Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Wettability and Interaction of Sn5Sb3Ti Solder on the Surface of Composite Material Type Ni-SiC
3.2. Bond Analysis on the Ni-SiC/Sn5Sb3Ti Boundary
3.3. Bond Analysis on the SiC/Sn5Sb3Ti Boundary
3.4. Shear Strength of Soldered Joints
4. Conclusions
- The wettability experiment on the Ni-SiC composite started at a temperature of 750 °C. At this temperature, the solder did not wet the substrate surface and the wetting angle attained an average value of 94°. Increasing the temperature to 850 °C improved the wetting of the active solder, resulting in a reduction in the wetting angle to an approximate value of 60°. A significant improvement was achieved at 950 °C, with a wetting angle of 24° attained. These observations suggest that with increasing soldering temperature, the wetting angle of the active solder type Sn5Sb3Ti decreases.
- The specimen fabricated at a wetting temperature of 950 °C, where the smallest wetting angle was measured, was studied with SEM-EDX analysis. The Ni3(Sn,Sb)4 and Ti6(Sn,Sb)5 phases were observed on the Ni-SiC boundary. The reaction layer, formed of the Ti6(Sn,Sb)5 phase with an approximate thickness of 30 µm, provides evidence of Ti diffusion from the solder to the joint boundary and wetting of the composite substrate.
- A transition zone formed at the Ni-SiC/Sn5Sb3Ti boundary, where nickel migrated from the Ni-SiC composite into the solder via solid-state diffusion. The width of the Ni diffusion zone was approximately 10–25 µm, as shown by EDX line scans. No nickel diffusion into the SiC ceramic substrate was detected, confirming that migration was restricted to the interface. A similar effect was observed for Ti from the solder, with the distribution at the boundary confirmed by the presence of the Ti1Ni2Si2 phase. The bond at the SiC/Sn5Sb3Ti boundary is formed by the distribution of active Ti from the solder to the SiC ceramics, where a reaction layer forms and ensures wetting.
- The shear strength was measured on joints fabricated at three different soldering temperatures—750, 850 and 950 °C. Although the average shear strength at 950 °C (36 ± 15 MPa) was lower than that at 750 °C (39 ± 6 MPa), the highest individual shear strength of 51 MPa was recorded at 950 °C. This temperature also exhibited the greatest variability in mechanical performance, which may be attributed to local microstructural differences in the reaction layer formed at higher temperatures.
- XRD analysis of the fractured surface of the soldered joint from the side of the SiC ceramics showed the presence of the following phases: Ni3Sn4, C2SiTi3, Ni2Si, SbSn and NiSi2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karakoc, O.; Koyanagi, T.; Nozawa, T.; Katoh, Y. Fiber/matrix debonding evaluation of SiCf/SiC composites using micropillar compression technique. Compos. Part B Eng. 2021, 224, 109189. [Google Scholar] [CrossRef]
