Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (271)

Search Parameters:
Keywords = Si-Si bond activation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 267
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

17 pages, 1308 KiB  
Article
Dual-Functional AgNPs/Magnetic Coal Fly Ash Composite for Wastewater Disinfection and Azo Dye Removal
by Lei Gong, Jiaxin Li, Rui Jin, Menghao Li, Jiajie Peng and Jie Zhu
Molecules 2025, 30(15), 3155; https://doi.org/10.3390/molecules30153155 - 28 Jul 2025
Viewed by 281
Abstract
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering [...] Read more.
In this study, we report the development of a novel magnetized coal fly ash-supported nano-silver composite (AgNPs/MCFA) for dual-functional applications in wastewater treatment: the efficient degradation of methyl orange (MO) dye and broad-spectrum antibacterial activity. The composite was synthesized via a facile impregnation–reduction–sintering route, utilizing sodium citrate as both a reducing and stabilizing agent. The AgNPs/MCFA composite was systematically characterized through multiple analytical techniques, including Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM). The results confirmed the uniform dispersion of AgNPs (average size: 13.97 nm) on the MCFA matrix, where the formation of chemical bonds (Ag-O-Si) contributed to the enhanced stability of the material. Under optimized conditions (0.5 g·L−1 AgNO3, 250 °C sintering temperature, and 2 h sintering time), AgNPs/MCFA exhibited an exceptional catalytic performance, achieving 99.89% MO degradation within 15 min (pseudo-first-order rate constant ka = 0.3133 min−1) in the presence of NaBH4. The composite also demonstrated potent antibacterial efficacy against Escherichia coli (MIC = 0.5 mg·mL−1) and Staphylococcus aureus (MIC = 2 mg·mL−1), attributed to membrane disruption, intracellular content leakage, and reactive oxygen species generation. Remarkably, AgNPs/MCFA retained >90% catalytic and antibacterial efficiency after five reuse cycles, enabled by its magnetic recoverability. By repurposing industrial waste (coal fly ash) as a low-cost carrier, this work provides a sustainable strategy to mitigate nanoparticle aggregation and environmental risks while enhancing multifunctional performance in water remediation. Full article
Show Figures

Graphical abstract

26 pages, 6009 KiB  
Article
Integrated Mechanical and Eco-Economical Assessments of Fly Ash-Based Geopolymer Concrete
by Qasim Shaukat Khan, Raja Hilal Ahmad, Asad Ullah Qazi, Syed Minhaj Saleem Kazmi, Muhammad Junaid Munir and Muhammad Hassan Javed
Buildings 2025, 15(14), 2555; https://doi.org/10.3390/buildings15142555 - 20 Jul 2025
Viewed by 281
Abstract
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes [...] Read more.
This research evaluates the mechanical properties, environmental impacts, and cost-effectiveness of Hub Coal fly ash (FA)-based geopolymer concrete (FAGPC) as a sustainable alternative to ordinary Portland cement (OPC) concrete. This local FA has not been investigated previously. A total of 24 FAGPC mixes were tested under both ambient and heat curing conditions, varying the molarities of sodium hydroxide (NaOH) solution (10-M, 12-M 14-M and 16-M), sodium silicate to sodium hydroxide (Na2SiO3/NaOH) ratios (1.5, 2.0, and 2.5), and alkaline activator solution to fly ash (AAS/FA) ratios (0.5 and 0.6). The test results demonstrated that increasing NaOH molarity enhances the compressive strength (CS.) by 145% under ambient curing, with a peak CS. of 32.8 MPa at 16-M NaOH, and similarly, flexural strength (FS.) increases by 90% with a maximum FS. of 6.5 MPa at 14-M NaOH. Conversely, increasing the Na2SiO3/NaOH ratio to 2.5 reduced the CS. and FS. of ambient-cured specimens by 12.5% and 10.5%, respectively. Microstructural analysis revealed that higher NaOH molarity produced a denser, more homogeneous matrix, supported by increased Si–O–Al bond formation observed through energy-dispersive X-ray spectrometry. Environmentally, FAGPC demonstrated a 35–40% reduction in embodied CO2 emissions compared to OPC, although the production costs of FAGPC were 30–35% higher, largely due to the expense of alkaline activators. These findings highlight the potential of FAGPC as a low-carbon alternative to OPC concrete, balancing enhanced mechanical performance with sustainability. New, green, and cheap activation solutions are sought for a new generation of more sustainable and affordable FAGPC. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

