Abstract
Surface soil moisture (SM) is a critical factor in hydrological modeling, agricultural management, and numerical weather forecasting. This paper presents a highly effective soil moisture retrieval algorithm developed for the FY-3E (FengYun-3E) GNOS-R (GNSS Occultation Sounder II-Reflectometry) instrument. The algorithm incorporates a first-order [...] Read more.
Surface soil moisture (SM) is a critical factor in hydrological modeling, agricultural management, and numerical weather forecasting. This paper presents a highly effective soil moisture retrieval algorithm developed for the FY-3E (FengYun-3E) GNOS-R (GNSS Occultation Sounder II-Reflectometry) instrument. The algorithm incorporates a first-order vegetation model that considers vegetation density and volume scattering. Utilizing multi-angle GNOS-R observations, the algorithm derives surface reflectivity, which is combined with ancillary data on opacity, vegetation water content, and soil moisture from SMAP (Soil Moisture Active Passive) to optimize the retrieval process. The algorithm has been specifically tailored for different surface conditions, including bare soil, areas with low vegetation, and densely vegetated regions. The algorithm directly incorporates the angle-dependence of observations, leading to enhanced retrieval accuracy. Additionally, a new approach parameterizes surface roughness as a function of angle, allowing for refined corrections in reflectivity measurements. For vegetated areas, the algorithm effectively isolates the soil surface signal by eliminating volume scattering and vegetation effects, enabling the accurate estimation of soil moisture. By leveraging multi-angle data, the algorithm achieves significantly improved retrieval accuracy, with root mean square errors of 0.0235, 0.0264, and 0.0191 (g/cm3) for bare, low-vegetation, and dense-vegetation areas, respectively. This innovative methodology offers robust global soil moisture estimation capabilities using the GNOS-R instrument, surpassing the accuracy of previous techniques. Full article
Show Figures

Figure 1

21 pages, 7082 KB  
Review
The Bright Decade of Ocean Salinity from Space
by Roberto Sabia, Jacqueline Boutin, Nicolas Reul, Tong Lee and Simon H. Yueh
Remote Sens. 2025, 17(13), 2261; https://doi.org/10.3390/rs17132261 - 1 Jul 2025
Viewed by 2020
Abstract
Sea Surface Salinity is a crucial climatic variable due to its twofold role as both a passive and an active tracer of oceanic processes. Despite its relevance, however, it could not be measured from space, mainly because of technological limitations, until 2009. Since [...] Read more.
Sea Surface Salinity is a crucial climatic variable due to its twofold role as both a passive and an active tracer of oceanic processes. Despite its relevance, however, it could not be measured from space, mainly because of technological limitations, until 2009. Since then, the generation and assessment of satellite salinity has become a game-changer in physical and biogeochemical oceanography, as well as in climate science. Three satellite sensors with salinity-measuring capabilities (SMOS-Soil Moisture and Ocean Salinity, Aquarius, and SMAP-Soil Moisture Active Passive) have been launched in the previous decade, each characterized by specific measurement concepts and features and ad hoc validation approaches. The increasing usage of spaceborne salinity products has produced a variety of results and applications, which are here summarized under three specific domains: climate, scientific, and operational. Finally, short-to-mid-term perspectives, indicating both the expected improvements in terms of algorithms and also looking at novel mission concepts (that will provide continuation of these measurements in the decade to come) have been described. Full article
(This article belongs to the Special Issue Oceans from Space V)
Show Figures