- Chen, M.; Liu, H.; Zheng, H.; Fan, B.; Zhang, S.; Wang, H.; Zhang, R.; Li, H.; Qian, F.; Chen, Y. Preparation, microstructure, stability in magnesium metallurgy environment of SiC composites. Ceram. Int. 2023, 49 Pt B, 36572–36579. [Google Scholar] [CrossRef]
- Choi, H.; Illés, B.; Hurtony, T.; Byun, J.; Géczy, A.; Skwarek, A. Corrosion problems of SAC-SiC composite solder alloys. Corros. Sci. 2023, 224, 111488. [Google Scholar] [CrossRef]
- Shi, Z.-A.; Wu, J.-M.; Fang, Z.-Q.; Tian, C.; Wang, Q.-W.; Mao, C.; Fu, L.-X.; Shi, Y.-S. Investigation of curing behavior and mechanical properties of SiC ceramics prepared by vat photopolymerization combined with pressureless liquid-phase sintering using Al2O3-coated SiC powder. Addit. Manuf. 2024, 79, 103942. [Google Scholar] [CrossRef]
- Lorrette, C.; Réau, A.; Briottet, L. Mechanical properties of nanostructured silicon carbide consolidated by spark plasma sintering. J. Eur. Ceram. Soc. 2013, 33, 147–156. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Yang, Z.; Xin, Z.; Zhang, N.; Zheng, H.; Wu, X. Thermal transport mechanism of AlN/SiG/3C–SiC typical heterostructures. Mater. Today Phys. 2023, 30, 100948. [Google Scholar] [CrossRef]
- Shanenkov, I.; Nikitin, D.; Nassyrbayev, A.; Vympina, Y.; Tsimmerman, A.; Sivkov, A. Plasma Dynamic Synthesis of Dispersed Cu/SiC Composites with a Controlled Phase Composition. Met. Mater. Int. 2024, 30, 814–831. [Google Scholar] [CrossRef]
- Ma, C.; He, H.; Xia, F.; Xiao, Z.; Liu, Y. Performance of Ni–SiC composites deposited using magnetic-field-assisted electrodeposition under different magnetic-field directions. Ceram. Int. 2023, 49 Pt B, 35907–35916. [Google Scholar] [CrossRef]
- Liu, W.Q.; Lei, W.N.; Shen, Y.; Wang, C.Y.; Qian, H.F.; Li, Q.L. Performance characterization and preparation of Ni-SiC nanocomposites based on SCF-CO2. Integr. Ferroelectr. 2017, 179, 45–55. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, D.; Xia, H.; Xia, F.; Ma, Z.; Williams, T. Microstructure and Properties of Ni-SiC Nanocomposites Fabricated by Ultrasonic-Assisted Electrodeposition. Int. J. Electrochem. Sci. 2020, 15, 4015–4031. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Salles, M.A.V.; Zhang, Z.; Li, T.; Hu, B.; Henglein, F.; Lu, R. Building blocks of sharding blockchain systems: Concepts, approaches, and open problems. Comput. Sci. Rev. 2022, 46, 100513. [Google Scholar] [CrossRef]
- Liu, Y.; Cui, W.; Ji, X. Bonding mechanism in ultrasonic-assisted soldering of ZrO2 and 304 stainless steel using a micro-alloyed active solder alloy. Mater. Lett. 2022, 322, 132456. [Google Scholar] [CrossRef]
- Guo, W.; She, Z.; Xue, H.; Zhang, X. Effect of active Ti element on the bonding characteristic of the Ag(111)/α-Al2O3(0001) interface by using first principle calculation. Ceram. Int. 2020, 46, 5430–5435. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, M.; Wang, X.; Yan, B.; Li, G. Effects of active element Ti on interfacial microstructure and bonding strength of SiO2/SiO2 joints soldered using Sn3.5Ag4Ti(Ce,Ga) alloy filler. Mater. Sci. Eng. A 2017, 680, 317–323. [Google Scholar] [CrossRef]