17 pages, 2832 KiB  
Article
Performance and Microstructural Evolution of One-Part Alkali-Activated Cement in Tailings Stabilization
by Nilo Cesar Consoli, Fernanda Maria Jaskulski, Taciane Pedrotti Fracaro, Giovani Jordi Bruschi, Suéllen Tonatto Ferrazzo, Mariana Tonini de Araújo, Andres Mauricio Lotero Caicedo and João Paulo de Sousa Silva
Minerals 2025, 15(7), 745; https://doi.org/10.3390/min15070745 - 16 Jul 2025
Viewed by 286
Abstract
This paper explores the role of one-part alkali-activated cement, utilizing metakaolin as a precursor, in the long-term stabilization of mining tailings. Investigating three key factors (Si/Al and Na/Si ratios and curing period), this study reveals insights into the mechanical performance and microstructure of [...] Read more.
This paper explores the role of one-part alkali-activated cement, utilizing metakaolin as a precursor, in the long-term stabilization of mining tailings. Investigating three key factors (Si/Al and Na/Si ratios and curing period), this study reveals insights into the mechanical performance and microstructure of alkali-activated cemented iron ore tailings. Unconfined compressive strength test, statistical analysis, and Scanning Electron Microscopy analysis with Energy Dispersive Spectroscopy were performed. Findings indicate that the Si/Al ratio significantly influences strength, with an optimal ratio of 3.5. The Na/Si ratio introduces complexity, affecting alkali availability and reactivity, leading to nuanced strength variations. Extended curing periods consistently enhance the strength of alkali-activated cement, highlighting its dynamic nature. Notably, the 7-day specimens exhibit a less homogeneous distribution, weaker bonding, and decreased structural integrity compared to their 60-day counterparts. This research underscores the intricate nature of alkali-activated cement hydration, emphasizing the interdependence of Si/Al and Na/Si ratios. The observed strengthening effect with prolonged curing suggests the potential for tailoring these materials to specific applications. Addressing a research gap, especially in applying alkali-activation to mining tailings stabilization, this study highlights metakaolin’s role as a suitable precursor. Full article
Show Figures

Figure 1

37 pages, 5280 KiB  
Review
Thermal Issues Related to Hybrid Bonding of 3D-Stacked High Bandwidth Memory: A Comprehensive Review
by Seung-Hoon Lee, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Electronics 2025, 14(13), 2682; https://doi.org/10.3390/electronics14132682 - 2 Jul 2025
Viewed by 2785
Abstract
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass [...] Read more.
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass Reflow Molded Underfill (MR MUF) underfills lower but do not eliminate the internal thermal resistance that rises sharply beyond 12layer stacks. We then synthesize recent hybrid bonding studies, showing that an optimized Cu pad density, interface characteristic, and mechanical treatments can cut junction-to-junction thermal resistance by between 22.8% and 47%, raise vertical thermal conductivity by up to three times, and shrink the stack height by more than 15%. A meta-analysis identifies design thresholds such as at least 20% Cu coverage that balances heat flow, interfacial stress, and reliability. The review next traces the chain from Coefficient of Thermal Expansion (CTE) mismatch to Cu protrusion, delamination, and warpage and classifies mitigation strategies into (i) material selection including SiCN dielectrics, nano twinned Cu, and polymer composites, (ii) process technologies such as sub-200 °C plasma-activated bonding and Chemical Mechanical Polishing (CMP) anneal co-optimization, and (iii) the structural design, including staggered stack and filleted corners. Integrating these levers suppresses stress hotspots and extends fatigue life in more than 16layer stacks. Finally, we outline a research roadmap combining a multiscale simulation with high layer prototyping to co-optimize thermal, mechanical, and electrical metrics for next-generation 20-layer HBM. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