Graphical abstract

19 pages, 2832 KB  
Article
High Spatial Resolution Soil Moisture Mapping over Agricultural Field Integrating SMAP, IMERG, and Sentinel-1 Data in Machine Learning Models
by Diego Tola, Lautaro Bustillos, Fanny Arragan, Rene Chipana, Renaud Hostache, Eléonore Resongles, Raúl Espinoza-Villar, Ramiro Pillco Zolá, Elvis Uscamayta, Mayra Perez-Flores and Frédéric Satgé
Remote Sens. 2025, 17(13), 2129; https://doi.org/10.3390/rs17132129 - 21 Jun 2025
Cited by 3 | Viewed by 4446
Abstract
Soil moisture content (SMC) is a critical parameter for agricultural productivity, particularly in semi-arid regions, where irrigation practices are extensively used to offset water deficits and ensure decent yields. Yet, the socio-economic and remote context of these regions prevents sufficiently dense SMC monitoring [...] Read more.
Soil moisture content (SMC) is a critical parameter for agricultural productivity, particularly in semi-arid regions, where irrigation practices are extensively used to offset water deficits and ensure decent yields. Yet, the socio-economic and remote context of these regions prevents sufficiently dense SMC monitoring in space and time to support farmers in their work to avoid unsustainable irrigation practices and preserve water resource availability. In this context, our study addresses the challenge of high spatial resolution (i.e., 20 m) SMC estimation by integrating remote sensing datasets in machine learning models. For this purpose, a dataset made of 166 soil samples’ SMC along with corresponding SMC, precipitation, and radar signal derived from Soil Moisture Active Passive (SMAP), Integrated Multi-satellitE Retrievals for GPM (IMERG), and Sentinel-1 (S1), respectively, was used to assess four machine learning models’ (Decision Tree—DT, Random Forest—RF, Gradient Boosting—GB, Extreme Gradient Boosting—XGB) reliability for SMC mapping. First, each model was trained/validated using only the coarse spatial resolution (i.e., 10 km) SMAP SMC and IMERG precipitation estimates as independent features, and, second, S1 information (i.e., 20 m) derived from single scenes and/or composite images was added as independent features to highlight the benefit of information (i.e., S1 information) for SMC mapping at high spatial resolution (i.e., 20 m). Results show that integrating S1 information from both single scenes and composite images to SMAP SMC and IMERG precipitation data significantly improves model reliability, as R2 increased by 12% to 16%, while RMSE decreased by 10% to 18%, depending on the considered model (i.e., RF, XGB, DT, GB). Overall, all models provided reliable SMC estimates at 20 m spatial resolution, with the GB model performing the best (R2 = 0.86, RMSE = 2.55%). Full article
(This article belongs to the Special Issue Remote Sensing for Soil Properties and Plant Ecosystems)
Show Figures

Figure 1

15 pages, 5403 KB  
Article
Validating Data Interpolation Empirical Orthogonal Functions (DINEOF+) Interpolated Soil Moisture Data in the Contiguous United States
by Haipeng Zhao, Haoteng Zhao and Chen Zhang
Agriculture 2025, 15(11), 1212; https://doi.org/10.3390/agriculture15111212 - 1 Jun 2025
Cited by 3 | Viewed by 1131 | Correction
Abstract
Accurate and spatially detailed soil moisture (SM) data are essential for hydrological research, precision agriculture, and ecosystem monitoring. The NASA’s Soil Moisture Active Passive (SMAP) product offers unprecedented information on global soil moisture. To provide more detailed information about the cropland SM data [...] Read more.
Accurate and spatially detailed soil moisture (SM) data are essential for hydrological research, precision agriculture, and ecosystem monitoring. The NASA’s Soil Moisture Active Passive (SMAP) product offers unprecedented information on global soil moisture. To provide more detailed information about the cropland SM data for the Contiguous United States (CONUS), a 1-km SMAP product has been produced using the THySM model in support of USDA NASS operations. However, the current 1-km product contains substantial data gaps, which poses challenges for applications that require continuous daily data. Data Interpolation Empirical Orthogonal Functions (DINEOF+) is an interpolation technique that uses singular value decomposition (SVD) to address missing data problems. Previous studies have applied DINEOF+ to reconstruct the 1-km daily SM dataset but without further analysis of the reconstruction errors. In this study, we perform a comprehensive validation of DINEOF+ reconstructed SM by using both the original SMAP data and in situ measurements across the CONUS. Our results show that the reconstructed SM closely aligns with the original SM with R2 > 0.65 and bias ranging from 0.01 to 0.02 m3/m3. When compared to in situ SM, the mean absolute error (MAE) ranges between 0.01 and 0.04 m3/m3 and the time series correlation coefficient ranges from 0.6 to 0.8. Our findings suggest that DINEOF+ effectively recovers missing data and improves the temporal resolution of SM time series. However, we also note that the accuracy of the reconstructed SM is dependent on the quality of the original SMAP data, emphasizing the need for continued improvements in SM retrievals by satellite. Full article
(This article belongs to the Special Issue Applications of Remote Sensing in Agricultural Soil and Crop Mapping)
Show Figures

Figure 1

Back to TopTop