- Bian, H.; Fu, W.; Lei, Y.; Song, X.; Liu, D.; Cao, J.; Feng, J. Wetting and low temperature bonding of zirconia metallized with Sn0.3Ag0.7Cu-Ti alloys. Ceram. Int. 2018, 44, 11456–11465. [Google Scholar] [CrossRef]
- Abd El Hamid, S.E.; Gouda, E.S.; Abdel Ghany, N.A. Effect of Al and Bi addition on the corrosion behaviour, hardness, and melting temperature of lead-free solder alloys. Microelectron. Reliab. 2023, 147, 115051. [Google Scholar] [CrossRef]
- Liu, G.; Khorsand, S.; Ji, S. Electrochemical corrosion behaviour of Sn-Zn-xBi alloys used for miniature detonating cords. J. Mater. Sci. Technol. 2019, 35, 1618–1628. [Google Scholar] [CrossRef]
- Liu, J.-C.; Wang, Z.-H.; Xie, J.-Y.; Ma, J.-S.; Shi, Q.-Y.; Zhang, G.; Suganuma, K. Effects of intermetallic-forming element additions on microstructure and corrosion behavior of Sn–Zn solder alloys. Corros. Sci. 2016, 112, 150–159. [Google Scholar] [CrossRef]
- Kolenak, R.; Melus, T.; Drapala, J.; Gogola, P.; Pasak, M. Study of Bond Formation in Ceramic and Composite Materials Ultrasonically Soldered with Bi–Ag–Mg-Type Solder. Materials 2023, 16, 2991. [Google Scholar] [CrossRef]
- Kolenak, R.; Pluhar, A.; Drapala, J.; Babincova, P.; Pasak, M. Characterization of Zn-Mg-Sr Type Soldering Alloy and Study of Ultrasonic Soldering of SiC Ceramics and Cu-SiC Composite. Materials 2023, 16, 3795. [Google Scholar] [CrossRef]
- Koleňák, R.; Chachula, M.; Šebo, P.; Koleňáková, M. Wettability and shear strength of active Sn2Ti solder on Al2O3 ceramics. Solder. Surf. Mt. Technol. 2011, 23, 224–228. [Google Scholar] [CrossRef]
- Yu, W.-Y.; Liu, S.-H.; Liu, X.-Y.; Shao, J.-L.; Liu, M.-P. Wetting behavior in ultrasonic vibration-assisted brazing of aluminum to graphite using Sn-Ag-Ti active solder. Surf. Rev. Lett. 2015, 22, 1550035. [Google Scholar] [CrossRef]
- Tsao, L.C. Microstructural characterization and mechanical properties of microplasma oxidized TiO2/Ti joints soldered using Sn3.5Ag4Ti(Ce) active filler. J. Mater. Sci. Mater. Electron. 2014, 25, 233–243. [Google Scholar] [CrossRef]
- Kolenak, R.; Kostolny, I.; Drapala, J.; Babincova, P.; Pasak, M. Characterization of Sn-Sb-Ti Solder Alloy and the Study of Its Use for the Ultrasonic Soldering Process of SiC Ceramics with a Cu–SiC Metal–Ceramic Composite. Materials 2021, 14, 6369. [Google Scholar] [CrossRef]
- Kolenak, R.; Kostolny, I.; Drapala, J.; Urminsky, J.; Pluhar, A.; Babincova, P.; Drimal, D. Study of Wettability and Solderability of SiC Ceramics with Ni by Use of Sn-Sb-Ti Solder by Heating with Electron Beam in Vacuum. Materials 2022, 15, 5301. [Google Scholar] [CrossRef]
- ISO 14175; Welding Consumables—Gases and Gas Mixtures for Fusion Welding and Allied Processes. ISO: Geneva, Switzerland, 2008.
Sample | Charge [wt %] | ICP-AES [wt %] | ||||
---|---|---|---|---|---|---|
Sn | Sb | Ti | Sn | Sb | Ti | |
Sn5Sb3Ti | 92.0 | 5.0 | 3.0 | balance | 5.18 ± 0.26 | 3.31 ± 0.34 |
Accelerating voltage | 55.0 kV |
Current | 10 mA |
Focusing current | 890 mA |
Vacuum | 1 × 10−2 Pa |
Heating time | 30 s |
Heating temperature | 750 °C, 850 °C, 950 °C |