21 pages, 3195 KiB  
Article
Carrageenans and the Carrageenan-Echinochrome Complex as Anti-SARS-CoV-2 Agents
by Natalya V. Krylova, Anna O. Kravchenko, Galina N. Likhatskaya, Olga V. Iunikhina, Valery P. Glazunov, Tatyana S. Zaporozhets, Mikhail Y. Shchelkanov and Irina M. Yermak
Int. J. Mol. Sci. 2025, 26(13), 6175; https://doi.org/10.3390/ijms26136175 - 26 Jun 2025
Viewed by 353
Abstract
The diversity of structural types of carrageenans (CRGs)—sulfated polysaccharides of red algae—determines their different biological activities. The different types of CRGs (kappa, lambda, kappa/beta-CRGs) were isolated from the red algae of the Pacific coast. Molecular docking was performed to determine potential interactions of [...] Read more.
The diversity of structural types of carrageenans (CRGs)—sulfated polysaccharides of red algae—determines their different biological activities. The different types of CRGs (kappa, lambda, kappa/beta-CRGs) were isolated from the red algae of the Pacific coast. Molecular docking was performed to determine potential interactions of CRGs with the receptor-binding domain (RBD) of SARS-CoV-2 and its cellular receptor—angiotensin—converting enzyme type 2 (ACE2). CRGs interacted with ACE2 and RBD via hydrogen bonding and ionic interactions. The strongest binding affinity of CRGs and ACE2 was observed for kappa-CRG. Molecular docking was confirmed by results studying the effects of CRGs against SARS-CoV-2 in vitro. The ability of CRGs, as well as the complex CRG with sea urchin echinochrome (Ech), to inhibit SARS-CoV-2 replication in Vero E6 cells was studied using cytopathic effect (CPE) inhibition and RT-PCR assays. The simultaneous treatment of cells with CRGs and the virus revealed that kappa-CRG exhibited the most significant antiviral effect among all the polysaccharides, with a selective index (SI) of 33. The kappa-CRG/Ech complex exhibited the highest virucidal effect on SARS-CoV-2 particles with an SI above 70 (more than two times higher than that of CRG and Ech) and reduced viral RNA levels by 45% (IC = 45%). Our results illustrate that CRGs and kappa-CRG/Ech complex can act as protective agents against SARS-CoV-2. Full article
Show Figures

Graphical abstract

15 pages, 3136 KiB  
Article
Integration of Shape Memory Alloy Actuators into Sintered Aluminum Structures via Material Extrusion for Aerospace Applications
by Bernardo Alves, Rafael Sousa, Ricardo Coelho, Gonçalo Oliveira, Luís Cacho, Daniel Gatões, Rodolfo Teixeira and Patrícia Freitas Rodrigues
Actuators 2025, 14(7), 305; https://doi.org/10.3390/act14070305 - 21 Jun 2025
Viewed by 498
Abstract
Reducing structural mass and volume is critical to improving efficiency and payload capacity in next-generation small satellites and CubeSats. Additive manufacturing, particularly material extrusion, offers design flexibility and enables the production of lightweight, functional metallic components. This study investigates the integration of nickel–titanium [...] Read more.
Reducing structural mass and volume is critical to improving efficiency and payload capacity in next-generation small satellites and CubeSats. Additive manufacturing, particularly material extrusion, offers design flexibility and enables the production of lightweight, functional metallic components. This study investigates the integration of nickel–titanium shape memory alloy wires into aluminum-based matrices using a sinter-based material extrusion process, aiming to develop compact actuator systems for aerospace applications. A customized AlSi7Mg aluminum alloy feedstock was extruded into filament form, printed, and embedded with shape memory alloy wires, allowing consolidation during sintering. X-ray micro-computed tomography was used to analyze internal defects and matrix–wire interfacial contact, before and after sintering. Tensile testing of the embedded actuator structures revealed effective mechanical bonding and actuation behavior. The results demonstrate that controlled shrinkage and interfacial bonding enable reliable embedding of shape memory elements without compromising structural integrity. This work provides a promising framework for developing multifunctional aerospace components, where active actuation and structural efficiency can be combined through advanced material extrusion-based manufacturing. Full article
(This article belongs to the Special Issue Innovative Actuators Based on Shape Memory Alloys)
Show Figures

Figure 1

18 pages, 14135 KiB  
Article
Investigation of the Properties of Low Water-to-Solid Ratio Vibro-Press-Formed Alkali-Activated Municipal Solid Waste Incineration Bottom-Ash Concrete
by Gintautas Tamošaitis, Danutė Vaičiukynienė and Diana Bajare
Materials 2025, 18(13), 2926; https://doi.org/10.3390/ma18132926 - 20 Jun 2025
Viewed by 269
Abstract
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There [...] Read more.
This work focuses on the use of municipal waste incineration bottom ash (MSWI) for the development and production of products suitable for use as construction products. The generation of these ashes is increasing every year due to the incineration of municipal waste. There are currently three incineration plants operating in major cities in Lithuania. The non-hazardous bottom ash remaining from the incineration process is stored in dedicated sorting and aging sites until it is used as an inert form of aggregate for the installation of road foundations. However, it has been observed that these ashes have a tendency to bind and cement when exposed to atmospheric precipitation at the storage site. Based on this characteristic, it was decided in this study to use alkaline activation of the ash to accelerate the bonding process and to create a dense, non-porous composite concrete structure. This activation method is known to create another problem during ash bonding, where the presence of metallic aluminum particles in the ash leads to the release of hydrogen gas and makes the structure of the cured samples porous. For the purposes of the study, it was decided to create a completely different mixture structure and not to use additional water in the mixtures tested. A very low water/solids ratio (W/S) of <0.08 was used for the alkaline activation of the mixtures. All the water required for ash activation was obtained from sodium silicate and sodium hydroxide solution. Metakaolin waste (MKW) was used to adjust the SiO2/Na2O/Al2O3 ratio of the mixtures. Vibro-pressing was used to form and increase the density of the samples. And for the formation of the concrete structure, 0/4 fraction sand was used as aggregate. The final alkali-activated sample obtained had properties similar to those of the very widely used vibro-pressed cementitious paving tiles and did not exhibit hydrogen evolution during alkali activation due to the very low W/S ratio. The best results were achieved by samples with a highest compressive strength of 40.0 MPa and a tensile strength of 5.60 MPa, as well as a density of 1950 kg/m3. It is believed that this alkaline activation and vibro-pressing method can expand the use of MSWI ash in the development of building products. Full article
(This article belongs to the Special Issue Low-Carbon Construction and Building Materials)
Show Figures

Figure 1

24 pages, 7602 KiB  
Article
Developing Bioengineered 3D-Printed Composite Scaffolds with Antimicrobial Potential for Bone Tissue Regeneration
by Andreea Trifan, Eduard Liciu, Cristina Busuioc, Izabela-Cristina Stancu, Adela Banciu, Carmen Nicolae, Mihai Dragomir, Doru-Daniel Cristea, Rosina-Elena Sabău, David-Andrei Nițulescu and Alexandru Paraschiv
J. Funct. Biomater. 2025, 16(6), 227; https://doi.org/10.3390/jfb16060227 - 19 Jun 2025
Viewed by 811
Abstract
This research activity proposes to produce composite hydrogel–bioactive glass. The primary purpose of this research is to develop and optimize 3D-printed scaffolds using doped bioglass, aimed at enhancing bone regeneration in bone defects. The bioglass, a bioactive material known for its bone-bonding ability [...] Read more.
This research activity proposes to produce composite hydrogel–bioactive glass. The primary purpose of this research is to develop and optimize 3D-printed scaffolds using doped bioglass, aimed at enhancing bone regeneration in bone defects. The bioglass, a bioactive material known for its bone-bonding ability (SiO2–P2O5–CaO–Na2O), co-doped with europium and silver was synthesized and doped to improve its biological properties. This doped bioglass was then combined with a biocompatible hydrogel, chosen for its adequate cellular response and printability. The composite material was printed to form a scaffold, providing a structure that not only supports the damaged bone but also encourages osteogenesis. A variety of methods were employed to assess the rheological, compositional, and morphological characteristics of the samples: Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Additionally, simulated body fluid (SBF) immersion for bioactivity monitoring and immunocytochemistry for cell viability were used to evaluate the biological response of the scaffolds. Full article
Show Figures