Time of cooling down | 60 min. |
Distance of jig surface from the electron gun | 200 ± 1 mm |
Spectrum | C | Si | Ti | Ni | Sn | Sb | Phase |
---|---|---|---|---|---|---|---|
1 | - | - | - | - | 94.83 | 5.17 | Peritectic βSn +Sb2Sn3 |
2 | - | - | - | 27.61 | 69.84 | 2.55 | Ni3(Sn,Sb)4 |
3 | - | - | - | 26.56 | 70.39 | 3.05 | Ni3(Sn,Sb)4 |
4 | - | - | 35.70 | 0.65 | 61.74 | 1.91 | Ti6(Sn,Sb)5 |
5 | - | - | 2.88 | 0.94 | 92.17 | 4.01 | Heterogeneous area |
6 | - | - | 2.97 | 21.77 | 72.17 | 3.10 | Heterogeneous area |
7 | 27.88 | 14.12 | - | 57.99 | - | - | Ni-SiC |
Spectrum | C | Si | Ti | Ni | Sn | Sb | Phase |
---|---|---|---|---|---|---|---|
1 | - | - | - | - | 96.09 | 3.91 | Peritectics βSn + Sb2Sn3 |
2 | - | - | - | - | 95.37 | 4.74 | Peritectics βSn + Sb2Sn3 |
3 | - | - | - | 39.63 | 56.30 | 4.07 | Ni3(Sn,Sb)4 |
4 | - | 1.32 | 33.65 | 30.63 | 20.64 | 13.76 | Ni3Si2 |
5 | - | 1.05 | 34.18 | 30.26 | 19.84 | 14.67 | Ni3Si2 |
6 | - | 1.20 | - | 40.67 | 54.88 | 3.26 | Ni3(Sn,Sb)4 |
7 | - | 2.87 | 1.48 | 40.68 | 52.55 | 2.42 | Ni3(Sn,Sb)4 |
8 | - | 34.99 | 15.55 | 40.21 | 7.57 | 1.69 | Ti1Ni2Si2 |
9 | - | 32.57 | 11.40 | 40.33 | 14.48 | 1.23 | Ti1Ni2Si2 |
10 | 69.63 | 9.84 | 0.79 | 18.53 | 1.21 | - | Ni-SiC |
Spectrum | C | Si | Ti | Ni | Sn | Sb | Phase |
---|---|---|---|---|---|---|---|
1 | 44.44 | 53.56 | - | 0.63 | 1.37 | - | Substrate SiC |
2 | - | 25.62 | - | 74.38 | - | - | Ni3Si2 |
3 | - | 22.59 | - | 77.41 | - | - | Ni3Si2 |
4 | - | 22.83 | 1.29 | 74.73 | 1.15 | - | Ni3Si2 |
5 | - | 27.97 | 8.46 | 15.41 | 44.80 | 3.36 | Transition zone |
6 | - | 49.81 | 1.08 | 2.15 | 44.93 | 2.03 | |
7 | - | - | - | 26.06 | 70.33 | 3.61 | Ni3(Sn,Sb)4 |
8 | - | - | - | - | 93.57 | 6.43 | Peritectic βSn + Sb2Sn3 |
Ref. Code | Compound Name | Chem. Formula |
---|---|---|
03-065-2631 | Tin | Sn |
01-078-2780 | Silicon Carbide | SiC |
01-072-2569 | Nickel Tin | Ni3Sn4 |
98-002-5762 | Titanium Silicide Dicarbide | C2SiTi3 |
00-048-1339 | Nickel Silicon | Ni2Si |
00-033-0118 | Antimony Tin | SbSn |
03-065-2974 | Nickel Silicon | NiSi2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melus, T.; Kolenak, R.; Drapala, J.; Gogola, P.; Pasak, M.; Drimal, D.; Sloboda, M. Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating. Materials 2025, 18, 2814. https://doi.org/10.3390/ma18122814
Melus T, Kolenak R, Drapala J, Gogola P, Pasak M, Drimal D, Sloboda M. Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating. Materials. 2025; 18(12):2814. https://doi.org/10.3390/ma18122814
Chicago/Turabian StyleMelus, Tomas, Roman Kolenak, Jaromir Drapala, Peter Gogola, Matej Pasak, Daniel Drimal, and Mikulas Sloboda. 2025. "Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating" Materials 18, no. 12: 2814. https://doi.org/10.3390/ma18122814
APA StyleMelus, T., Kolenak, R., Drapala, J., Gogola, P., Pasak, M., Drimal, D., & Sloboda, M. (2025). Wettability Study of Soldered Joints in SiC Ceramics and Combined Ni-SiC Using SnSbTi-Based Solder and Electron Beam Heating. Materials, 18(12), 2814. https://doi.org/10.3390/ma18122814