Figure 1

16 pages, 3570 KiB  
Article
Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating
by Tomas Melus, Roman Kolenak, Jaromir Drapala, Peter Gogola, Matej Pasak, Daniel Drimal and Mikulas Sloboda
Materials 2025, 18(12), 2814; https://doi.org/10.3390/ma18122814 - 16 Jun 2025
Viewed by 379
Abstract
The reactive soldering of silicon-carbide (SiC) ceramics to a Ni-SiC composite was investigated using an Sn-5Sb-3Ti active solder and electron-beam heating at 750 °C, 850 °C and 950 °C. Wettability: The average contact angle decreased from 94 ± 4° (750 °C) to 60 [...] Read more.
The reactive soldering of silicon-carbide (SiC) ceramics to a Ni-SiC composite was investigated using an Sn-5Sb-3Ti active solder and electron-beam heating at 750 °C, 850 °C and 950 °C. Wettability: The average contact angle decreased from 94 ± 4° (750 °C) to 60 ± 3° (850 °C) and further to 24 ± 2° (950 °C), demonstrating progressively improved spreading of the filler with increasing temperature. Interfacial reactions: Continuous layers of Ni3(Sn,Sb)4 and Ti6(Sn,Sb)5 formed along the Ni-SiC/filler interface, the latter confirming Ti diffusion that activates the wetting of the composite surface. Mechanical performance: Shear-lap tests on three joints per condition yielded 39 ± 6 MPa (750 °C), 27 ± 2 MPa (850 °C) and 36 ± 15 MPa (950 °C). The highest and lowest individual values at 950 °C were 51 MPa and 21 MPa, respectively. These results show that a higher soldering temperature lowers the contact angle and promotes interfacial reaction, but only a moderate improvement in average joint strength is obtained. These findings demonstrate a flux-free route to bond SiC ceramics with Ni-SiC composites, which is highly relevant for next-generation power-electronics modules and other high-temperature applications. Full article
Show Figures

Figure 1

15 pages, 3887 KiB  
Article
Cold Consolidation of Waste Glass by Alkali Activation and Curing by Traditional and Microwave Heating
by Francesco Carollo, Emanuele De Rienzo, Antonio D’Angelo, Paolo Sgarbossa, Luisa Barbieri, Cristina Leonelli, Isabella Lancellotti, Michelina Catauro and Enrico Bernardo
Materials 2025, 18(11), 2628; https://doi.org/10.3390/ma18112628 - 4 Jun 2025
Viewed by 622
Abstract
Despite efforts to recycle, boro-alumino-silicate pharmaceutical glass (BASG) results in a significant portion of glass cullet currently landfilled. Highly contaminated fractions of BASG cullet are largely unemployed because of the presence of metals in their composition that prevents recycling. This waste glass can [...] Read more.
Despite efforts to recycle, boro-alumino-silicate pharmaceutical glass (BASG) results in a significant portion of glass cullet currently landfilled. Highly contaminated fractions of BASG cullet are largely unemployed because of the presence of metals in their composition that prevents recycling. This waste glass can be eligible to produce sustainable alkali-activated materials (AAMs) reducing at the same time consumption of raw materials and CO2 emissions. The ‘weak’ alkaline attack (NaOH < 3 M) determines the gelation of glass suspensions. Condensation reactions occur in hydrated surface layers, leading to strong bonds (Si-O-Si, Al-O-Si, etc.) between individual glass particles. Alkali are mostly expelled from the gel due to the formation of water-soluble hydrated carbonates. Microwave treatment has been implemented on samples after precuring at 40 °C, saving time and energy and achieving better mechanical properties. To improve the stability and reduce the release of glass components into solution, the consolidated monoliths were subjected to boiling/drying cycles. The chemical stability, cytotoxicity and antibacterial behavior of the final products have been investigated with the purpose of obtaining new competitive and sustainable materials. For further stabilization and for finding new applications, the activated and boiled samples can be fired at low temperature (700 °C) to obtain, respectively, a homogeneous foam or a compact material with glass-like density and microstructure. Full article
Show Figures

Figure 1

15 pages, 2302 KiB  
Article
Experimental Investigation and Molecular Dynamics Modeling of the Effects of K2O on the Structure and Viscosity of SiO2-CaO-Al2O3-MgO-K2O Slags at High Temperatures
by Fan Yang, Qingguo Xue, Haibin Zuo, Yu Liu and Jingsong Wang
Metals 2025, 15(6), 590; https://doi.org/10.3390/met15060590 - 25 May 2025
Viewed by 438
Abstract
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, [...] Read more.
Variations in slag properties critically influence smelting operations and product quality. The effects of K2O on the CaO-SiO2-MgO-Al2O3-K2O slag system at 1823 K were systematically analyzed through an integrated approach combining viscosity measurements, FTIR spectroscopy, and molecular dynamics simulations. The results revealed a rapid 52% decrease in slag viscosity and an 18.32 kJ/mol reduction in activation energy as K2O content increased from 0% to 3%. K2O releases O2− ions that depolymerize Si-O network structures. Within the 3% to 5% range, structural network formation is promoted by the K2O-SiO2 reaction, resulting in increased slag viscosity and elevated activation energy. Molecular dynamics simulations elucidate the depolymerization of complex Si-O networks, accompanied by a proliferation of smaller [AlO4] tetrahedral fragments. The diminished Si-O-Si bridging oxygen (BO) bonds contrast with the enhanced increase in Si-O-K non-bridging oxygen (NBO) linkages. When K2O exceeds 3%, the diffusion capacity of K atoms becomes constrained as K2O participates in structural network assembly, a phenomenon validated by FTIR spectroscopic analysis. Elevated K2O concentrations enhance slag network polymerization, leading to increased viscosity. Therefore, the precise control of K2O content is critical during smelting operations and by-product manufacturing (e.g., glass or mineral wool) to optimize material performance. These findings provide theoretical support for controlling the alkali metal content during the actual metallurgical process and thus further optimizing blast furnace operation. Full article
Show Figures

Figure 1

9 pages, 1603 KiB  
Article
Electron Emission as a Tool for Detecting Fracture and Surface Durability of Tensile-Loaded Epoxy Polymers Modified with SiO2 Nanoparticles
by Agnes Elizabeth Cerpa, Yuri Dekhtyar and Sanda Kronberga
Processes 2025, 13(5), 1546; https://doi.org/10.3390/pr13051546 - 17 May 2025
Viewed by 387
Abstract
Epoxy polymers modified with nanoparticles are increasingly employed due to their enhanced performance in aggressive environments, characterized by mechanical stress, radiation exposure, and extreme temperatures. The mechanical failure of these polymers is attributed to the fracturing of atomic and molecular bonds, that subsequently [...] Read more.
Epoxy polymers modified with nanoparticles are increasingly employed due to their enhanced performance in aggressive environments, characterized by mechanical stress, radiation exposure, and extreme temperatures. The mechanical failure of these polymers is attributed to the fracturing of atomic and molecular bonds, that subsequently excites electrons having the capability to be emitted from the nanolayer of the material. The present study demonstrates that the relationship between mechanical loading and electron emission over time serves as an indicator of surface loading and durability. By utilizing the Kinetic Nature of Solid Material Strength (KSMS) theory alongside near-threshold electron emission measurements, the article presents the behavior of epoxy polymers modified with SiO2 nanoparticles under tensile loading. The results indicate that as mechanical load is applied, photoelectron emission (PE) pulses emerge. Notably, the pulse spectrum highest frequency (fmax) correlates with the time of atomic fluctuations (τ), defined by τ = 1/fmax. Furthermore, ultraviolet (UV) irradiation of the nanoparticles prior to mixing with the polymer is shown to influence the parameter of KSMS responsible for local stress concentration. This suggests that PE is connected with the homogeneity of the composite too. The achieved results demonstrate that PE contactless measurements can be used to detect mechanical destruction of the epoxy polymer composite surface nanolayer, as well as to assess its durability and corresponding activation energy. The results presented in the article may contribute to the development of more reliable epoxy polymer composites and durability measurements of their mechanically loaded surface layer or nanofilms. Full article
(This article belongs to the Special Issue Composite Materials Processing, Modeling and Simulation)
Show Figures

Figure 1

8 pages, 18357 KiB  
Article
Wafer Bonding of GaAs and SiC via Thin Au Film at Room Temperature
by Kai Takeuchi and Eiji Higurashi
Micromachines 2025, 16(4), 439; https://doi.org/10.3390/mi16040439 - 7 Apr 2025
Viewed by 770
Abstract
Effective thermal management is a critical challenge in achieving high-power output for semiconductor laser devices. A key factor in laser device packaging is the bonding between the laser device on a GaAs substrate and a heat spreader, typically composed of high thermal conductivity [...] Read more.
Effective thermal management is a critical challenge in achieving high-power output for semiconductor laser devices. A key factor in laser device packaging is the bonding between the laser device on a GaAs substrate and a heat spreader, typically composed of high thermal conductivity materials such as SiC. Conventional soldering methods introduce thick bonding layers with relatively low thermal conductivity, resulting in high thermal resistance at the interface. In this study, we demonstrate the room temperature bonding of GaAs and SiC via a 30 nm thick Au layer, eliminating the need for a thermal reaction bonding layer or vacuum process. Using surface-activated bonding (SAB), GaAs and SiC were successfully bonded, with a strength comparable to bulk fracture. A uniform and ultrathin Au bonding interface significantly reduces thermal resistance compared to conventional soldering methods. These results highlight the potential of SAB with thin Au films as a promising approach for improving thermal management in high-power semiconductor laser devices. Full article
(This article belongs to the Special Issue Advanced Packaging for Microsystem Applications, 3rd Edition)
Show Figures

Figure 1

15 pages, 3438 KiB  
Article
One-Part Alkali-Activated Wood Biomass Binders for Cemented Paste Backfill
by Kunlei Zhu, Haijun Wang, Lu Dong, Xulin Zhao, Junchao Jin, Yang Liu, Jianbo Liu and Dingchao Lv
Minerals 2025, 15(3), 273; https://doi.org/10.3390/min15030273 - 7 Mar 2025
Viewed by 940
Abstract
This study developed a one-part alkali-activated slag/wood biomass fly ash (WBFA) binder (AAS) for preparing cemented paste backfill (CPB) as an alternative to traditional cement. Through multi-scale characterizations (XRD, FTIR, TGA, rheological testing, and MIP) and performance analyses, the regulation mechanisms of slag/WBFA [...] Read more.
This study developed a one-part alkali-activated slag/wood biomass fly ash (WBFA) binder (AAS) for preparing cemented paste backfill (CPB) as an alternative to traditional cement. Through multi-scale characterizations (XRD, FTIR, TGA, rheological testing, and MIP) and performance analyses, the regulation mechanisms of slag/WBFA ratios on hydration behavior, microstructure, and mechanical properties were systematically revealed. Results demonstrate that high slag proportions significantly enhance slurry rheology and mechanical strength, primarily through slag hydration generating dense gel networks of hydration products and promoting particle aggregation via reduced zeta potential. Although inert components in WBFA inhibit early hydration, the long-term reactivity of slag effectively counteracts these negative effects, achieving comparable 28-day compressive strength between slag/WBFA-based CPB (4.11 MPa) and cement-based CPB (4.16 MPa). Microstructural analyses indicate that the disordered gels in AAS systems exhibit silicon–oxygen bond polymerization degrees (950 cm−1) comparable to cement, while WBFA regulates Ca/Si ratios to induce bridging site formation (900 cm−1), significantly reducing porosity and enhancing structural compactness. This research provides theoretical support and process optimization strategies for developing low-cost, high-performance mine filling materials using industrial solid wastes, advancing sustainable green mining practices. Full article
Show Figures

Figure 1

Back to TopTop